- 3. Ahmed K., Li Y., McClements D. J., Xiao H. // Food Chem. 2012. Vol. 132. P. 799–807.
- 4. Krasulya O., Shestakov S., Bogush V. et al. // Ultrasonics Sonochemistry. 2014. Vol. 21. P. 2112–2116.
- 5. Naumenko N. V., Kalinina I. V. // Materials Science Forum. 2016. Vol. 870. P. 691–696.
- 6. *Potoroko I. Yu., Kalinina I. V., Naumenko N. V. et al.* // Human. Sports. Medicine. 2018. Vol. 17, № 4. P. 77–90.
 - * Работа выполнена при поддержке гранта РФФИ 18-53-45015.

УДК 582.286.292

В. В. Ревин, Е. В. Лияськина, Н. А. Пестов, Н. А. Ракова, Д. С. Жирнова, А. А. Китайкина, В. В. Русяева, А. Ю. Лияськина

Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва, 430005, Россия, г. Саранск, ул. Большевистская, 68, revinvv2010@yandex.ru

БИОКОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ОСНОВЕ МИКРОБНЫХ ПОЛИСАХАРИДОВ

Ключевые слова: биокомпозиционные материалы, бактериальные экзополисахариды, продуценты.

В настоящее время наблюдается стремительный рост числа научных исследований, посвященных микробным экзополисахаридам (ЭПС) [1]. Это объясняется широким спектром их функциональных характеристик и перспективами практического применения.

На кафедре биотехнологии, биоинженерии и биохимии Национального исследовательского Мордовского государственного университета в течение длительного времени проводятся исследования в области бактериальных ЭПС. Получены высокопродуктивные штаммы бактерий Xanthomonas campestris — продуценты ксантана [2], Gluconacetobacter sucrofermentans и Komagataeibacter hansenii — продуценты бактериальной целлюлозы [3–5], Paenibacillus polymyxa — продуцент левана. Разработаны технологии производства ксантана, левана и бактериальной целлюлозы с использованием дешевых отходов промышленности [6–8]. Разработаны биокомпозиционные материалы нового поколения в форме аэрогелей, гидрогелей и пленочных форм. Так получены биокомпозиты с

антибактериальными и регенерационными свойствами на основе бактериальной целлюлозы, хитозана и фузидовой кислоты в виде пленок, гидрогелей и аэрогелей [9, 10]. Разработаны новые материалы в виде аэрогелей на основе целлюлозы, обладающие сверхнизкой теплопроводностью, плотностью, высокими шумопоглощающими свойствами и сорбционными способностями [11–13]. Изучены их физико-химические и физико-механические свойства методами ИК-, ЯМР-спектроскопии, сканирующей электронной микроскопии, рентгено-структурного анализа и т. д.

Таким образом, микробные полисахариды имеют большие перспективы использования для получения функциональных материалов широкого спектра применения.

Список литературы

- 1. *Ревин В. В., Лияськина Е. В.* Биотехнология бактериальных экзополисахаридов: учеб. пособие. Саранск: Изд-во Мордов. ун-та, 2019. 192 с.
- 2. Ревин В. В., Лияськина Е. В. Патент РФ № 2714638 (18.02.2020).
- 3. *Revin V. V., Liyas'kina E. V., Sapunova N. B. et al.* // Microbiology. 2020. Vol. 14, № 1. P. 86–95.
- 4. Ревин В. В., Лияськина Е. В. Патент РФ № 2523606 (27.05.2014).
- 5. Ревин В. В, Сапунова Н. Б., Лияськина Е. В. Патент РФ № 2681281 (05.03.2019).
- 6. Ревин В. В., Лияськина Е. В., Назаркина М. И. Патент РФ № 2536973 (27.12.2014).
- 7. Ревин В. В., Лияськина Е. В., Назаркина М. И. и др. Патент РФ № 2536257 (20.12.2014).
- 8. *Revin V.*, *Liyaskina E.*, *Nazarkina M. et al.* // Brazilian Journal of Microbiology. 2018. Vol. 49. P. 151–159.
- 9. *Ревин В. В., Лияськина Е. В.* Патент РФ № 2564567. Способ получения биокомпозита. (10.10.2015).
- 10. Ревин В. В., Лияськина Е. В, Богатырева А. О. Патент РФ № 2733137 (29.09.2020).
- 11. *Revin V. V., Pestov N. A., Shchankin M. V. et al.* // Biomacromolecules. 2019. Vol. 20, № 3. P. 1401–1411.
- 12. Ревин В. В, Щанкин М. В., Пестов Н. А. Патент РФ № 2700624 (18.09.2019).
- 13. Пестов Н. А., Ревин В. В. Патент РФ № 2717777 (25.03.2020).
- * Работа выполнена при поддержке Министерства науки и высшего образования $P\Phi$, проект № FZRS-2020-0003.