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Abstract 

The effect of a protective coating of fused lithium borate, Li3BO3, on 
the physicochemical and electrochemical characteristics of LiCoO2 
has been studied. A cathode material produced by the SCS method us-
ing binary organic fuel, glycine and citric acid. The influence of the 
experiment conditions on the morphology, crystal structure and spe-
cific surface of lithium cobaltite was studied. Electrochemical testing 
of LiCoO2∙nLi3BO3 samples, n = 5 and 7 mass %, has been performed 

in the cathode Li|Li+-electrolyte|LiCoO2∙nLi3BO3 half-cell using 1M 
LiPF6 in EC/DMC mixture (1:1) as electrolyte in the 2.7-4.3 V range at 
normalized discharge current С/10, С/5, С/2. The maximal initial 
discharge capacity of 185 mAh/g was detected for the samples with 5 
mass % Li3BO3. The coulomb efficiency of optimal materials in the 
40th cycle was 99.1%. 
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1. Introduction 

Lithium cobaltite LiCoO2 (LCO) is used as a cathode mate-

rial since 1990, and in spite of the appearance of such 

promising cathode materials as LiNi1/3Mn1/3Co1/3O2 (NMC), 

LiNi0.8Co0.15Al0.05O2 (NCA), LiMn2O4 (LMO) etc. it is still 

employed as a component of lithium-ion batteries (LIB) 

with low discharge rates in portable gadgets [1]. Chemical 

interaction between the electrolyte and the cathode mate-

rial leads to non-recoverable losses of lithium cations re-

duced service lifetime and accelerated capacity failure of 

LIB. The manufacturers of LIB materials try to eliminate 

this effect by decreasing the specific surface of dispersed 

materials, by using microgranulation processes or apply-

ing modifying coatings on cathode material particles, pro-

tecting them from the action of acid fluorine-containing 

components of electrolyte. In particular, Al2O3, ZrO2, ZnO, 

SiO2, TiO2 and other oxides are used as protective coatings 

[2-5]. Recently appeared publications reporting the appli-

cation of glasses and boron and lithium based oxides as 

coatings [5-7]. A. Nagasubramanian et al. [6] studied the 

effect of LiBO2 coating on the electrochemical performance 

of orthorhombic LiMnO2 cathode. ShuangYuan Tan et al. 

[7] showed that using glass-coated NMC/Li2O∙2B2O3 can 

increase the discharge capacity retention of the cathode 

from 22.5% to 57.8% at −40 °C. Among compounds in the 

Li2O-B2O3 system, lithium borate Li3BO3 should be noted 

[8-10]. It has the lowest melting temperature, 715±15 °C 

[11], which allows applying it as a flux for more refractory 

compounds, creating dense protective coatings. In addi-

tion, Li3BO3 is a lithium ion conductor [10], and its molec-

ular mass is smaller than that of LiCoO2 and other cathode 

materials. Li3BO3 coating also increases the concentration 

of Li+ in the contact layer with electrolyte. 

Most coating strategies are based on the sol-gel method 

or impregnation of cathode materials powders with salt 

solutions with subsequent drying and annealing [1-3, 5-7]. 

However, the application of lithium borates via solutions 

guarantees neither synthesis of the nominal composition 

of lithium borate nor the density of the coating after an-

nealing at 500 °С. It can be assumed that addition and 

distribution of LiBO2, Li2B4O7 or Li3BO3 compounds in the 

cathode bulk with subsequent annealing at melting tem-

peratures of the corresponding eutectics may cause posi-

tive effect. 
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For the production of cathode materials, different mod-

ifications of solid-phase and hydrothermal methods are 

usually employed [12]. In laboratory studies for the ob-

taining of the cathode materials, in particular, lithium 

cobaltite, combustion reactions [13-18] are more often 

used [19-24]. The attraction of solution combustion syn-

thesis (SCS) reactions for industrial application is deter-

mined by the following characteristics: 

1. cathode material can be produced almost without sew-

age;  

2. energy consumption for the decomposition of precur-

sors is reduced compared to conventional technologies, 

since the method employs internal exothermal pro-

cesses requiring only relatively moderate energy con-

sumption for evaporation of reaction solutions and 

preliminary heating of xerogel before the beginning of 

redox reaction;  

3. dispersion and chemical activity of produced precursor 

may reduce the time of high-temperature annealing to 

attain the monophasic;  

4. although the initial solutions contain nitrates, combus-

tion proceeds with almost complete transformation of 

nitrogen dioxides into molecular nitrogen;  

5. this method allows to control the dispersion of the ma-

terial while reducing the costs for milling and lessen-

ing the risk of pollution of the material during milling.  

However, in the LiNO3-Co(NO3)2-glycine (urea) systems, a 

redox reaction of LCO formation proceeds intensely with 

outflow of a considerable part of precursor with effluent 

gases outside the reactor. Under stoichiometric combus-

tion conditions, the combustion rate may have an explo-

sive character. It is reasonable to expect that the described 

above effects detected under conditions of laboratory ex-

periments will be multiply strengthened if the mass of the 

material is increased. This problem can be solved by using 

of less energetic fuel for controlled reduction of SCS rate, 

for example, sucrose, ammonium acetate starch, citric acid 

and oxalic acid [24-28]. 

In this paper, we report structural, morphological, di-

mensional and electrochemical characteristics of LCO 

powders produced in SCS reactions with glycine and citric 

acid with subsequent coating with fused lithium borate 

Li3BO3. 

2. Experimental 

2.1. Starting materials 

For the combustion synthesis of LCO powders, cobalt(II) 

nitrate hexahydrate (99%) and cobalt(II) carbonate hy-

droxide hydrate CoCO3∙mCo(OH)2∙nH2O (with cobalt con-

tent of 55.5%) (Ural Chemical Reagents Plant, Russia) 

were used as cobalt sources, and lithium carbonate 

(UNICHIM (Russia), 99%) was used as a source of lithium. 

Citric acid hydrate H3C6H5O7∙H2O (Citrobel (Russia), 

99.8%) and amino acetic acid (glycine) H2N(CH2)COOH 

(Kamhimkom (Russia), 98.5%) were used as fuel, while 

double-distilled water served as a solvent for precursor 

solutions. The synthesis of lithium borate was carried out 

from boric acid (UNICHIM (Russia), 99.5%) and lithium 

carbonate (NPF Nevsky Chemist (Russia), 99.5 %). 

2.2. Synthesis 

Lithium nitrate combined with cobalt nitrate imparts ex-

cessive combustion intensity to SCS reactions. In the 

methods where glycine used as a fuel / reductant, the 

combustion rate during synthesis of cathode materials of 

LIB can be considerably decreased by replacing lithium 

nitrate by lithium carbonate or lithium citrate [24]. Be-

sides, the reduction of the fraction of cobalt nitrate (oxi-

dizer) due to its replacement by cobalt citrate also lowers 

the SCS intensity allowing the yield increasing of the re-

sulting material [24]. 

In this work, we used one-step mode of LCO produc-

tion. For this purpose, a 150 ml solution of cobalt nitrate 

(66.67 g/dm3 Co) and citric acid (237.5 g/dm3) (solution 1) 

was placed into a 2 dm
3
 reactor, to which 120 cm

3
 lithium 

citrate solution (286.68 g/dm3 Li2HC6H5O7) was added. 

Cobalt (II) carbonate hydroxide hydrate and glycine suc-

cessively added to the resulting solution (Table 1).  

The reaction solution was heated on an electrical heat-

er with a capacity of 1 kW (the temperature of the heater 

was 550–600 °С) for dehydration and initiation of SCS 

reaction. The produced LCO precursor was ground in a 

ball mill with grinding bodies made of stabilized zirconi-

um oxide prior and between the annealing at 650, 800 and 

850 °С. The annealing duration at each stage was 10 h.  

After certification, LCO powders were coated with 

fused Li3BO3 (LBO) produced preliminarily in a solid-phase 

reaction using lithium carbonate and boric acid at 560–

600 °С for 35 h with intermediate grinding. 5 and 7 mass 

% of LBO were added to the initial LCO powder and mixed 

in a ball mill for 1 h, then they were annealed at 750 °С for 

5 h. After the first annealing, the LCO/LBO samples were 

repeatedly ground and annealed for the second time at 

750 °С for 5 h to produce better uniform coating.  

2.3. Characterization of powder samples 

The diffraction patterns of the powders were taken at 

room temperature with a Shumadzu XRD-700 (Cu Kα1 

radiation, 2θ = 10-80°) diffractometer, equipped with 

PDF2 database. The refinement of the crystal structure 

according to the Rietveld method carried out using the 

software package FullProf [29]. SEM images obtained with 

a JEOL JSM 6390 LA microscope. Specific surface area (S) 

of powders was determined by BET nitrogen desorption 

during heating in a SORBI N4.1 (Meta, Russia). The parti-

cle size distribution of the obtained powders was deter-

mined using a Horiba LA-950V2 laser particle meter. 

2.4. Electrochemical measurements 

The electrochemical properties of the LCO powder samples 

were studied using two-electrode pouch cells. The compo-

site electrodes were prepared by inkjet printing of a ho-
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mogenized mixture of the synthesized material, a conduc-

tive additive (acetylene black) and a binder (polyvinyli-

dene fluoride dissolved in N-methyl-2-pyrrolidone) 

(weight ratio of solid components 80:10:10) onto an alu-

minum foil. The electrodes were compacted in a rolling 

mill and then dried under vacuum at 120 °С for 12 h. The 

area of the prepared electrode was of 2.25 cm2. The active 

material loading of the electrode was about 3-6 mg cm-2. 

The electrochemical test cells Li│liquid electro-

lyte│LCO were assembled in an argon-filled MBraun LAB 

Star glove box with O2 and H2O contents <0.1 ppm. Lithi-

um foil (99.9 %, Alfa Aesar) was used as a counter elec-

trode. Celgard 2300 film was used as a separator. The so-

lution of 1 M LiPF6 in ethylene carbonate (EC) and ethyl 

methyl carbonate (EMC) (1:1 vol.) (Sigma Aldrich) was 

used as the electrolyte. The residual water content in the 

electrolyte solution did not exceed 30 ppm. 

Cycling performance and rate capability of the cathode 

half-cells were examined at 25 °C by galvanostatic charge-

discharge curves measured with P-20X80 multichannel 

potentiostat (“Elins” LLC, Russia) in the voltage range of 

2.7–4.3 vs. Li0/Li+. Current density varied from 0.1 to 

0.5C. 

3. Results and Discussion 

SCS as the chosen LCO obtaining method allowed to in-

crease the mass of the obtained product without growing 

the reaction temperature and rate, i.e. without discharge 

of the produced powder. Evaporation of the solution led to 

the formation of a semi-sphered dried gel covered with a 

violet film. The dry outer layer gradually closed the whole 

semi sphere, inside which a wet gel remained (Fig. 1а) 

also transforming gradually into dry precursor material. 

The redox reaction proceeded in the form of a heating 

wave (Fig. 1b) with low violet flame. There was no dis-

charge of the material outside the reactor, and no visible 

traces of nitrogen dioxide were present. When the com-

bustion was completed, a bulky flake black powder of LCO 

precursor was obtained. 

The LCO powders obtained after combustion possessed 

high dispersion and revealed chemically non-equilibrium 

state due to incomplete crystal lattice formation process-

es. This is connected with a short combustion time (the 

reaction mass was in the high-temperature region for less 

than 3–5 min); low density of the material (as a result of 

large amount of gaseous products) hampers the comple-

tion of diffusion processes during LCO formation. Usually, 

the SCS process is supplemented with high-temperature 

annealing, in this case in the range of 650–850 °С, to re-

move carbon-containing impurities and form the LCO crys-

tal structure (Table 1, Fig. 2). Upon annealing, the crystal 

lattice parameters of the produced LCO corresponded to 

the literature data [30]. Reflections of the fused LBO coat-

ing were not recorded, probably due to its glassy charac-

ter. 

The performed sedimentation analysis revealed that 

LCO represents finely dispersed powders forming agglom-

erates with the maximal diameter, Dmax, of <30 µm (Table 

2) and the average particle diameter, Dav, of 8.4-11.5 µm. 

Table 1 LCO crystal lattice parameters after annealing at 850 °С 

Sample a, Å c, Å V, Å
3
 R1 R2 

1 2.8165 (2) 14.0604 (21) 96.5921 1.72 0.57 

[30] 2.81619 14.05586 96.5382 1.35 0.44 

Fig. 1 Formation of the product in SCS reactions Fig. 2 X-ray diffraction patterns of (а) LCO, (b) LCO+5% LBO, (c) 

LCO +7% LBO 



Chimica Techno Acta 2021, vol. 8(1), № 20218101 ARTICLE 

4 of 6 

The fraction of particles less than 5 µm is rather large, 

from 6 to 30%. The application of borate coating consid-

erably changes the particle size distribution in the materi-

al; Dav increases to 11-45 µm and depends explicitly on the 

milling conditions and load. The fraction of particles with 

a diameter less than 5 µm decreases to 1.1-1.3% (Table 2), 

which should have a positive effect on the cathode stabil-

ity during the interaction with electrolyte. However, the 

presence of aggregate fractions larger than 30 µm re-

quired the classification of powders before applying the 

electrode mass.  

Coating of LCO with a layer of fused lithium borate 

practically does not change the specific surface of the ma-

terial (Table 2), remaining equal to 0.8-0.98 m2/g. This 

value is larger than the traditional values for commercial 

cathode materials, 0.4-0.6 m2/g, but possibly has positive 

impact on the electrochemical characteristics during cy-

cling. The advantage of coating by fusion is that fusion and 

spreading of LBO on the surface of LCO particles and ag-

glomerates decreases the coating thickness and increases 

the probability of connection of small particles, reducing 

the influence of electrolyte.  

The sizes of LCO-LBO powders are slightly larger than 

the base (LCO) particles, it contain a smaller percent of 

fine fractions due to enhanced sintering into agglomerates 

and additional annealing time (growth of primary crystal-

lites) (Fig. 3). 
The charge-discharge characteristics of cathode mate-

rials based on LCO were studied in the potential range of 

2.75-4.3V vs Li/Li+. The charge and discharge rate of the 

first 10 cycles were 0.1C. Then, at the same charge rate, 10 

cycles performed with a discharge rate of 0.2C, 0.5C and 

again 0.1C. Fig. 4 shows the capacity dependences on the 

cycle number based on a series of powders: LCO, LCO + 

5% LBO and LCO + 7% LBO as samples with the most sta-

ble characteristics.  

The discharge capacity of the sample without coating 

at the first cycle was 166 mAh/g. A significant increase of 

the discharge capacity (up to 185 mAh/g) was achieved by 

using a 5% LBO coating. When the LBO content of the 

sample increases to 7%, the discharge capacity drops to 

164 mAh/g. The negative effect probably related to the 

increasing thickness of the coating layer and/or the for-

mation of less conducting glasses during the interaction of 

fused LBO with LCO. 
All samples retain 94, 93 and 93% of the original dis-

charge capacity after 40 cycles when the cycle rate re-

turned to the original rate 0.1C. In addition, the coulomb 

efficiency of these samples is more than 99% throughout 

all 40 charge-discharge cycles (Table 3). 
Fig. 5 shows the charge-discharge curves of the first 

cycle for LCO, LCO+5% LBO and LCO +7% LBO. The type 

of the charge-discharge curves corresponds to the typical 

charge-discharge curves obtained for lithium cobaltate-

based cathodes [21, 31, 32]. 

The charge-discharge curves have a plateau at a poten-

tial of 3.9 V and two small quasi-plateaus at 4.1 and 4.2 V. 

These plateaus correspond to the peaks on the cyclic volt-

ammograms (Fig. 6). According to the literature data [32-

36], the main peak at 3.9 V is related to the first order 

transition from LCO to Li0.8CoO2; the two less pronounced 

peaks at ~4.06 and ~4.17 V are associated with phase 

transitions to the monoclinic structure and back to the 

hexagonal structure.  

Table 2 The results of sedimentation analysis of LCO-LBO powders 

LCO - LBO Dav, µm  Dmed, µm Fraction  

< 5 µm, %  

Dmax,  

µm  

Fraction  

>30 µm, %  

Fraction  

30-100 µm, %  

S, m
2
/g 

LCO 8.4 8.2 13.5 30 0 0 0.82±0.02 

LCO+5% LBO 43 14 1.3 300 24 11 0.86±0.04 

LCO+7% LBO 37 16 1.1 300 29 19 0.92±0.03 

Table 3 The cyclic performance of LCO powders in the range of 2.75–4.3 V at different rates 

 Discharge capacity, mAh/g (cycle number) Coulomb efficiency, %  

(cycle number) 

0.1С (10) 0.2С (20) 0.5С (30) 0.1С (40) (10) (20) (30) (40) 

LCO 162 158 145 153 99.5 99.7 99.9 99.1 

LCO+5% LBO 185 180 173 172 99.5 99.7 99.9 99.1 

LCO+7% LBO 162 158 152 150 99.5 99.7 99.9 99.1 

Fig. 3 Morphology of (а) LCO, (b) LCO+5% LBO, (c) LCO +7% LBO 

powders 
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Based on the obtained data, it is possible to conclude that 

borate coating does not affect the electrode polarization, 

as the discharge plateau does not change. 

According to the data obtained by the cyclic voltamme-

try method and based on the peaks intensity on the cyclic 

voltammograms, one may conclude that due to the pres-

ence of 5 mass % of LBO coating on the lithium cobaltite 

surface, it is possible to activate the electrode surface and 

increase the reversibility of lithium introduction and ex-

traction processes into the electrode. Wider peaks for the 

uncoated sample may be an indication of inhibition of 

lithiation and delithiation processes as compared to the 

modified samples. Consequently, the presence of LBO coat-

ing may affect the rate of lithium diffusion into cathode 

material particles.  

Thus, borate coating increases the stability of cobaltite 

cycling at elevated rates. When the rate increases to 0.5C, 

the capacity falls by 4% for coated samples and by 8% for 

uncoated samples. 

4. Conclusions 

The best electrochemical characteristics, discharge capaci-

ty of 185 mAh/g at 0.1C and coulomb efficiency of 99.1% 

after 40 cycles, were demonstrated by the sample ob-

tained in the SCS reaction of cobalt nitrate with lithium 

citrate and glycine and coated with 5 mass % of LiBO3. 

Fused LiBO3 coating increases the cobaltate cycling stabil-

ity at elevated rates. 
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