PL-12

IN-SILICO DESIGNING OF FUNCTIONAL MATERIALS

Pranab Sarkar ${ }^{\text {a }}$ and Grigory V. Zyryanov ${ }^{\text {b,c }}$
${ }^{a}$ Department of Chemistry, Visva-Bharati Ueniversity, Santiniketan-731235, WB, India
${ }^{b}$ Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira St, Yekaterinburg, K-2 620002, Russian Federation.
E-mail: bhattacherjee130@gmail.com
${ }^{\text {cII }}$. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22
S. Kovalevskoy St, Yekaterinburg, 620219, Russian Federation

Abstract

The functionalities depends on the electronic energy levels of the materials concerned and therefore understanding the electronic structure is of paramount importance in designing such materials. By using density-functional tight-binding method (DFTB) we herein discussed the pathways for improving the photovoltaic efficiency of the tetra phenyl porphyrin(TPP)-phosphorene antidot lattice(PAL) nanocomposites. The photovoltaic performance of the composite reaches a maximum value when TPP is functionalized by - NH2 group and the edge of PAL is functionalized by - CN group. We also discussed the role of chalcogen ligands on the exciton relaxation dynamics of chalcogenol functionalized CdSe QD by using non-adiabatic molecular dynamics simulation (NAMD) coupled with the DFTB method.

References

1. Pathways for improving the Photovoltaic Efficiency of Porphyrin and Phosphorene Antidot Lattice Nanocomposites: An insight from a Theoretical Study (2019). M. Kar, R. Sarkar, S. Pal and P. Sarkar, J. Phys. The Journal of Physical Chemistry C 123(9), 5303-5311.
2. Role of Chalcogens in the Exciton Relaxation Dynamics of Chalcogenol-Functionalized CdSe QD: A Time-Domain Atomistic Simulation (2019). M. Habib, M. Kar, S. Pal and P. Sarkar, Chem. Mater., 31, 4042-4050.
