DR-16

СРАВНЕНИЕ АНТИОКСИДАНТНОЙ АКТИВНОСТИ ПРОИЗВОДНЫХ БЕНЗОИЛ ПИРОВИНОГРАДНОЙ КИСЛОТЫ

Е. И. Яковлева¹, О. Ф. Лунева¹, Г. А. Триандафилова^{1,2}

¹Научно-образовательный центр прикладных химических и биологических исследований, Пермский национальный исследовательский политехнический университет, 614990, Россия, г. Пермь, Комсомольский проспект, 29;

²Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН, 614081, Россия, г. Пермь, ул. Голева, 13 E-mail:katya_katya97@mail.ru

Все системы организма человека направлены на поддержание гомеостаза. При сбое в работе одной из систем возникают патологии. Антиоксидантная система человека при недостаточном функционировании не справляется с окислительным стрессом. В результате чего происходит апоптоз клеток организма¹. Известно, что применение пестицидов оказывает токсическое воздействие на живой организм, что может увеличить нагрузку на антиоксидантную систему². Современной науке известны вещества с радикалсвязывающей активностью, но поиск потенциально более активных соединений остается незавершенным.

Пировиноградная кислота и её производные обладают антиоксидантными свойствами. Она улавливает и связывает свободные радикалы и предотвращает гибель клеток, вызванную окислительным стрессом³.

Мы оценили антиоксидантную активность бензоилпроизводных метилового эфира пировиноградной кислоты в тесте с 2,2 -азобис(2-аминопропан) дигидрохлоридом в качестве источника свободных радикалов. На основе анализа зависимости «структура – активность» сделаны следующие предварительные выводы:

- Электронодонорный заместитель в ароматическом радикале (R_1) снижает активность $(4-CH_3Ph<Ph)$, электроноакцепторный практически не оказывает влияния (4-ClPh=Ph).
- Замена гидроксигруппы (R₂) на остаток незамещенного анилина приводит к увеличению способности связывать радикалы (OH<NHPh).
- Электроноакцепторный заместитель в ароматическом кольце (R_1) снижает радикалсвязывающую активность при наличии остатка амина (R_2) (Ph +NHPh<4-ClPh + NHPh).

Для соединений с ароматическим характером радикала R₁ обнаружено, что усилению эффекта способствует добавление остатка анилина.

Библиографическийсписок

- 1. Vaikundamoorthy R. A paradoxical role of reactive oxygen species in cancer signaling parthway: Psycology and patology/R. Vaikundamoorthy, R. Rajendran // Process Biochemistry. $-2021.-Vol.\ 100.-P.\ 69-81.$
- 3. Герунов Т. В. Иммунотоксичность пестицидов: роль в патологии животных и человека / Т. В. Герунов, Ю. В. Рудькин, Л. К. Герунова // Успехи современной биологии. 2011. Т. 131. № 5. С. 474–482.
- 4. Reactivity of pyruvic acid and its derivatives towards reactive oxygen species/ A.Kładna, M. Marchlewicz, T. Piechowska[et al.] // Luminescence. 2015. Vol.30 (7). P. 1153–1158.

Исследование выполнено при финансовой поддержке Правительства Пермского края в рамках научного проекта № C-26/174.2