DR-90 ## SYNTHESIS AND SPECTRAL CHARACTERIZATION OF 1,2,4-TRIAZOLE DERIVATIVES N. Bakthavatchala Reddy^{1,a)}, U. Nagarjuna^{2,b)}, Grigory V Zyryanov^{1,3,c)}, A. Padmaja^{2,d)}, V. Padmavathi^{2,e)} and G. Sravya^{1,f)} ¹Ural Federal University, Chemical Engineering institute, Yekaterinburg, 620002, Russian Federation. ²Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India. ³I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russian Federation. f)Corresponding author: sravyasvu@gmail.com a)drbvreddyn@gmail.com b)ummadinagarjun@gmail.com c)gvzyryanov@gmail.com d)adivireddyp@yahoo.co.in e)vkpuram2001@yahoo.com **Abstract.** The azole derivatives are the prominent players in the pharmaceutical research as they possess several biological properties. In particular, triazoles represent a class of heterocyclic compounds with a wide variety of biological activities. Furthermore, heterocyclic compounds containing a 1,2,4-triazole nucleus have a broad spectrum of pharmacological activities, including anti-inflammatory, antimicrobial, anticancer, antiproliferative and apoptotic properties. Hence biological importance of heterocyclic compounds containing 1, 2, 4-triazole with their pharmacological potential has thereby made them extremely attractive research targets. Based on the above essential information, we have designed and synthesized different 1,2,4-triazole derivatives. Ar $$\longrightarrow$$ Ar \longrightarrow OH \longrightarrow O