УДК 631.87

Г. Г. Борисова, М. Г. Малева, А. Атамбире, Д. К. Давыдова, Трипти

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Россия, г. Екатеринбург, ул. Мира, 19, borisova59@mail.ru

ДРЕВЕСНЫЙ БИОЧАР КАК БИОДОБАВКА ДЛЯ УЛУЧШЕНИЯ РОСТА PHACELIA TANACETIFOLIA

Ключевые слова: фацелия пижмолистная, биоуголь, параметры роста, биомасса.

Современное сельское хозяйство полностью или частично зависит от применения химических удобрений и пестицидов, однако при этом нередко возникают экологические и пищевые риски. Различные органические удобрения в течение десятилетий успешно используются в сельском хозяйстве, в то время как вопросы, связанные с применением биочара (БЧ) в аграрном секторе, изучены недостаточно [1–3].

Биочар, или биоуголь — это продукт низкотемпературной утилизации отходов биологического происхождения методом непрерывного пиролиза (термического разложения органической биомассы в отсутствие или с малым доступом кислорода) [2]. Имеются сведения, что добавление БЧ в почву улучшает ее структуру, способствует удерживанию влаги, стимулирует микробиологическую активность, ускоряет рост культурных растений и увеличивает их урожайность [1—4]. Биочар способствует секвестрации углерода, что имеет большое значение в смягчении последствий глобального изменения климата [3]. Благодаря своим физико-химическим свойствам он может выступать в качестве материала-носителя бактерий для приготовления биоудобрений. Использование растительных отходов для приготовления биочара может помочь в решении проблемы их утилизации [3—5].

Цель работы — оценить влияние возрастающих концентраций БЧ на параметры роста *Phacelia tanacetifolia* Benth. (фацелия пижмолистная) в горшечных культурах для выявления наиболее оптимальной дозы, рекомендуемой в дальнейшем в качестве биоудобрения. Объект исследования — однолетнее травянистое растение, получившее широкое распространение как сидерат и медонос и обладающее лечебными свойствами.

Эксперименты проводили с использованием биочара, изготовленного отечественным производителем (ООО «ДианАгро», г. Новосибирск, Россия) из древесины березы. В горшки объемом 400 мл добавляли стерильный почвенный субстрат на основе торфяного садового почвогрунта с добавлением БЧ в концентрациях 2,5; 5; 7,5 и 10% (по объему). Контролем служил субстрат без добавления БЧ. В каждый горшок высаживали по 15 семян. Повторность – шестикратная. Растения выращивали в течение 56 суток (рисунок) при естественном освещении. В процессе проведения эксперимента изучены следующие параметры: количество и площадь листьев, длина побегов и корней, сырая и сухая надземная и подземная биомасса.

Добавление БЧ в почву ускоряло прорастание семян по сравнению с контролем. Особенно отчетливо это проявлялось при концентрации БЧ 10%. Среднее количество листьев на одном растении между вариантами существенно не различалось. Однако при добавлении

 $\mathrm{EV} \geq 5\%$ площадь листа была выше по сравнению с контролем в среднем в 1,3 раза. При этом наибольшей площадью листа отличались растения при концентрации $\mathrm{EV} = 7.5\%$.

Максимальная длина побега была отмечена у *P. tanacetifolia* при добавлении 7,5 и 10% БЧ, в то время как по длине корней достоверных различий не было выявлено.

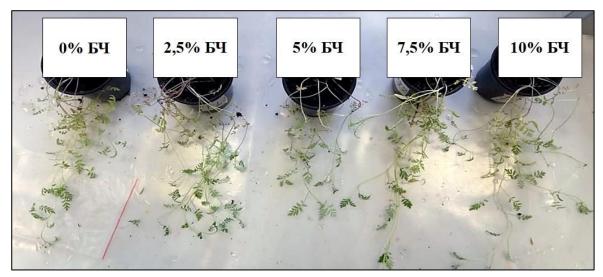


Рисунок. Внешний вид побегов *P. tanacetifolia* после 56 суток выращивания в горшечных культурах с добавлением разных концентраций биочара (БЧ)

Величина сырой биомассы побегов P. tanacetifolia была существенно выше (в 1,3 раза по сравнению с контролем) при добавлении 7,5% и 10% БЧ. Аналогичная тенденция была отмечена и для сухой биомассы побегов, в то время как по биомассе корней варианты различались в меньшей степени. В целом было показано, что повышение концентрации БЧ от 2,5 до 7,5% увеличивало параметры роста P. tanacetifolia, а далее они существенно не изменялись. Вероятно, использование БЧ в концентрации \geq 5% улучшало физико-химические свойства почвы и способствовало росту растений, обеспечивая благоприятный водновоздушный и питательный режим.

Таким образом, добавление БЧ в почву в большинстве случаев положительно влияло на параметры роста (площадь листьев, длину побегов и их общую биомассу) *P. tanacetifolia*. Наилучшие результаты наблюдались при добавлении БЧ в концентрации 7,5%, а наименьший эффект — при 2,5%. Для лучшего понимания механизмов действия БЧ на физиологические и биохимические параметры растений необходимы дальнейшие исследования.

Работа выполнена при финансовой поддержке РФФИ и ДНТ в рамках научного проекта №19-516-45006, и Министерства науки и высшего образования РФ, соглашение № 02.A03.21.0006.

Список литературы

- 1. Major J., Rondon M., Molina D. et al. // Plant and Soil. 2010. Vol. 333. P. 117–128.
- 2. Purakayastha T. J., Kumari S., Biswas S. et al. // Chemosphere. 2019. Vol. 227. P. 345–365.
- 3. Atkinson C. J., Fitzgerald J. D., Hipps N. A. // Plant and Soil. 2010. Vol. 337. P. 1–18.
- 4. *Jeffery S., Verheijen F. G. A., van der Velde M., Bastos A. C. //* Agriculture, Ecosystems & Environment. 2011. Vol. 144. P. 175–187.
- 5. Bayabil H. K., Stoof C. R., Lehmann J. C. et al. // Geoderma. 2015. Vol. 243–244. P. 115–123.