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Foreword

We live in the era of the Gaia satellite and the expectation of a revolution in the study
of stellar systems. Its precise astrometry provides us with a sharp snapshot of the
actual 3D structure of several nearby star clusters, while kinematics offer insights
on their evolution. Detailed theory has to be developed, to interpret this wealth of
data, and to cast light on processes like star formation and dynamical evolution of
star clusters. The focus of this book is on open, or Galactic, star clusters, which
populated the disc of the Milky Way, and are typically composed of less than 100 up
to a few 1000 stars. Many of them survive little time and dissolve fast into the general
Galactic field. Most (and extremely valuable) work has been done in the past in this
field, essentially thanks to the efforts of Sverre Aarseth and collaborators, and the
various releases of his N-body code. This book summarises another, independent
and original, effort. The author, Vladimir M. Danilov, from Ural Federal Univer-
sity in Russia, has spent his scientific career to develop analytical and numerical
methods to study open cluster dynamical evolution. The focus is on non-stationarity,
which effectively evokes the idea of time evolution, sudden changes, phase mixing,
re-organisation of trajectories of individual stars, collective processes, and so forth.
Open clusters are lively entities, rapidly evolving and highly sub-structured. Most
of the results of this life-long studies are included in papers published in Russian
journals which, unfortunately, got little attention by foreign researchers. This com-
prehensive book, translated from the original in Russian, contains the most important
results of Danilov work with a lot of details, and is intended for researchers in Galac-
tic dynamics and N-body methods. It is not an easy book, but it offers to everybody
the opportunity to hear a different voice, to consult an independent opinion from
another world.

Padova, July 2020 Giovanni Carraro
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Chapter 1

Introduction

Abstract In the Introduction we briefly discuss the modern status of the problem of
an analysis of the dynamical state of the open star clusters. The formulation of the
problems necessary for such analysis is presented. Also, we list the most important
results connected with this analysis and described in the present book.

Open star clusters (OSC) are traditionally used by researchers in testing emerging
theories, hypotheses, assumptions about the physical and dynamic evolution of stars
and star clusters. Until the early 80’s of the last century the OSC were mainly
considered as objects existing in the state close to virial equilibrium. In order to
theoretically describe the OSC structure, the quasistationary (and even stationary)
OSC models were used which did not take into account the possibility of significant
deviation of OSC from the stationarity in a regular field. However, structural features
of young and old OSC (distortion of the shape of cluster cores, splitting of cores,
a mismatch of centers of density distributions of subsystems of stars with different
masses in clusters, presence of step-like structures in the density profiles of clusters,
etc.) found back in 1950−1960’scan not be explained without invoking the hypothesis
of non-stationarityof clusters in regular field. It assumes an explicit time-dependence
of the phase density functions (that is, a partial derivative of the phase density
function is not equal to zero; see Chapters 4 and 7 of Binney and Tremaine (2008)).
Completed in recent years, theoretical researches and numerical experiments on
the modeling of a dynamics of non-isolated systems of # gravitating point masses
showed that in clusters with a low density of the matter (close to the critical one
in the field of external forces), the action of gravitational instability can lead to
the development of a non-stationarity in the regular field and even to the loss of a
significant part of stars during several intersections of the cluster by a star.

In the framework of numerical experiments on the modeling of a dynamics of
OSC, it was revealed that the velocity dispersion of stars in cluster cores (cold cores)
was insufficiently high for the equilibrium state, and the dispersion of velocities of
stars was increasing along with the distance from the center of the cluster, which
indicates the lack of equilibrium and a non-stationarity of OSC (Danilov and Putkov,
2012a). In the models of OSC (Danilov and Dorogavtseva, 2008), density and
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2 1 Introduction

regular field oscillations develop rapidly and spontaneously, and do not decay during
5−10 times of violent relaxation gEA . Theoretical description of the phase density
oscillations in cores of ellipsoidal OSC models was performed by Danilov (2008).
Danilov (2010) showed the instability of the natural oscillations of the phase density
in the centers of six OSC models and several real OSC and obtained the theoretical
estimates of the periods and the growth increments of the homological oscillations of
the phase density. Danilov and Putkov (2012b) determined the parameters of density,
potential, and phase density waves in OSC models by the data on correlations for
the values of the radius-vector absolute values, velocities, specific energies of stars,
densities, and phase densities. They discovered the signs of formation of polarization
clouds, when a series of distances between the stars is reached; the dominant flux of
correlations from the region of strong correlations to the weak correlation region is
detected, which leads to the appearance of kinetic energy flux to the center of the
cluster. Danilov and Putkov (2012b, 2013b) revealed a number of indications of the
formation of a weak turbulence in the motions of the core stars in the OSC model
with the greatest degree of non-stationarity in a regular field.

We emphasize that the average values of the matter density in the OSC are usually
determined inaccurately and depend to a large extent on the observer’s estimate of
the cluster radius. To analyze the observed manifestations of non-stationary nature of
OSC, it is necessary to substantially refine the data on the dimensions, average and
critical densities of the clusters in an external force field. In order to proceed with the
analysis of the observable manifestations of non-stationary nature of the OSC, it is
necessary to develop methods for estimating the degree of clusters’ non-stationarity,
taking into account the action of the most important factors in the clusters (low
peculiar velocities of the stars and small matter densities in the OSC, the encounters
of the cluster-member stars, presence of external force fields).

In this connection, the mass application of the statistical methods to the evaluation
of the OSC sizes and the number of stars in clusters against the field star density
fluctuations, as well as the development of means to assess the reality of existence
of certain structural features of OSC (Danilov et al., 1985; Danilov and Seleznev,
1994), turned out to be very timely. The study of OSC structure using the method of
significance levels (Danilov et al., 1985; Danilov and Seleznev, 1994) showed that
the stars in young clusters are on average located deeper beneath the tidal surface in
the Galactic force field than stars in old OSC. When analysing this phenomenon, it is
necessary to take into account the joint effect on the young OSC of the force fields of
the Galaxy and the gas-star complexes (GSC), in which these clusters are formed. An
important place in this analysis belongs to the investigation of the stability of OSC in
external force fields. Such studies provide information on the tidal size of OSCs and
on certain characteristics of GSC containing these clusters (Danilov and Seleznev,
1995). An important role in the study of the OSC dynamics is also played by the
observational data obtained by Danilov and Seleznev (1994) on the characteristics
of the haloes and the cores of these clusters.

Reliable observational data on the OSC structure makes it possible to formulate
and solve a number of theoretical problems:
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1. Study of a dynamics of the OSC non-stationary in the regular field. Modeling
of the dynamics of non-stationary OSC with a low density of matter and fast decay
processes (during several crossings of a cluster by a star) in the presence of external
force fields.

2. Development of methods for estimating the degree of non-stationarity of the
OSC with taking into account the action of the most important mechanisms in the
clusters (gravitational instability of cold OSC cores, small densities of the mass
and number of stars in OSC, the presence of external force fields). Analysis of
the observed manifestations of the non-stationarity of the OSCs in the structure of
clusters.

3. Theoretical and numerical-experimental description of the dynamics of cores
and external regions of a non-isolated OSC. Analysis of the features of gravitational
instability development in the cores of OSC and separation of the main resonances in
the motion of stars at the periphery of OSCs. Construction of a method for extracting
the coronas in numerical dynamic OSC models. Investigation of the corona dynamics
in OSCs and analysis of causes for the existence of coronas in the observed OSC.

4. Correlation and spectral analysis of phase density and potential oscillations
in the numerical dynamic OSC models. Identification of the features of spectra and
dispersion curves of oscillations in such cluster models. Analysis of mechanisms for
the formation of various regions of oscillation spectra in OSC models.

5. Estimates of the non-stationarity parameters of a number of open star clusters
(contrast of densities in the cluster core, dispersion of stellar velocities obtained with
taking into account the effect of the external field of the Galaxy and non-stationarity
of the cluster, periods of oscillations in the cluster and cluster core, etc.).

The most important new results, estimates and conclusions described in this book
can be summarized as follows:

1. For a number of models of non-stationary OSC, data on time dependencies of
the dispersions of stellar velocities in three mutually perpendicular directions in the
halo and the cluster core are given and discussed in Chapter 6. During the dynamic
evolution of OSC models, the values of the velocity dispersion undergo oscillations
which do not decay during 5−10 times of violent relaxation gEA . We discuss the
estimates of the synchronization time CB of rotation of considered OSC models with
their motion around the center of the Galaxy. Depending on the parameters of the
OSC models, synchronization times are CB ≃ (5 − 27)gEA . The mechanisms of a
synchronization of the considered models are discussed. A prominent role of the
tidal friction in the decay of such systems in the Galactic field is noted. Estimates
of the time of the formation of a spherical distribution of stellar velocities in the
clusters’ models are Cf ≃ (6 − 25)gEA . The effect of instability in the motion of
cluster stars on the formation of a spherical distribution of stellar velocities in the
considered OSC models is discussed. We detect a tendency toward weakening of
the dependency of the coarse-grained phase density of the cluster on the effect of
small initial perturbations of the phase coordinates of stars in the cores of the cluster
models at the time points which are ∼ 5 times longer than the violent relaxation time
(these results were obtained in a collaboration with L.V. Dorogavtseva).
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2. Chapter 8 discusses instability of the natural oscillations of the phase density
in the centers of six OSCs. The boundaries of the regions of instability of such
oscillations in the space of the mean mass density of the cluster core are indicated.
Estimates of a number of dynamic parameters (potentials, dispersion of stellar veloc-
ities, mass density, periods of phase density oscillations, the time of the development
of the instability of such oscillations, etc.) are considered for the central parts of these
clusters and for several numerical dynamic OSC models. Equation is derived for es-
timating the dynamic mass of a cluster, taking into account influence of the external
field of the Galaxy and the non-stationary nature of the cluster. Taking into account
the influence of these effects leads to a decrease in the dynamic mass of the cluster
in comparison with the virial mass for an isolated cluster. Astrophysical applications
of these results are discussed.

3. In Chapter 9, we consider stellar kinematics in OSC models. Central regions
of these models are quite "cold". This leads to gravitational instability in the cores of
clusters and their models. In the cluster models, the temporary virialization is noted,
in which a significant part of the energy of cluster oscillations temporarily passes
into kinetic energy of peculiar star motions. Duration of this stage can reach ∼ 108

years. We discuss the reasons of the temporary virialization of clusters, as well as
instability of the natural oscillations of phase density in the centers of six clusters and
six cluster models. In addition to the known regions of unstable oscillations of phase
density, several new regions are noted. An approach of clusters and their models to
a state of stable equilibrium is possible both with decreasing and with increasing
density of the cluster core. The structure of the regions of instability of phase-
density oscillations in the centers of six clusters is discussed. Resonance curves are
presented for the amplitudes of steady-state oscillations of the phase density at the
center of the cluster NGC 6705. An analysis of the structure of instability regions in
clusters indicates significant rates of loss of oscillation energy in clusters under the
action of relaxation effects. With the increase of the distance of the cluster from the
Galactic center, the instability increments and the widths of the instability regions
decrease. An important role in the formation of instability regions can be played
by resonances between frequency of the orbital motion of the cluster in the Galaxy
and frequencies of the natural oscillations of the phase density at the centers of the
considered clusters.

4. Chapter 11 discusses the two-time and two-point (two-particle) correlations
for a number of parameters of stellar motions, as well as for the density and phase
density of the OSC models in the vicinity of these stars, obtained from correla-
tion data. Estimates of the time and radius of a correlation in the spaces of the
indicated parameters are given. We consider distributions of two-point correlations
over distances between stars in the spaces of coordinates and stellar velocities. We
also discuss the estimates of the parameters of density waves, potential, and phase
density in the models of star clusters obtained from the correlation data. Analysis
of the fine structure of the two-point correlations in the space of mutual distances
between the stars indicates the formation of polarization clouds when a series of dis-
tances between the stars is reached. The distributions of the correlations of the phase
density values and the dynamics of such distributions are discussed. Dispersions of
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such distributions depend strongly on the presence of wide "wings" of distributions
(that is, on the presence of strong correlations in the system). These dispersions are
considered as a measure of the correlation of phase density fluctuations in the cluster
models. Increase of correlations with time for 50 % of the considered models of star
clusters is noted. Fluxes of correlations of the phase density values are discussed.
The dominant flux of correlations from the region of strong correlations to the re-
gion of weak correlations is detected. Such a flow leads to the appearance of kinetic
energy flux to the centre of cluster. We give the estimates of the rate of a heating for
the cores of cluster models by this flux. We also note the signs of a weak turbulence
in the stellar motions in the core of the cluster model with the greatest degree of
non-stationarity in a regular field (the results were obtained in a collaboration with
S.I. Putkov).

5. Chapter 12 discusses application of correlation and spectral analysis of phase
density oscillations in the study of a dynamic evolution of OSC models. We present
the results of calculations of two-time correlations and cross- correlation functions
for fluctuations X 5 of the phase density of cluster models. Estimates of the correla-
tion time g2 of the phase density oscillations, which were obtained from the data on
two-time correlations, range from 0.1 to 1 violent relaxation time of the model gEA .
Average phase velocities E 5 of propagation of such oscillations in the cluster models,
which were obtained from the data on g2 and the radii A2 of two-particle correlations
of the oscillations X 5 , are 2−20 times less than the mean square velocities of the
stars in the cluster core. Fourier transformation of cross-correlation functions is used
to calculate power spectra and dispersion curves of phase density oscillations. The
presence of known unstable oscillations of the phase density associated with the
homological oscillations of cluster cores is confirmed. A number of new unstable
oscillations of the phase density in these models is noted (up to 32−41 pairs of oscil-
lations with different complex conjugate frequencies in each model). The rise time
of the amplitudes of such oscillations in 4 times is (0.4− 10)gEA , the phases of such
oscillations are distributed fairly evenly. We discuss the astrophysical applications
of these results, namely the irregular structure of open star clusters, the formation
and decay of quasistationary states in such clusters (the results were obtained in a
collaboration with S.I. Putkov).

6. Chapter 13 considers application of the correlation and spectral analysis of
the phase density and potential oscillations in the model of open star cluster at
different values of the smoothing parameter n of force functions in the equations
of cluster stars’ motion. We discuss the results of calculations of cross-correlation
functions for the fluctuations of the potential * and the phase density 5 of cluster
model for different distances from its center. In order to calculate the power spectra
and dispersion curves of the oscillations of * and 5 values, we use the Fourier
transform of the cross-correlation functions. The oscillation spectrum of* is simpler
in comparison with the oscillation spectrum of 5 . The most powerful* oscillations
are related to 5 oscillations, and are located at low frequencies a < 3/gEA ; at medium
and high frequencies (a > 3/gEA ), contribution of * oscillations to 5 oscillations
is small or zero. We note a number of unstable oscillations of * in the core of
the cluster model (up to 30 pairs of oscillations with different complex conjugate
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frequencies). We discuss the dependencies of the spectra and dispersion curves of 5
and* oscillations on n . A "repeatability" (a significant correlation) of the spectra at
certain n values and the instability of the dispersion curve shape to small changes in
n are noted. Furthermore, Chapter 13 discusses astrophysical applications of these
results (which were obtained in a collaboration with S.I. Putkov):

• a decay in the cluster core of the 5 oscillation wave traveling from the periphery
of the cluster to its center onto several waves with frequencies commensurate
with the frequency of the external (tidal) action;

• emission and reflection of the waves of 5 and * oscillations near the boundary
of the cluster core;

• possible discreteness of the wavelengths and phases of 5 and * oscillations in
the cluster model.

7. Chapter 14 discusses the results of investigation of the cross- correlation
functions for the phase-density 5 fluctuations of cluster models and for the moduli
of stellar velocities E. The spatial Fourier transform of the cross-correlation functions
with the zero time shift is used to calculate the spectra of wave numbers of 5 and
E oscillations. The spectrum of the wave numbers for 5 oscillations turned out to
be simpler in comparison with the spectrum of the wave numbers for E oscillations.
The most powerful 5 and E oscillations are located in the region of small values
of the wave number : (and large wavelengths _ > (0.91 − 1.25) pc). A significant
contribution to the average power of 5 and E oscillations is made by homologous
oscillations of the clusters. We discuss the dependencies of the spectra of wave
numbers of 5 and E oscillations on n in cluster model 1 which has the greatest degree
of non-stationarity. Such spectra change noticeably less with changes in the n , in
comparison with the frequency spectra of 5 oscillations. An increase in n less affects
the spectra of wave numbers of 5 oscillations than the spectra of wave numbers of
E oscillations. With increasing n , the slope of the wave number spectrum increases
on average, that is caused by a change in the structure of the cluster model along the
distance from its center. We discuss the astrophysical applications of these results
(which were obtained in a collaboration with S.I. Putkov):

• the difference between the spectra obtained and the Kolmogorov spectrum;
• the discreteness of the wavelengths of E oscillations in the cluster models;
• the widths of the spectra of the most powerful oscillations of the models;
• the estimates of the tidal radii of the clusters; etc.

8. Chapter 3 discusses the results of the study of stellar trajectories in the OSC
models, which are non-stationary in a regular field. We give the estimates of the
maximum characteristic Lyapunov exponent _ of stellar trajectories in OSC models.
Average _ values in the considered OSC models are _ ≃ 1 / Myr. Cluster cores are
the regions of increased stochasticity, halos are the regions of more ordered stellar
motions. _ grows with the increasing density of the cluster model, and the sizes of
the region of high stochasticity in the cluster core increase. The "adhesion" of the
trajectory of a star in the phase space to a region with a given _ value is noted. We
use a Fourier analysis of the stellar trajectories in the considered OSC models. We
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give the distributions of the stellar trajectories by the periods of stellar motions with
the largest values of the power spectrum. In the distributions of stellar trajectories
by the periods of the most significant oscillations, we have marked the "peaks"
with the periods corresponding to (or close to) the periods commensurate with the
oscillation period of the regular field of the system. Features of the distributions of
stellar trajectories by the periods of the most significant oscillations and the reasons
for the formation of these features in the considered OSC models are discussed (the
results were obtained in a collaboration with E.V. Leskov).

9. In Chapter 5, a two-point model of a non-isolated star cluster with a circular orbit
in the Galactic plane is considered. The equations of stellar motion are linearized
in the neighborhood of a nonsimple point on the critical surface of zero velocities
(CSZV) and in the vicinity of the point under CSZV on a trajectory with a stellar
"energy" that is less than the critical one. We give the formulas for the eigenvalues
and eigenvectors of these equations. We note the instability of two nonsimple points
located on the CSZV and numerically obtain the separatrix that connects these points
to each other. For the trajectories located under the CSZV, the moduli of eigenvalues
of the linearized equations of motion increase with a decreasing stellar "energy"
and a decreasing maximum distance of the trajectory from the center of the cluster
mass. This leads to an increase in the numerical estimates of the maximum Lyapunov
characteristic exponent (MLCE) of the trajectories located closer to the center of the
cluster mass. The properties of the stellar trajectories are discussed using Poincare
sections and MLCE. A number of periodic orbits is noted for different values of the
stellar "energy" . Properties of the trajectories in the neighborhood of these periodic
orbits are discussed. Almost all the considered stellar trajectories are stochastic; the
degree of stochasticity increases with a decreasing stellar "energy" . We mark the
regions with different degrees of stochasticity on Poincaré maps (the results were
obtained in a collaboration with O.A. Chernova).

10. In Chapter 2 we record the equations of stellar motion at the periphery of
OSC; these equations contain small ` parameter. ` values are given for six numerical
dynamic OSC models. A general analytical solution of the equations of stellar motion
is given for ` = 0. We use the method of successive approximations and investigate
the frequencies of stellar motions at the peripheryof OSC by the first order expansion
by ` of the solutions of the stellar motion equations. Application of the obtained
results is discussed.

11. Chapter 4 considers a model of a homogeneous gravitating ellipsoidal star
cluster moving along a circular orbit around the Galactic center. Three independent
isolating integrals of stellar motion are written for this model. Analysis of the
features of star cluster motion is made, taking into account the influence of these
three integrals of motion. The peripheryof the considered cluster model is dominated
by the retrograde motion of the stars, and stellar velocity distribution is elongated
along the direction of cluster motion. We write an expression for the phase density
function which depends on two integrals of motion and give the distribution of stellar
velocities in the case of a three-integral phase density function. Applications of the
obtained results are discussed.
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12. Chapter 15 examines the method for extracting coronas in OSC models. The
method uses stellar trajectories that do not exceed the limits of the coronas during
the time intervals C comparable to the average lifetime g of such clusters. For six
numerical models of clusters we constructed the models of coronas and determined
the direction and character of their dynamic evolution. In the coronas, retrograde
stellar motions predominate. We note the formation of density and phase density
distributions close to equilibrium ones in the interval of distances of stars from the
cluster center from one to three tidal radii of the cluster despite the signs of the
dynamical instability of the coronas (small densities in comparison with the critical
density, and accelerated expansion of the coronas). We give the approximations for
the phase density of the corona and the cluster by the distributions depending on
three arguments (parameters of stellar motion in the Lindblad’s System of Rotating
Coordinates). This temporal equilibrium of the corona is due to the balance of the
number of stars that move to the corona from the central regions of the cluster and
leave to the corona periphery or beyond. The signs of the gravitational coupling of
the corona stars up to the distances of four tidal radii from the cluster center are
noted (the presence of a large number of the corona stars in the Galactic plane with
the mean motion close to the periodic retrograde motions; (91−99)% of the corona
stars satisfy the criterion of the gravitational coupling (Ross et al., 1997) on the time
intervals of the order of the cluster lifetime). We estimate the dissipation rate of
the corona stars to be from 0.03 to 0.23 of the number of corona stars during the
time of violent relaxation of the cluster at C ≥ g (these results were obtained in a
collaboration with S.I. Putkov and A.F. Seleznev).

13. Chapter 10 discusses the estimates of a number of dynamic parameters of
103 OSC (contrast of densities in the cluster core; dispersion of stellar velocities
obtained with taking into account the influence on the cluster of the external field
of the Galaxy and the non-stationarity of the cluster; periods of oscillations of the
cluster and cluster core, etc.). We give the analytic solutions of the equations of gross
dynamics for simple cluster models. These solutions are used to estimate the values
characterizing the degree of cluster non-stationarity (an amplitude of the oscillations
of the virial coefficient of the cluster; an amplitude of the oscillations of the radius
of the cluster core; etc.). Astrophysical application of these results are discussed (the
results were obtained in a collaboration with S.I. Putkov).
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Chapter 2

Motion of Halo Stars in the Numerical
Dynamical Models of Open Star Clusters

Abstract In this chapter, we derive for the OSC periphery the stellar motion equations
containing a small parameter `. ` values are given for six numerical dynamic
models of OSC. For ` = 0 we give a general analytical solution of the equations
of stellar motion. Applying the method of successive approximations we investigate
the frequencies of stellar motion in the framework of the first order expansions (with
respect to `) of the solutions of the stellar motion equations at the OSC periphery.
Application of the obtained results is discussed.

2.1 Introduction

According to Danilov and Leskov (2005), in the numerical dynamic OSC models,
which have different degrees of non-stationarity in a regular field, the trajectories
of halo stars have small positive values of the maximum characteristic Lyapunov
exponent _ and not very complex Fourier spectra. According to Danilov and Leskov
(2005), the Lyapunov times C_ = _−1 for the stellar trajectories at the periphery of the
OSC are 1—10 million years, which is comparable with the Lascar estimates (Laskar,
1989) for the orbits of planets in the Solar system. Three sinusoidal components with
the largest amplitudes in the dependencies on the time of the star distance A (C) from
the cluster center account for 50 − 95 % of the total energy of Fourier spectrum for
these dependencies. Amplitudes of the oscillations of the regular potential in the
halo of non-stationary OSC models (Danilov and Dorogavtseva, 2003) are small and
amount to less than 6 % of the average regular potential value over its oscillation
period. Such characteristics of stellar trajectories and gravitational potential in the
OSC halo allow us to apply the methods of perturbation theory for an approximate
description of stellar motion at the periphery of non-stationary OSC. According to
Danilov and Leskov (2005), the stellar trajectory distributions in the OSC models
by the periods of motion in the cluster have sharp resonant peaks at the periods
commensurate with the period of regular field oscillations. Comparison of the periods
of these "peaks" with the periods obtained as a result of applying the small parameter
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12 2 Motion of Halo Stars in the Numerical Dynamical Models of Open Star Clusters

method to the study of stellar trajectories in such systems makes it possible to extract
the main resonances in the halo stars’ motion in the OSC models.

Periodic oscillations of the size, density, and regular field of the OSCs are largely
ensured by the motion of the halo stars in the clusters. These oscillations lead
to a number of complex processes observed in the numerical experiments on the
dynamics of the OSC (energy transfer from the large-scale motions of stars to
the small-scale motions, the oscillations in the entropy values of the system, etc.
(Danilov, 2002b)). Therefore, it is important to understand the mechanisms for the
formation of the trajectories of the OSC halo stars.

Objectives of Chapter 2: introduction of a small parameter in the equations of the
OSC star motion; the study of frequencies of the star motion at the periphery of the
OSC in the first order expansion of the solutions for the star motion equations by the
small parameter; an extraction of the main resonances in the halo star motion in the
OSC models.

2.2 Description of OSC Models

The paper of Danilov (2005) considers the open star cluster moving along a circular
orbit in the plane of the Galaxy. It uses the equations of stellar motion (Chan-
drasekhar, 1942) in rotating coordinate system b, [, Z . Following to Chandrasekhar
(1942), expansion of the Galactic regular potential in a series up to quadratic terms
with respect to b, [, Z coordinates is employed. Integrals of the motion of the cluster’s
center of mass are written in a usual way. In constructing of an initial approximation
for the halo star trajectories, the following simplifications were used by Danilov
(2005).

1. In order to estimate the dimensions of the critical surface of zero velocities in
the cluster along the axes b, [, Z the cluster was represented by a model in the form of
a binary system containing a star with mass<1 = 1<⊙ and point mass<2 = " −<1,
where " is the mass of the cluster model (" = 500<⊙ is assumed here as well as by
Danilov and Leskov (2005),). The integrals of the motion of the cluster mass center
allow us to disconnect the systems of equations for the motion of bodies with masses
<1 and <2 and to consider them independently. We can find three singular points
from the system of equations of the motion of the star with mass <1: b = [ = Z = 0
and b = ±|bC |, [ = Z = 0 (the last two points are points of saddle type and lie on the
critical surface of zero velocities (King, 2002, p. 197)), where

|bC | = (−�<2

?2U1
)1/3 , ? = 1 + <1

<2
,

as well as the Jacobi integral:

Y =
+2 + U1b

2 + U3Z
2

2
− �<2

?2A
= 2>=BC, (2.1)
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where + and A are moduli of vectors of the velocity and distance from the cluster
mass center of a star with mass <1;

U1 = ( 1

'

mΦ

m'
− m2Φ

m'2
)0 < 0 ; U3 = −( m

2Φ

m/2
)0 > 0 .

Here, ' and / are cylindrical Galactocentric coordinates of the point. "0" indices
indicate that the derivatives of the Galactic potential Φ are calculated at the point
with the coordinates ' = '0 = 8200 pc and / = 0. The formula for b = ±|bC |, when
<1/<2 → 0, passes into the formula (11.13) from the book of King (2002, p.198)
for the tidal radius of the cluster in the gravitational field of the Galaxy. Substituting
+ = 0 in (2.1), we find the equation of the zero velocities surface. Substituting
b = |bC |, [ = Z = 0 into this equation, we find the critical value of the Jacobi integral
corresponding to the critical surface of zero velocities:

YC =
3�<2

2?2 |bC |
.

The distances from the coordinates’ origin to this surface along the axes [ and Z are
equal to

|[C | =
2

3
|bC | and |ZC | = |bC |@1/3 [(

√
1 + @ + 1)1/3 − (

√
1 + @ − 1)1/3] ≃ 0.5016 ,

respectively. Here, @ = −U1/U3. In order to estimate U1 and U3, we take the Galaxy
potential according to the model of Kutuzov and Osipkov (1980). The relation
|[C | = 2

3 |bC | can also be found in the book of Spitzer (1987), where the dimensions
of the critical surface of zero-velocity of the cluster are discussed, when both the
Galaxy and the cluster are modeled in the form of point masses. In the numerical
experiments of Terlevich (1987) and Danilov (1997a) the strong flattening of the
OSC models in the Z direction, and also the triaxiality of surfaces of equal density
and equipotential cluster surfaces at its periphery (with the greatest elongation of
the cluster along the axis b and the smallest along the axis Z ) was noted. The same
results were obtained by Heggie and Ramamani (1995) during the construction of
a stationary collisionless model with a tidal truncation of its density and potential
at the critical value of the Jacobi integral. As an approximation, we determine the
dimensions of the critical surface of zero velocities in the cluster along the axes b,
[, Z using the cluster model considered here.

2. The cluster model from the 1st item (see above) and the equation (2.1) allow
only an approximate description of the motion of stars at the periphery of the cluster,
since a significant fraction of the stars in the OSC are located at the periphery of the
clusters (Terlevich, 1987; Danilov, 1997a). Therefore, as an approximation, we take
here the critical zero-velocity surface of the OSC model in the form of a surface of
an ellipsoid with semiaxes 0 = |bC |,1 = |[C |, 2 = |ZC | ≃ 0/2, and propose to search
the unperturbed potential of the OSC in the following form:

* = *0 − (*0 +*1)A2 + (, A2
= ( b

0
)2 + ( [

1
)2 + ( Z

2
)2, ( =

U1b
2 + U3Z

2

2
. (2.2)
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Here,*0 is a potential in the center of the cluster at A = 0;*1 is the cluster potential
on the critical surface of zero velocities at the points [ = ±1, b = Z = 0. The
unperturbed potential (2.2) corresponds to the initial approximation for the cluster
potential, which is used later with the construction of the unperturbed trajectories
of the halo cluster stars. The potential (2.2) is the potential on the interior point of
some homogeneous ellipsoid with the density d:

d = − Δ*

4c�
=

2(*0 +*1) (0−2 + 1−2 + 2−2) − U1 − U3

4c�
. (2.3)

The equation of the surface of equal potentials* from (2.2) has the following form:

W2
= ( b

0D
)2 + ( [

1D
)2 + ( Z

2D
)2

= 2>=BC, (2.4)

where 0D = 0/
√

1 − U102/B; 1D = 1; 2D = 2/
√

1 − U322/B; B = 2(*0 +*1).
Here, 0D < 0, 2D > 2, as U1 < 0 , U3 > 0. The surfaces given by the equation (2.4),
have a form closer to spherical than the surfaces corresponding to A2 = 1.

Taking into account the potential * from (2.2), the equations of motion of the
star in the field of cluster forces and in the linearized force field of the Galaxy
(5.517)−(5.519) from the book of Chandrasekhar (1942) take the form

¥b = −V2
1b + 2l ¤[, ¥[ = −V2

2[ − 2l ¤b, ¥Z = −V2
3Z , (2.5)

where

¤b = 3b

3C
; ¥b = 3 ¤b

3C
;

the values ¤[, ¤Z , ¥[, ¥Z are defined similarly;

V2
1 = 2(*0 +*1)/02 ; V2

2 = V2
10

2/12 ; V2
3 = V2

10
2/22;

l is angular velocity of cluster motion relative to the center of the Galaxy; values
V2
8 > 0, as (*0 +*1) > 0 in the OSC models studied here, see below.

Using the adopted notation, we write the Jacobi integral for the system of equations
(2.5) in the following form:

+2 + V2
1b

2 + V2
2[

2 + V2
3Z

2

2
= n = 2>=BC, n ≥ 0. (2.6)

Substituting + = 0 in (2.6), we find the equation of the surface of zero velocities
for the homogeneous ellipsoid under consideration: (*0 + *1)A2 = n . Setting here
A2 = 1, we find the critical value of the energy of star motion in the field of a
homogeneous ellipsoid and the Galaxy: nC = (*0 + *1). Thus, the surface of zero
velocities of the star’s motion in the joint field of the models of potentials of the
cluster and the Galaxy considered here is indeed ellipsoidal, and, when n = nC , this
surface can be set by equation A2 = 1. Therefore, we can use "0 = 4c012d/3 as an
estimate of the mass of the considered ellipsoid. In this case, cluster stars completely
fill the entire volume under the critical surface of zero velocities, which is observed
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Table 2.1 Parameters of OSC models

N *0 *1 a1 a2 V3 `

1 2 3 4 5 6 7
1 0.43618±0.00684 −0.26109±0.00496 0.04461 0.10789 0.11329 0.03709
2 0.45341±0.00854 −0.27200±0.00619 0.04568 0.10918 0.11532 −0.00982
3 0.48275±0.00952 −0.29354±0.00690 0.04696 0.11075 0.11777 −0.06771
4 0.49263±0.00997 −0.30194±0.00723 0.04721 0.11104 0.11823 −0.07870
5 0.49656±0.01066 −0.30204±0.00773 0.04783 0.11180 0.11941 −0.10713
6 0.48760±0.00857 −0.29949±0.00621 0.04678 0.11053 0.11743 −0.05955

in the numerical experiments of Terlevich (1987) and Danilov (1997a), and in the
model of Heggie and Ramamani (1995).

The equation (*0 +*1)A2 = n for the case n = nC considering (2.2) can be reduced
to the form * (A = 1) = −*1 + (; here * (A = 1) matches the values * (b, [, Z ) on
the surface A2 = 1. Thus, on the critical surface of zero velocities for the potential
* a boundary condition of the same type as in the model of Heggie and Ramamani
(1995) is satisfied.

Danilov (2005) determined the magnitudes*0 and *1 for six numerical models
of the OSC (Danilov and Dorogavtseva, 2003) by the Marquardt method (Marquardt,
1963) approximating the cluster potential * (b, [, Z ), averaged over the oscillation
period of a regular field for a series of points (at A ∈ [0.5, 1.2]) on the cluster
periphery by the equation (2.2). The method for specifying such points (b, [, Z )
was described in the work of Danilov (1997a). The results of calculations of the
parameters of cluster models are given in the Table 2.1. In the first column of
this table, the numbers of the OSC models considered by Danilov and Dorogavtseva
(2003) are given (the initial parameters of these OSC models are described in Section
16.1). Values*0 and*1 in (pc/Myr)2 for these models are given in columns 2 and 3
of the Table 2.1.

According to the data of the Table 2.1 the mean values of the semi-axes 0D , 1D, 2D
can be obtained for the six models of Danilov and Dorogavtseva (2003). The ratios
of these mean values < 0D >, < 1D >, < 2D > can be represented in the following
form: < 0D >:< 1D >:< 2D >∼ 1 : 0.84 : 0.98. Thus, in the OSC models of Danilov
and Dorogavtseva (2003) the surfaces of the equal values of the potential* are close
to spheroidal, with the spheroid compression along the axis [ (along the direction
of cluster motion in the Galaxy).

The third equation of the system (2.5) can be integrated independently of the first
two ones. The general solution for the system (2.5) has the form

b = �12>B(a1 (C − C1)) + �22>B(a2 (C − C2)),
[ = ��1B8=(a1 (C − C1)) + ��2B8=(a2 (C − C2)),
Z = �32>B(V3 (C − C3)),

(2.7)

where
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� =
V2

1 − a
2
1

2la1
; � =

V2
1 − a

2
2

2la2
;

a1, a2, V3 are natural frequencies of the system (2.5); �8 , C8 are constant values (8 =
1, 2, 3). Constants a1, a2 are determined from the condition for the existence of
non-zero solutions for the system of the first two equations (2.5) and are equal to

a1,2 =

√
%

2
(1 ± 5 2), % = V2

1 + V2
2 + 4l2, 5 2

=

√
1 −

4V2
1V

2
2

%2
.

Thus, the solution of (2.7) for b and [ coordinates is dual-frequency (with frequen-
cies a1, a2), and for Z coordinate the solution is single-frequency (with frequency
V3). In our models, a1 < a2 < V3. Estimates of the values of these frequencies in
the units of (1/Myr), corresponding to the estimated parameters*0 and*1 from the
table, are given in columns 4−6 of the Table 2.1.

Let us note that the values*0 and*1, obtained as a result of the approximation of
the gravitational potential of the OSC models of Danilov and Dorogavtseva (2003)
by the expression (2.2), depend on the accepted values of U1 and U3. Since 0 and 1
depend on U1, and 2 depends on U1 and U3 (see the formulas for |bC |, |[C |, |ZC |), the
values of V2

8 in (2.5) depend on the constants U1 and U3.

2.3 Small Parameter in the Equations of Stellar Motion

The equations of motion of a star in the joint force field of the cluster and the
Galaxy can be written in a Hamiltonian form. Using the Lagrange function ! of
the cluster written with taking into account the Lagrange function from the work of
Chandrasekhar (1942) for a star moving in the joint force field of the cluster and the
Galaxy, we find generalized momenta of the 8-th cluster star:

? b8 =
m!

m ¤b8
= <8 ( ¤b8 − l[8), ?[8 =

m!

m ¤[8
= <8 ( ¤[8 + l('0 + b8)),

?Z8 =
m!

m ¤Z8
= <8 ¤Z8 , (2.8)

where '0 is the distance of the center of the cluster mass from the center of the
Galaxy. Unlike to Chandrasekhar (1942), here we used the system of signs which
provides U1 < 0, U3 > 0,Φ > 0,* > 0.

Using (2.8) and ! function of the cluster, we determine Hamiltonian of the cluster:

� =
1

2

#∑
8=1

<8

(
Θ8 − l2 [('0 + b8)2 + [2

8 ]
)
+, −

#∑
8=1

<8Φ8 , (2.9)

Θ8 = (
? b8

<8
+ l[8)2 + (

?[8

<8
− l('0 + b8))2 + (

?Z8

<8
)2.
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Here, # and , are the number of stars and the potential energy of the cluster,
Φ8 is the Galactic potential at the point (b8 , [8, Z8). The first sum in (2.9) multiplied
by 1

2 is the kinetic energy ) of the cluster. Then the unperturbed Hamiltonian of the
ellipsoidal cluster can be written in the form

�0 = )0 +,0 − d
∫
&

Φ3&,

where the integration of the potentialΦ has performedby the volume& of the cluster
ellipsoid; )0,,0 are kinetic and potential energies of the ellipsoidal cluster.

Now, let us estimate the value of the small parameter `. In order to do this, we
define the value of )0 from conditions of virial equilibrium of the cluster. When
calculating )0, we also use the expression obtained by Chandrasekhar (1942) for the
integral !Z of the angular momentum of rotation of the cluster about the axis Z . This
integral, according to Chandrasekhar (1942), exists for clusters with symmetry in
the mass distribution, corresponding to (2.2). As in the OSC models of Danilov and
Dorogavtseva (2003), we set !Z = 0 (in this case the cluster does not rotate relatively
to the external galaxies). In order to calculate

∫
&
Φ3&, we use the expression

Φ ≃ Φ0 − l2'0b −
(U1 + l2)

2
b2 − l2

2
[2 − U3

2
Z2.

Here, Φ0 is the potential Φ at the distance '0 from the center of the Galaxy. Differ-
entiation of this expression with respect to the coordinates b, [, Z leads to the cor-
responding components of the force field of the Galaxy, obtained by Chandrasekhar
(1942).

Let us note that the absence of rotational symmetry of this expression for potential
Φ in cylindrical galactocentric coordinates just causes the absence of the !Z integral
in the work of Chandrasekhar (1942) for the star cluster in the general case (that
is, in the absence of the constraints on the symmetry of the cluster (Chandrasekhar,
1942)). If we use the exact equations of stellar motion and carry out calculation of !Z
using the property of rotational symmetry potential Φ in cylindrical galactocentric
coordinates, it is possible to obtain the value of the integral !Z , that is persisting over
time C, and the expression for which coincides with one obtained by Chandrasekhar
(1942) in the presence of restrictions on the cluster symmetry.

In order to calculate

,0 = −1

2
d

∫
&

*3&,

we use the value* from (2.2). Using the expressions obtained for )0,,0,
∫
&
Φ3&,

we find an expression for the constant �0:

�0 = −"0

(
Φ0 +

l2'2
0 +*0

2
− Ξ

)
,
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Ξ =
(3V2

1 + 4l2 + U1)02 + (3V2
2 + 4l2)12 + (3V2

3 + U3)22

20
. (2.10)

Let us introduce a small constant parameter ` = (�−�0)/�. Then� = �0+`�.
Here the second term on the right-hand side can be regarded as a small perturbation
of the Hamiltonian �. Taking into account (2.9)−(2.10) and the values*0, *1 from
the Table 2.1 for six OSC models of Danilov and Dorogavtseva (2003) the values of
` are defined. The results of calculations for ` for the considered OSC models are
given in the seventh column of the Table 2.1. Thus, for the OSC models of Danilov
and Dorogavtseva (2003), the values |`| are small in comparison with the unity
(|`| ∼ 0.01 − 0.1), and the signs of ` can be different in different models.

Equations for the motion of the 8-th star, corresponding to the record of the
Hamiltonian � in the form � = �0 + `� and (2.9), have the following form:

¤? b8 = − m�
mb8

= (1 + `)
(
l?[8 + <8 mΦmb8

)
+ <8 m*mb8 − `

m,
mb8

,

¤?[8 = − m�
m[8

= (1 + `)
(
−l? b8 + <8 mΦm[8

)
+ <8 m*m[8 − `

m,
m[8

,

¤?Z8 = − m�
mZ8

= (1 + `)
(
<8

mΦ
mZ8

)
+ <8 m*mZ8 − `

m,
mZ8

;

(2.11)

¤b8 = m�
m?b8

= (1 + `)
(
?b8
<8

+ l[8
)
,

¤[8 = m�
m?[8

= (1 + `)
(
?[8
<8

− l('0 + b8)
)
,

¤Z8 = m�
m?Z8

= (1 + `)
(
?Z8
<8

)
.

(2.12)

Differentiating the equations (2.12) by time, proceeding to Lagrange equations and
substituting in them the expressions for Φ, * and, , we find

¥b8 = (1 + `)
(
2l ¤[8 − (V2

1 + `U1)b8 + `�
∑
9≠8 58 9 (b 9 − b8)

)
,

¥[8 = (1 + `)
(
−2l ¤b8 − V2

2[8 + `�
∑
9≠8 58 9 ([ 9 − [8)

)
,

¥Z8 = (1 + `)
(
−(V2

3 + `U3)Z8 + `�
∑
9≠8 58 9 (Z 9 − Z8)

)
,

(2.13)

where
58 9 = < 9/(A2

8 9 − 42)3/2 ; 8, 9 = 1, ..., #;

A2
8 9 = (b8 − b 9 )2 + ([8 − [ 9 )2 + (Z8 − Z 9 )2;

42 = 2>=BC is a small smoothing addition to A2
8 9 used by Danilov and Dorogavtseva

(2003) in the study of numerical OSC models.
Equations (2.13) pass into equations (2.5) at ` = 0. Let us introduce the following

notations: ¤b = D, ¤[ = E, ¤Z = F. We write a solution of the system (2.13) in the
following form:
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b8 (C, `) = b8 (0, 0) +
∫ C
0
D8 (C, 0)3C ,

[8 (C, `) = [8 (0, 0) +
∫ C
0
E8 (C, 0)3C ,

Z8 (C, `) = Z8 (0, 0) +
∫ C
0
F8 (C, 0)3C ,

D8 (C, `) = D8 (0, 0) +
∫ C

0
¤D8 (C, 0)3C ,

E8 (C, `) = E8 (0, 0) +
∫ C
0
¤E8 (C, 0)3C ,

F8 (C, `) = F8 (0, 0) +
∫ C
0

¤F8 (C, 0)3C .

(2.14)

Here, the second argument of the values b, [, Z , D, E, F denotes the used value of `.
In (2.13), assuming terms proportional to `2 equal to zero, we find the solution of the
system (2.13) in the first approximation by ` with the help of the Picard method. We
use here the unperturbed solution (2.7) as a zero approximation for b, [, Z , D, E, F.
In order to find the solution of (2.14), we decompose the function 58 9 in a series in
powers of Δ8 9 = A2

8 9 − A2
8 9 (0) limited to the terms ∼ Δ3

8 9
:

58 9 ≃ < 9

(
B−3
8 9 −

3Δ8 9

2B5
8 9

+
15Δ2

8 9

8B7
8 9

−
35Δ3

8 9

16B98 9
+ ...

)
, (2.15)

where B28 9 = A
2
8 9 (0) + 42; A8 9 (0) is the initial distance between the 8-th star and the

9-th one.

2.4 Stellar Motion Frequencies in OSC Models

The solution of the system (2.13) according to the scheme indicated in (2.14), was
obtained by Danilov (2005) in the first approximation of `. Because of the large
amount of calculations in the solution of (2.14), it is possible to use only the zero,
first and second terms of the expansion of the function 58 9 in powers of Δ8 9 . The
solution is very cumbersome, it is valid only at small intervals of time and therefore
is not given here. However, we can briefly write the frequencies of the harmonic
oscillations making up the solution in the following form:

1. For motions of stars in Z and F coordinates when using the zero and first terms
of the expansion 58 9 in powers of Δ8 9 , we found the following frequencies (Danilov,
2005):

• ±V3,
• ±3V3,
• ±V3 ± a1 ± a2,
• ±V3 ± 2a1,
• ±V3 ± 2a2

(a total of 20 frequencies). For the motion in b, D and [, E coordinates, we found the
following frequencies:

• ±a1,
• ±a2,
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• ±3a1,
• ±3a2,
• ±a1 ± 2V3,
• ±a2 ± 2V3,
• ±a1 ± 2a2,
• ±a2 ± 2a1

(a total of 24 frequencies).
2. For stellar motions in Z andF coordinates, when using the zero, first, and second

terms of the expansion 58 9 in powers of Δ8 9 , in addition to the ones mentioned in
item 1, the following frequencies were found:

• ±V3 ± 2a1 ± 2a2,
• ±V3 ± 3a1 ± a2,
• ±V3 ± a1 ± 3a2,
• ±3V3 ± 2a1,
• ±3V3 ± 2a2,
• ±5V3,
• ±V3 ± 4a1,
• ±V3 ± 4a2,
• ±3V3 ± a1 ± a2

(a total of 50 frequencies). For the motion in b, D and [, E coordinates, when using
the zero, first, and second terms of the expansion 58 9 in powers of Δ8 9 , in addition to
the ones mentioned in item 1, the following frequencies were found:

• ±5a1,
• ±5a2,
• ±4a1 ± a2,
• ±a1 ± 4a2,
• ±2V3 ± 3a1,
• ±2V3 ± 3a2,
• ±2a1 ± 3a2,
• ±3a1 ± 2a2,
• ±4V3 ± a1,
• ±4V3 ± a2,
• ±2V3 ± a1 ± 2a2,
• ±2V3 ± 2a1 ± a2

(a total of 52 frequencies).
Thus, the frequencies obtained by Danilov (2005) are linear combinations of the

three eigenfrequencies of the star motion in the joint field F of forces of the potential
(2.2) and the Galactic potential. Danilov (2005) and Danilov and Leskov (2005)
perform a comparison of these frequencies with frequencies obtained as a result
of the Fourier analysis of the trajectories of halo stars (Danilov and Leskov, 2004,
2005) in the numerical model 1 of the OSC (Danilov and Dorogavtseva, 2003). It
allows to distinguish several of the most sifnificant resonances in the motion of halo
stars over Z and F coordinates at frequencies:
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• 2V3 − a2 ≃ 3
5lA ,

• 3V3 − 2a2 ≃ 5
8lA ,

• V3 + 3a1 − a2 ≃ 5
7lA ,

•
4
7lA .

In the motion of halo stars along b, D coordinates, the main resonances in the cluster
model 1 (Danilov and Dorogavtseva, 2003) are at frequencies:

• V3 − 3a1 + a2 ≃ 2
5lA ,

•
4
9lA , a2 ≃ 9

17lA ,

• 2a2 − 3a1 ≃ 7
17lA ,

•
3
8lA ,

and in the motion of halo stars along [, E coordinates, the main resonances are found
at the following frequencies:

• −V3 + 2a2 ≃ 1
2lA ,

• 2V3 − 3a1 ≃ 7
15lA ,

• V3 − 3a1 + a2 ≃ 2
5lA ,

• 3V3 − 2a2 ≃ 3
5lA ,

where lA is the oscillation frequency of a regular cluster field. At these frequencies
(or near them), 6−10 (sometimes up to 15) halo star trajectories in the model 1
are grouped (Danilov and Dorogavtseva, 2003). The frequencies noted here are in
a rational relation to the oscillation frequency of the regular cluster field. The most
probable reason for the formation of such groups of trajectories is the effect of
"frequency pulling" or "frequency shift" , when oscillations are synchronizing; this
effect was described in the literature for the self-oscillating systems with a small and
large number of degrees of freedom (see Migulin et al. (1988, p.290) and Rabinovich
and Trubetskov (2000, p.348)). As a result of such synchronization of oscillations,
a set of frequencies, commensurate with the frequency of regular field oscillations,
is formed in the system. At some of such frequencies, synchronous motion of stellar
groups along trajectories is observed (motion with the same frequency). At the same
time, a set of intervals of distances from the cluster center is formed in the system,
the motion in which for halo stars becomes preferable in the presence of regular field
oscillations.

2.5 Conclusions

In this part of the book, we have considered the potential model (2.2) which is
approximating the gravitational potential at the periphery of numerical dynamic
OSC models of Danilov and Dorogavtseva (2003) and admitting analytical solution
for the equations of stellar motion in the joint force field F of potential (2.2) and
the Galactic potential. For six OSC models of Danilov and Dorogavtseva (2003), we
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have listed parameters of the potential (2.2), the shape of its equipotential surfaces
and the shape of the zero velocities surface of stellar motion in the field of forces F.

2. We have written the equations of stellar motion at the OSC periphery, which
contain a small parameter `. For six OSC models of Danilov and Dorogavtseva
(2003) we list the values of ` obtained by Danilov (2005) considering the param-
eters of the potential (2.2) and the Galactic potential. We have presented a general
analytical solution of the stellar motion equations for ` = 0. Stellar motion in the
force field F is three-frequency (single-frequency motion along Z coordinate, and
two-frequency motion in each of the b and [ coordinates). These frequencies are the
eigenfrequencies of the stellar motion in the joint field of forces of the potential (2.2)
and the Galactic potential.

3. We have given the frequencies of stellar motion in the first order expansions
by ` of the solutions of the equations of stellar motion at the OSC periphery. These
frequencies are linear combinations of the natural frequencies of stellar motion in the
field of forces F. The coefficients of such linear combinations are integer numbers.
Several main resonances in the motion of halo stars in the cluster model 1 of Danilov
and Dorogavtseva (2003) have been noted. The frequencies of these resonances are
commensurate (or close to commensurability) with the oscillation frequency of a
regular cluster field.

4. The small groups of halo star trajectories at these frequencies (or near them)
are formed. It was noted for the numerical cluster model 1 in the work of Danilov
and Leskov (2005). This fact indicates that a set of intervals of distances from the
cluster center is formed in the system, the motion in which for halo stars becomes
preferable in the presence of regular field oscillations.
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Chapter 3

Properties of Stellar Trajectories in Numerical
Dynamical Models of Open Stellar Clusters

Abstract In this chapter, we consider stellar trajectories in the models of OSCs
which are non-stationary in a regular field. Estimates of the maximum Lyapunov
characteristic exponent _ of the stellar trajectories in the OSC models are performed.
The average _ values in the considered OSC models are _ ≃ 1/Myr. Cluster cores are
the regions of increased stochasticity; halos are the regions of ordered star motion.
With the density of the cluster model increases, the value of _ grows, and the sizes
of the high stochasticity region in the cluster core increase. An "adhesion" of the
star trajectory in the phase space to the region with the given _ value is noted. We
perform the Fourier analysis of stellar trajectories in the considered OSC models
and construct the distributions of the trajectories of the stars by the periods of their
motions with the largest values of the power spectrum. In the distributions of stellar
trajectories by the periods of the most significant oscillations, we detect the peaks
with periods corresponding to (or close to) the periods commensurate with the
oscillations periods of the regular field of the system. We discuss the features of the
distributions of stellar trajectories by periods of the most significant oscillations and
the reasons for the formation of these features in the considered OSC models.

3.1 Introduction

In the papers (Danilov, 2002a,b) we consider the models of open star clusters that
are non-stationary in a regular field, close to gravitational instability and moving
along circular orbits in the field of the Galaxy. Small-scale density oscillations due
to stellar encounters in such systems are easily amplified to the level of large-scale
ones. During the violent relaxation at C < gEA , radial oscillations with practically
constant amplitude and period are set (here, C is time, gEA is violent relaxation
time). In order to analyze stellar flux in OSC models, Danilov (2002b) and Danilov
and Dorogavtseva (2003) carried out a statistical study of small segments of stellar
trajectories, which made it possible to estimate relaxation times of stellar motion
in the spaces of a number of parameters of stellar motion, as well as to detect the

25
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transfer of an energy from the large-scale stellar motions to the small-scale ones
during the periodical changes in the regular field of the OSC model, etc.

The properties of the stellar trajectories in the OSC models of Danilov (2002b);
Danilov and Dorogavtseva (2003) were first considered by Danilov and Leskov
(2005). Danilov (2002b) has suggested that in the denser OSC models (with a lower
degree of non-stationarity in a regular field) the number and influence of stochastic
stellar trajectories increases, which probably leads to a decrease of the role and
disappearance of barriers in the phase space (PS) of such systems. The estimates
(Danilov, 2002a,b) show that the degree of stochasticity of stellar trajectories in
cluster models of Danilov and Dorogavtseva (2003) does increase in denser models
with a lower degree of non-stationarity.

In order to study the properties of stellar trajectories in the models of stellar
systems, the following methods are usually applied:

• estimates of the Lyapunov characteristic exponents (Kandrup et al., 1997; Habib et
al., 1997; Kandrup, 1998; Carpintero et al., 1999; Muzzio et al., 2001; Carpintero
et al., 2003; Muzzio and Mosquera, 2004; Kandrupand Sideris, 2002; Caranicolas
and Vozikis, 1999);

• Fourier analysis of stellar trajectories (Carpintero et al., 1999; Muzzio et al., 2001)
and complexity indicators of trajectories based on the study of trajectory power
spectra (two different definitions of the complexity of trajectories were given by
Kandrup et al. (1997) and Kandrup and Sideris (2002));

• Fourier analysis of the deviation of close trajectories and the correlation analysis
of time series corresponding to the dependency of the phase coordinates of stars
on time (Vozikis et al., 2000);

• a geometric method using the Ricci curvature estimate (El-Zant, 1998);
• a method of the angular dynamic spectra (Efthymiopoulos et al., 1999; Voglis

et al., 1999), and the parameters based on this method: parameters '$)$' and
"spectral distance �" of the spectra of two different initial vectors of deviations
of perturbed trajectories from basic trajectory (Voglis et al., 1999);

• Poincaré section (Carpintero et al., 2003);
• mapping equations (Efthymiopoulos et al., 1999; Voglis et al., 1999; Lega and

Froesle, 2001; Papaphilippou and Laskar, 1996);
• method of frequency maps (Lega and Froesle, 2001; Papaphilippou and Laskar,

1996);
• Fast Lyapunov Indicator (FLI) and the FLI card method (Lega and Froesle, 2001),

etc.

As a rule, a combination of two (or more) different methods is used to study the prop-
erties of stellar trajectories. In the overwhelming majority of cases, these methods
are used to study non-self-consistent, stationary and collisionless models of stellar
systems and clusters. When the systems of # gravitating point bodies are investi-
gated (see, for example, El-Zant (1998)), most often the isolated clusters near virial
equilibrium are considered.

Investigation of the properties of stellar trajectories in dynamic models of star
clusters was performed by Carpintero et al. (1999),Muzzio et al. (2001),Carpintero
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et al. (2003),Muzzio and Mosquera (2004). These works consider stationary col-
lisionless models of star clusters moving along a circular orbit around the center
of the Galaxy. Carpintero et al. (1999) and Muzzio et al. (2001) noted an increase
of the fraction of chaotic stellar trajectories in the outer parts of the globular clus-
ter models, see fig. 6 from the paper of Carpintero et al. (1999) and fig. 3.1 from
the paper of Muzzio et al. (2001) (stellar encounters were not taken into account
when the fraction of chaotic trajectories were estimated by Carpintero et al. (1999)
and Muzzio et al. (2001)). According to Carpintero et al. (1999), the proportion of
chaotic trajectories at the cluster periphery increases up to 50 − 90 %. Muzzio et
al. (2001) noted that the randomness on the cluster periphery arises as a result of
mutual action on the star of three forces: the force of the attraction of the cluster, the
centrifugal–centripetal force (which acts differentially), and the Coriolis force.

Let us note that consideration of the effect of stellar encounters in the OSC models
made in our work leads to a significant increase in the degree of stochasticity and
to the complication of the Fourier spectra of the trajectories of the cluster core stars
in comparison with the estimates of Carpintero et al. (1999), Muzzio et al. (2001),
Carpintero et al. (2003), and Muzzio and Mosquera (2004).

To reveal the role of synchronization of stellar motion in formation of the fre-
quency spectrum of the oscillation motions of stars in the OSC models, the Fourier
analysis of stellar trajectories is of considerable interest. It is also of interest to inves-
tigate the distributions of stellar trajectories in the clusters by the periods (obtained
from the analysis of the PCS dependencies on time) with the largest values of the
spectral density for the trajectory. An analysis of such distributions will make it pos-
sible to establish the most significant periodicity in stellar motions. A comparison of
such distributions for the OSC models with the different degrees of non-stationarity
will make it possible to study the effect of synchronization of radial stellar motions
in clusters on the stellar motions with the frequencies incommensurate with the
frequency of the radial oscillations of the OSC model.

According to Rabinovich and Trubetskov (2000, p.348), in the self-oscillating
systems with a large number of freedom degrees, a synchronization of oscillations
leads to a shift in frequency of oscillations and the formation in the system of a set of
frequencies commensurate with the frequency of synchronous oscillations. If such
a mechanism contributes to the evolution of the OSC models, its action will result
in the extraction of the most significant frequencies (and periods) of stellar motion
and the appearance of resonant peaks in the distributions of stellar trajectories by
the periods (keeping in mind the resonances with radial oscillations of the cluster
model). To study the features of synchronization of stellar motions in the models of
non-stationary OSC, it is of interest to consider the consistency of the phases in the
periodic components of stellar trajectories with the oscillation phases of the regular
field of the cluster models.

The objective of this part of the work is to discuss the properties of stellar
trajectories in the OSC models which are non-stationary in a regular field.
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3.2 Basic Formulas and Notations

Equations of stellar motion (5.517)−(5.519) from the book of Chandrasekhar (1942)
can be written in the following form:

¤b8 = D8 , ¤[8 = E8 , ¤Z8 = F8 ;

¤D8 = 2lE8 − U1b8 + �
#∑

9=1, 9≠8
(b 9 − b8)/A3

8 9
,

¤E8 = −2lD8 + �
#∑

9=1, 9≠8
([ 9 − [8)/A3

8 9 ,

¤F8 = −U3Z8 + �
#∑

9=1, 9≠8
(Z 9 − Z8)/A3

8 9
, 8 = 1, ..., # ,

(3.1)

where # is the number of stars; b8 , [8 , Z8 and D8, E8, F8 are components of the radius
vector ri, and the velocity vector vi of the 8-th star, respectively (the mass of a star
in (3.1) is assumed to be equal to 1"⊙ , see above). Equations (3.1), linearized in
the neighborhood of the 8-th star trajectory, lead to the equations "in variations" for
small perturbations modulo Xb8, X[8, XZ8, XD8, XE8, XF8:

X ¤b8 = XD8 , X ¤[8 = XE8 , X ¤Z8 = XF8 ,

X ¤D8 = 2lXE8 − U1Xb8 + �
#∑

9=1, 9≠8
[Xb 9 − Xb8 − (b 9 − b8)08 9 ]/A3

8 9
,

X ¤E8 = −2lXD8 + �
#∑

9=1, 9≠8
[X[ 9 − X[8 − ([ 9 − [8)08 9 ]/A3

8 9
,

X ¤F8 = −U3XZ8 + �
#∑

9=1, 9≠8
[XZ 9 − XZ8 − (Z 9 − Z8)08 9 ]/A3

8 9
,

08 9 = 3((r 9 − r8)X(r 9 − r8))/A2
8 9 ,

A2
8 9 = (b 9 − b8)2 + ([ 9 − [8)2 + (Z 9 − Z8)2 + 42 ,

8 = 1, ..., # ,

(3.2)

where 4 = 2>=BC is a small constant addition to the square of distance between the
stars (that is a smoothing parameter (Danilov, 1997a)); U8 = 2>=BC, 8 = 1, 3, U1 < 0,
U3 > 0; l = 2>=BC, l is the angular velocity of the OSC motion around the center
of the Galaxy. The values U8 and l are determined in this work with the help of the
potential of the Galaxy of Kutuzov and Osipkov (1980).

In order to calculate stellar trajectories in the OSC models and the Maximum
Lyapunov Characteristic Exponents (MLCE)_, we numerically integrated the system
of equations (3.1)−(3.2) in this work. To estimate the values of _, we used the
technique described by Lichtenberg and Lieberman (1983), see formula (5.3.10). As
initial Xb8, X[8, XZ8, we choose the small magnitudes corresponding to XA8 ≤ 0.01A8;
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Table 3.1 Parameters of OSC Models

N gEA _

Myr Myr−1

1 49.9 0.79±0.03
2 41.8 0.97±0.04
3 41.8 1.21±0.04
4 34.3 1.25±0.05
5 41.8 1.22±0.07
6 41.8 1.04±0.03

the initial XD8, XE8, XF8 corresponded to Xb8, X[8, XZ8, and were obtained using the
formula for the moduli of initial stellar velocities, see Section 16.1.

3.3 The Lyapunov Times and Oscillation Periods of Stellar

Trajectories

Danilov and Leskov (2005) analyzed stellar trajectories in six OSC models, the pa-
rameters of which are listed in Table 3.1 and in Section 16.1, Table 16.1. Danilov
(2002b), Danilov (2002a), Danilov and Dorogavtseva (2003), and Danilov and
Leskov (2005), consider a cluster containing # = 500 stars and moving in the
Galactic plane along a circular orbit with a radius of 8200 pc around the Galactic
center. At the initial time C = 0, the star cluster is modeled as a system of two
gravitating balls simulating a halo and a core with coincident centers of mass. Six
models of OSC are considered, the data of which are given in Section 16.1, Table
16.1, and in Table 3.1. The first column of Table 3.1 and the first column of Table
16.1 contain the numbers of OSC models. Danilov and Leskov (2005) performed
the estimates of the MLCE _ of the stellar trajectories in these OSC models and
plotted the distributions =(_gEA ) of stellar trajectories by _gEA values, see fig. 3.1.
The values _ obtained for stellar trajectories can be set in accordance with both the
initial and final phase coordinates of the stars. Due to this, we also plot the diagrams
of (A (C), _gEA ) and families of lines of equal values _gEA = 2>=BC in the space of
(A, E) for two time points C/gEA = 0, 2.6.

Fig. 3.1 shows distributions =(_gEA ) in cluster models 1, 3, 5, 6. The distributions
=(_gEA ) in clusters 2, 4 (with the number of stars in the core #1 = 100) have a
form similar to the distribution =(_gEA ) in cluster model 1. Therefore, distributions
=(_gEA ) for models 2, 4 are not shown here. A majority of the stellar trajectories
in models 1, 2, 4 have small positive _gEA (0 < _gEA ≤ 40 − 50). In this case,
0 < _ < 1 Myr−1. These _ values correspond to the stellar trajectories located at
considerable distances from the cluster center. In cluster model 1, these trajectories
correspond to the Lyapunov time C_ = _−1 ∼ (1.2 − 12.5) Myr. Stellar trajectories
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Fig. 3.1 Distributions of stellar trajectories by _gEA in four OSC models

in the cluster core correspond to large _ ∼ (1 Myr−1 < _ < (4 − 5) Myr−1), and,
consequently, C_ ∼ (0.2 − 1.0) Myr.

Using the distributions of the stellar trajectories with respect to _gEA , we obtained
the mean MLCE values _ (and their errors) in the OSC models. _ increases with
increasing density and decreasing degree of non-stationarity of the analyzed OSC
models from 0.8 (Myr−1) to 1.25 (Myr−1), see Table 3.1. Initial values of gEA for OSC
models (in Myr) are given in column 2 of Table 3.1, the mean _ of MLCE estimates
_ (in Myr−1) are given in column 3 of Table 3.1. Thus, the degree of stochasticity
of stellar motions in OSC models decreases at large amplitudes of oscillations of a
regular field (in strongly non-stationary systems).

The diagrams (A (0), _gEA ) for models 1, 6 of the clusters are shown in fig. 3.2. The
plots of A (0) dependencies on _gEA for models 2, 3, 4 have the form similar to this
dependency for model 1. The distributions of the points on diagrams (A (0), _gEA ) for
models 5 and 6 also have similar appearance. Therefore, diagrams (A (0), _gEA ) for
models 2−5 are not shown here.

In fig. 3.2 for model 1, the regions occupied by the stars of the core and the halo
are separated quite clearly by the line _gEA = 50. With an increase in the number of
stars in the core #1, the size of the core increases (from 2.5 pc in model 1 to 5.5 pc in
model 6), and the boundary value _gEA separating trajectories of the core stars and
the halo stars on the diagram (A (0), _gEA ), varies to a little degree: _gEA ≈ 40 − 50.

In models 1−5, dispersion of _ (and _gEA ) values of the core stars’ trajectories is
much larger than in the halo (fig. 3.1, 3.2). Probably, in the regions of phase transition
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Fig. 3.2 Diagrams (A (0) , _gEA ) for stellar trajectories in two OSC models

corresponding to the cluster core, the regions with high and low stochasticity of stellar
trajectories largely coexist with each other, see fig. 3.2, 3.3.

In fig. 3.3, for cluster model 1, the countour lines _gEA = 2>=BC are given in
the space of (A, E) for two time points C (A is the distance from the cluster center
(the center of mass) and E is the absolute value of the velocity of the star). Num-
bers at the countour lines in fig. 3.3 show _gEA value for a given countour line.
_gEA ∈ [4.2, 181.8]. White regions in (A, E) plane are not occupied by stars at a
corresponding point in time. Darker regions in (A, E) plane correspond to large _gEA
values.

The countour lines of _gEA = 2>=BC have a similar form for other models of
clusters considered here, therefore, the corresponding plots are not shown here. At
the initial time, the region of significant stochasticity (_ > _) in the OSC models is
located in the cores (at small distances A from the cluster center) and in the region of
small and intermediate E. During the evolution of OSC models, regions of significant
stochasticity extend into the region of even smaller A and E, see fig. 3.3. In the cores of
OSC models, at the time of C/gEA ≈ 2.7−3 in the space of (A, E), the extended regions
of high stochasticity are penetrated by narrow regions with small stochasticity, and
on the cluster periphery in regions of more ordered motion, we sometimes can find
the small areas of an increased stochasticity. In models 1−6, the regions of ordered
and stochastic motion in the space (A, E) are adjacent to each other.

Thus, stellar trajectories with large values _ are located in the cores of OSC
models, and trajectories with small _ are located (generally) at the cluster periphery,
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Fig. 3.3 Contour lines _ = 2>=BC in the space of (A , E) for two time points C in cluster model 1

Fig. 3.4 Dependencies of the _gEA estimates on time C/gEA for five stellar trajectories in cluster
model 1. Numbers in the curves correspond to the number of the star in the cluster model. For these
trajectories, a larger number of star corresponds, on average, to a larger distance of the trajectory
from the cluster center
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see also fig. 3.2, 3.3. Consequently, in the non-stationary OSC, the cores of the
clusters are the regions of increased stochasticity, and the halos form the regions
of more regular stellar motions. In the denser OSC models, the dimensions of the
increased stochasticity regions increase in the core.

The Lyapunov times (Danilov and Leskov, 2005) for "external" stellar trajectories
at the clster periphery obtained by Danilov and Leskov (2005), are ∼ 42 − 83 times
less than C_ obtained by Carpintero et al. (1999) for external stellar trajectories in
nonisolated collisionless models of globular clusters. Thus, the taking into account
the effect of stellar encounters in estimating C_ values is of decisive importance, and
leads to a significant decrease in C_ estimates in the models of star clusters.

When _ is calculated with the method of Lichtenberg and Lieberman (1983) for
each trajectory, the _ estimate grows very rapidly over time, and reaches its highest
value even at small C, after which the changes in _ become insignificant, see fig. 3.4.
Thus, there is an "adhesion" of stellar trajectory in the phase space (PS) to a region
with the given _.

For each trajectory Danilov and Leskov (2005) obtained amplitudes �, periods %,
and phases Φ of the first three sinusoidal components (with the largest amplitudes)
of the phase coordinates of stars (PCS) change over time. We used a technique for
isolating the sinusoidal components (SC) of the stellar coordinates changes described
in the papers of Carpintero and Aguilar (1998); Laskar (1988). We estimated the
values of @ = �3/�C , where �3 and �C are the energies, which are obtained for the
first three SCs and for the entire Fourier spectrum of the dependency A = A (C) for each
trajectory, respectively. Here and below, in the time dependencies of the considered
values A, ¤A , \, b, [, Z , the trend, which is determined for these dependencies by the
method of least squares in the time interval ΔC = 3gEA , is excluded. As a trend, we
used a third-degree polynomial in time C. For estimates of the energies �C and �3,
we used the time representation of the trajectory and its first three SCs, as well as
formulas (3.20) and (3.30) from the work of Max et al. (1981). According to our
estimates, the first three SCs account for a significant part of the energies of the
spectra considered (up to 95 %). In 75−92 % of the stellar trajectories in cluster
models 1−6, the first three SCs collect more than 50 % of the spectra energies
of the dependencies A = A (C) of the trajectories. Thus, the first three SCc of the
dependencies A = A (C) of trajectories represent stellar motion in our OSC models
rather well and describe quite well the more ordered stellar motion in the halo.
This result agrees with the data of Kandrup et al. (1997) that the complexity of the
spectrum (the number of harmonics of the Fourier spectrum with a total energy of
95 % of the spectrum energy) of stellar trajectories in collisionless systems decreases
linearly with decreasing MLCE, see fig. 5, 8 from the paper of Kandrup et al. (1997).
@ values for the dependencies U = U(C) in models 1−6 are contained in the

interval @ ∈ [0.66, 0.93]. Here, U means the cluster virial coefficient (see Section
16.1). Parameters of the first three SCs of the dependencies U = U(C) in OSC models
are given in Table 3.2.

Danilov and Leskov (2005) plotted the diagrams of @ dependencies on _gEA
for cluseter models 1−6. According to estimates of @ and _gEA in models 2, 3, 5
with '2/'C = 0.8, the fraction of trajectories with @ > 0.5 decreases from 0.81
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Table 3.2 Parameters %8 , �8 ,Φ
(U)
8

of sinusoidal components of dependencies U = U (C) in cluster
models

1 2 3 4 5 6 7 8 9 10

N %1/gEA �1 Φ
(U)
1 %2/gEA �2 Φ

(U)
2 %3/gEA �3 Φ

(U)
3

1 0.62 .1627 120.7◦ 0.52 .0251 49.6◦ 1.12 .0191 188.3◦

2 0.68 .1338 93.4◦ 0.90 .0253 215.8◦ 0.59 .0188 65.9◦

3 0.64 .0744 73.9◦ 0.84 .0183 165.5◦ 1.21 .0122 271.2◦

4 0.78 .0964 103.0◦ 1.05 .0117 194.2◦ 0.64 .0103 31.4◦

5 0.67 .0336 93.4◦ 1.15 .0196 204.7◦ 0.37 .0069 272.1◦

6 0.58 .0444 102.9◦ 1.10 .0441 131.3◦ 0.45 .0099 275.3◦

to 0.76 as the number of stars in the core #1 increases from 100 to 300. @ value
for the dependencies U = U(C) in models 2, 3, 5 also decreases from 0.93 to 0.66.
Apparently, this is due to the increase in the sizes of the region of high stochasticity
in the core with increasing #1 observed in models 2, 3, and 5.

In model 6 with #1 = 400, the fraction of trajectories with @ > 0.5 reaches 0.92.
@ for the dependency U = U(C) in model 6 reaches 0.91. Judging by @ estimates
for the stellar trajectories in cluster model 6, this model has the most ordered stellar
motion. We should note that in this model, during the periods of the greatest cluster
compression to the plane Z = 0, a toroidal structure is formed with an increased
density of stars inside the torus with equatorial plane close to Z = 0 (in the space
b, [, Z ).

For a number of time points, Danilov and Leskov (2005) constructed distributions
of the star number density a(d, C) projected onto the plane Z = 0 by distances d from
Z axis, as well as radial distributions of the star number density a(A, C) over distances
A from the cluster center. On the diagrams of dependencies a = a(d, C), one can see
the condensation waves propagating in the cluster core from Z = 0 with a velocity
comparable to an average velocity of peculiar stellar motions. The amplitude of the
density a(d, C) oscillations in the core of the 6th model is approximately 2 times
greater than in the cores of cluster models 1−5. For this reason, the density of stars
a = a(d, C) in the intervals Δd, which are closer to Z = 0 in the 6th model, at certain
time points may be lower than in Δd intervals, which are more distant from this axis.
Similar density waves are observed for cluster models 1−6 also in the distributions
a(A, C) (A is the distance from the cluster center).

In models 1, 2, 4 with initial number of stars in the core #1 = 100 and the value
'2/'C decreasing from 0.9 to 0.7, the fraction of trajectories with @ > 0.5 increases
from 0.75 to 0.85. @ values for the dependencies U = U(C) in models 1, 2, 4 also
increase from 0.89 to 0.97. In our opinion, this is due to an increase in the number
of trajectories of the halo stars associated with the OSC.

Danilov and Leskov (2005) plotted the sum of distributions of the trajectories
by the periods % of the first three SCs. These SCs were obtained from the study
of dependencies A = A (C), ¤A = ¤A (C), \ = \ (C), where ¤A =

3A
3C

; \ is the angle
between the radius vector of the star r at time C and the positive direction of Z axis.
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Such distributions allow us to see the frequencies and phases of the most significant
oscillations in stellar motion. To plot these distributions, all trajectories were divided
into two groups by _ values: _ < _ and _ > _. _ values are given in Table 3.1. The
results for the dependencies ¤A = ¤A (C), \ = \ (C) are shown in fig. 3.5−3.6. The plots
of the distributions of dependencies A = A (C) and ¤A = ¤A (C) by the periods % differ
little. Therefore, the distributions of the A = A (C) dependencies by the periods % are
not given here.

These distributions of the first three SC (in the coordinates of the stars A = A (C), ¤A =
¤A (C), \ = \ (C)) by the periods % reveal the non-random and well-defined peaks at the
points corresponding to (or close to) the periods commensurate with the period of
oscillations of the regular field of the system %A . When determining %A , we used the
frequency of the first SC (with the largest amplitude), extracted from the dependency
U = U(C) according to the procedure described by Carpintero and Aguilar (1998)
and Laskar (1988). The SC parameters of the changes in the virial coefficient (and
regular field) of OSC models over time are shown in Table 3.2.

Trajectories with small % have the large values _ and are located generally in
the cluster core. Trajectories with % ≥ %A have small _ and are located generally
at the cluster periphery. Contrary to the models 1−5, in model 6, the segregation of
trajectories with different _ values by the periods % is absent, and in each interval
Δ%, two groups of trajectories with approximately the same ratio of ordered and
chaotic trajectories are formed.

In cluster model 1 (which has the greatest degree of non-stationarity), a significant
part of the stellar trajectories from the resonance peaks at C ≃ 3gEA is located at large
distances from the cluster center (at A > 'C ). The small values of _ correspond to
these trajectories, see fig. 3.5−3.6. Apparently, oscillations of the regular field of the
system play an important role in the dissipation of these stars from the cluster.

In the considered OSC models, with an increase of#1, in more ordered trajectories
with _ < _, the height (and population) of the resonance peaks of the distribution
of trajectories by % in the region % < %A is conserved, and in the region % > %A ,
the height of these peaks decreases. With an increase of #1, in our OSC models, the
number of stars located deep beneath the tidal surface of the cluster in the field of
the Galaxy (at A << 'C ) increases. For these stars, the energy of the escape from the
cluster increases, and a longer time takes for transferring of the energy of the regular
field oscillation to the star, and a larger number of regular field oscillations with
period %A is required, in order to ensure the escape of these stars from the cluster
and to provide the same population of resonance peaks, as for small #1.

Distributions of the dependencies \ = \ (C) for the main periods of the % oscilla-
tions in the OSC models form two groups, the most noticeable of which are in the
models 2, 4, 6; for the model 6 see fig. 3.6. In models 2 and 4, these are groups with
periods% < %A and % > %A , which basically correspond to cluster stars and stars that
left the cluster to the large distances A > 'C along the Galactic plane. Large % values
in the dependencies \ = \ (C) correspond to large A, as well as to the stellar motions
directed mainly along the plane (b, [), which is parallel to the plane of the Galaxy.
Ordered (_ < _) and chaotic (_ > _) trajectories in the first group with % < %A are
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Fig. 3.5 The sum of distributions of the stellar trajectories by the periods % for first three sinusoidal
components of the dependencies ¤A = ¤A (C) in two cluster models. Solid line denotes the distribution
of the trajectories with _ > _. Dashed line shows distributions of the trajectories with _ < _

Fig. 3.6 The same as in fig. 3.5 for the dependencies \ = \ (C)
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well mixed in the space of % values. In models 2 and 4, chaotic trajectories in the
second group (% > %A ) are encountered rarely.

In the core of model 6, there are two groups of stellar trajectories in the space of %,
obtained in the study of the dependencies \ = \ (C), see Fig. 3.6. When C < 3gEA , the
distance of these stars A from the cluster center is less than 6 pc. For trajectories of the
first group, % is less than 0.62gEA . For the trajectories of the second group, % values
are enclosed in an interval approximately equal to %/gEA ∈ [0.62, 1.1]. In the core of
the 6th model, in groups 1 and 2, there are both chaotic and more ordered trajectories,
and in the second group the fraction of more ordered trajectories (with small _) is
greater than 0.5, and larger than in the first group (with % < 0.62gEA ). The halos of
the models are largely dominated by ordered motions. According to Danilov (2002b)
and Danilov and Dorogavtseva (2003), in the 6th OSC model, there is a doubling
of the periods of the large-scale oscillations of the star cluster: %A/gEA ≃ 0.6 and
%b ,[/gEA ≃ 1.2. The period %b ,[ corresponds to the oscillations of the outer cluster
parts along the plane (b, [) (that is, along the plane of the Galaxy). In the 6th model,
a toroidal structure is periodically observed in the space (b, [, Z ), see above.

Danilov and Leskov (2005) plotted the sum of the distributions #Φ of stellar
trajectories by the phases Φ of the first three SC dependencies A = A (C) for cluster
models 1−6. The phase intervals ΔΦ = 2◦ − 18◦ were used. Distribution of #Φ

obtained with the interval ΔΦ = 18◦ for model 1 is shown by a dashed line in
fig. 3.7. Solid line in fig. 3.7 shows the polynomial #Φ of the 6th power of the
best mean-square approximation of the values #Φ = #Φ(Φ) for the dependencies
A = A (C).

We note that when the SC is selected from the A = A (C) dependencies, initial values
Φ = Φ(0) are obtained according to the procedure of Carpintero and Aguilar (1998)
and Laskar (1988). During the evolution of the cluster, phases Φ(C) of oscillations
of the values A = A (C) increase linearly with time: Φ(C) = Φ(0) + 2c

%
C. In the

distribution #Φ of the dependencies A = A (C) for the phases Φ(0) in fig. 3.7, we can
see the predominance of the initial phases close to the initial oscillation phase of
the regular cluster field (i.e., to the phase Φ(U)

1 (0) of the first SC of the dependency
U = U(C), see Table 3.2). Such a consistency of the initial phases of radial stellar
motions and cluster oscillations is more noticeable for models 1 and 2 with a greater
degree of non-stationarity.

Vertical line Φ1 = 120.7◦ in fig. 3.7 marks the phase Φ
(U)
1 (0). It practically

coincides with the phase of the maximum value of the polynomial #Φ. Thus, only a
small excess of the maximum value of #Φ over its minimum value (approximately
8−9 trajectories in the phase interval ΔΦ = 18◦) indicates a tendency of the system
to the in-phase radial star motions. The number of trajectories with phases Φ(0),
differing by less than 90◦ from Φ

(U)
1 (0), exceeds the number of remaining trajecto-

ries only by approximately 10 %. This is largely due to the method of specifying the
initial velocities of the stars in our models (all initial directions of the vectors v are
equally probable). In this case, the phases of radial stellar motions are distributed
approximately uniformly. A significant contribution to the uniformity in the distri-
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Fig. 3.7 The sum of distributions #Φ of stellar trajectories for the stars of cluster model 1 by the
initial phases Φ of the first three SC dependencies of A = A (C) (a). Distribution #Φ1 of the halo
stars’ trajectories in cluster model 1 by the initial phases Φ1 of the first SC dependencies of A = A (C)
(b)

bution of the current phases of dependencies A = A (C) is made by the stochasticity of
stellar trajectories (all _ > 0) and the stochastic nature of stellar encounters.

For the halo stars, a consistency of the initial phases of radial motions increases
noticeably. The trajectories of the halo stars in this work were selected among all
trajectories in the clusters by the values _ < _, @ > 0.5 and the maximum distances
A<0G of the star from the center not exceeding 20 pc during the evolution of the cluster.
In fig. 3.7,b the dotted line marks the distribution of the halo star trajectories #Φ1 by
the phases of the first SC in model 1. Solid line marks the sixth degree polynomial
#Φ1 of the best mean-square approximation of the values #Φ1 = #Φ1 (Φ1) for the
dependencies A = A (C). We used the phase interval ΔΦ1 = 18◦. The excess of
the maximum value of the polynomial #Φ1 over its minimal value in model 1 is
approximately 12 trajectories in the phase interval ΔΦ1 = 18◦. This is noticeably
greater in percentage terms than for all the stellar trajectories of the cluster model,
since only the trajectories of 203 stars in model 1 satisfy conditions _ < _, @ > 0.5
and A<0G < 20 pc. The number of halo star trajectories with phases Φ1 (0) differing

by less than 90◦ from Φ
(U)
1 (0), in this case exceeds the number of remaining halo

star trajectories by 38% approximately.
Amplitudes of the radial stellar motions for a significant part of trajectories can

increase at certain moments (and periods) of time due to a proximity of phases of
the the first two SCs of dependencies A = A (C) for these trajectories. Indeed, the
number of dependencies A = A (C) with the current phases Φ(C) of two SCs (of the
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first three ones), which differ by not more than ΔΦ = 18◦, is on average 30 % of the
total trajectories number in model 1, and at some time points reaches 50 %. With
increasing of the considered interval ΔΦ, the fraction of the trajectories with close
current phases of two (of the first three ones) SCs increases.

Fig. 3.8 Distributions # 5 of trajectories of the halo stars in the cluster model 1 by the periods %:
A, B are trajectory distributions for the first SC and for the first three SC dependencies [ = [ (C) ,
respectively; C, D are the same distributions for dependencies Z = Z (C)

Danilov and Leskov (2005) presented distribution of trajectories of the halo stars
in cluster model 1 by the periods % of the first SC of dependencies b = b (C), [ = [(C),
and Z = Z (C). Similar distributions were also plotted for the periods of the first three
SCs. In plotting these distributions, along with the criteria for sample of trajectories
of halo stars described above, an additional constraint �CA < 0.3(�C +�CA ) was used,
where �CA is the energy of the trend of a dependency A = A (C). This restriction makes
it possible to exclude from the consideration the trajectories of the halo stars, which
traveled by the distances A far beyond the tidal radius of the OSC during time 3gEA ,
and then returned. In fig. 3.8, the digits indicate the numbers of the values of the
periods % for the highest peaks of distributions, and the lowercase letters indicate the
labels of the theoretical estimates of these periods obtained by Danilov (2005) (here
and below, % values are expressed in the units of the violent relaxation time gEA ).
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The period of change of the regular cluster field %A = 2c/lA = 0.620 ± 0.010
(lA is oscillation frequency of a regular field). For the dependencies [ = [(C), the
following estimates are obtained by Danilov and Leskov (2005):

• %0 (5a1) = 0.564 ± 0.018,
• %1( 9

10lA ) = 0.568 ± 0.009,
• %1 (2a1 + a2) = 0.638 ± 0.011,
• %2( 3

4lA ) = 0.827 ± 0.013,

• %3( 5
7lA ) = 0.868 ± 0.014,

• %1 (V3 − 2a2) = 1.228 ± 0.053,
• %4(2lA ) = 1.240 ± 0.020,
• %5( 13

6 lA ) = 1.343 ± 0.022,
• %2 (2V3 − 3a1) = 1.356 ± 0.102,
• %3 (−3a1 + 2a2) = 1.536 ± 0.104,
• %6( 5

2lA ) = 1.550 ± 0.025,

where a1, a2, V3 are natural frequencies of the halo star motion in the field of the
homogeneous ellipsoidal cluster potential, which approximates the potential of the
halo of model 1 of OSC averaged over the period %A . The horizontal error bars (for
the period) shown in fig. 3.8 correspond to errors in approximating of the potential of
the cluster (averaged by the period %A ) by the potential of a homogeneous gravitating
ellipsoid (Danilov, 2005) (when the letters are used) and the errors in determining
%A (when the digits are used (Danilov and Leskov, 2005)).

For the dependencies Z = Z (C) we find:

• %1(lA ) = 0.620 ± 0.010,
• %0 (−V3 + 2a2 + 2a1) = 0.656 ± 0.018,
• %2( 7

8lA ) = 0.709 ± 0.011,

• %3( 3
4lA ) = 0.827 ± 0.013,

• %4( 5
7lA ) = 0.868 ± 0.014,

• %1 (3a1 − a2 + V3) = 0.904 ± 0.035,
• %5( 5

8lA ) = 0.992 ± 0.016,
• %2 (3V3 − 2a2) = 1.014 ± 0.073,
• %6( 3

5lA ) = 1.033 ± 0.017,
• %3 (−a2 + 2V3) = 1.060 ± 0.051,
• %4 (V3) = 1.111 ± 0.027,
• %7( 5

9lA ) = 1.116 ± 0.018,
• % 5 (a2) = 1.166 ± 0.019.

For these periods (or near to them), from 6 to 15 trajectories of the halo stars are
grouped in model 1. The periods indicated here are commensurate with %A (or are
close to commensurability with %A ).

We note that the PCS for C = 0 are the "random" values obtained with the help
of continuous distributions in the phase space of the core and halo stars of the
system. Star encounters in the cluster also have a random character. Therefore, one
could expect that the frequencies and amplitudes of the stellar motion in the system
will also be random and continuously distributed values. However, the resonance
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peaks are observed in the distribution of the trajectories by the periods %. The
most probable reason for the formation of such trajectory groups is an effect of
"frequency shift" when synchronizing the oscillations, described in the papers on
self-oscillating systems with a large number of degrees of freedom (Rabinovich and
Trubetskov, 2000, p. 348). As a result of such synchronization of oscillations, a set
of frequencies commensurate with the frequency lA is formed in the system. At
some of these frequencies, synchronous motion (with the same frequency) of small
groups of stars along the trajectories is spontaneously established. Probably, in this
case, a set of intervals of distances from the cluster center is formed in the system,
the motion in which for the halo stars becomes preferable.

3.4 Conclusions

1. In this chapter, we have investigated trajectories of stellar motion in six OSC
models which move along a circular orbit in the plane of the Galaxy, and are non-
stationary in the field of the regular forces. We have performed estimates of the
maximum Lyapunov characteristic exponents _ of stellar trajectories in the OSC
models. The mean values _ in OSC models increase with the increasing density
and a decrease in the degree of non-stationarity of considered cluster models from
0.8 (1/Myr) to 1.25 (1/Myr). Thus, the degree of stochasticity of the stellar motions
in OSC models decreases at large amplitudes of oscillations of a regular field (in
strongly non-stationary systems).

2. Stellar trajectories with large _ values are located in the cores of OSC models,
and trajectories with small _ − on the cluster periphery (generally). Thus, in a non-
stationary OSC, the cluster cores form a region of increased stochasticity, and the
halo form region of regular stellar motions. In the denser OSC models, dimensions
of the stochasticity region in the core increase. During the evolution of OSC models,
regions of significant stochasticity extend to the region of small A and E. Regions of
regular and stochastic motion in the space of (A, E) are adjacent to each other.

3. For each stellar trajectory, the estimate of _ grows very rapidly with time, and
reaches its maximum value at small values C, after which the changes of _ become
insignificant. Thus, there is an "adhesion" of the stellar trajectory in phase space to
a region with a given _.

4. We have performed the analysis of amplitudes, phases and periods of three
sinusoidal components with the largest amplitudes in the stellar trajectories for six
OSC models. To analyze the properties of trajectories, it is proposed to use the
parameter @ (the ratio of the energy of these three SC, to the total energy of the
Fourier spectrum of the trajectory). Joint use of the parameters _ and @ allows to
more accurately divide the ordered and stochastic trajectories. The parameter @ for
the dependency U = U(C) characterizes in general the complexity of the spectra of
all trajectories in OSC model.

5. In models 1 − 5, trajectories with low periods % have large _ values and are
located generally in the cluster core; trajectories with low _ have large % and are
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located mainly on the cluster periphery. In the 6th model, segregation of trajectories
with different_ values over the periods% is absent, which may be due to the formation
of the toroidal structure in the stellar distribution of this model in the space (b, [, Z ).

6. The distribution of the most significant oscillations in the stellar trajectories
over periods of their motions in clusters has revealed nonrandom and well-defined
peaks at periods % commensurate (or close to commensurability) with oscillation
period of the regular field in the cluster %A . The periods obtained from the analysis
of the halo stars trajectories corresponding to the peaks of these distributions agree
with theoretical estimates of Danilov (2005).

7. A significant part of the stars from the resonant peaks in model 1 with the
greatest degree of non-stationarity is located at large distances from the cluster
center (A > 'C ) at the end of calculations (at C = 3gEA ). Perhaps, in the dissipation of
these stars from the cluster, an important role the oscillations of the regular cluster
field are played. For the cluster models with a greater degree of non-stationarity,
we have also observed a greater consistency of the initial phases of the radial star
motions along their trajectories and oscillations of the cluster.
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Chapter 4

Dynamic Models of the Stellar Motion
at the Periphery of Open Star Clusters

Abstract In this chapter, we consider the model of homogeneous gravitating ellip-
soidal star cluster moving along a circular orbit around the Galactic center. For this
model, three independent isolating integrals of the stellar motion are written. An
analysis is made of the features of cluster star motion, taking into account the influ-
ence of these three integrals of motion. On the periphery of the considered cluster
model, the retrograde stellar motions predominate, and the velocity distribution of
the stars is elongated along the direction of cluster motion. We construct a phase
density function which depends on two integrals of motion and the distribution of the
stellar velocities in the case of a three-integral phase density function. Applications
of the results are discussed.

4.1 Introduction

Danilov (2005) constructed the model of a stationary homogeneous gravitating
ellipsoid, the potential of which approximated the average potential at the periphery
of the numerical dynamic OSC models (Danilov and Dorogavtseva, 2003), which
consist of # = 500 gravitating points. There are five integrals of the star motion in
the field of a homogeneous stationary gravitating ellipsoid in the absence of rotation
of the ellipsoid (Lynden-Bell, 1962). Rotation of the OSC, when it moves around the
center of the Galaxy, significantly complicates the construction of the stellar motion
integrals. In this case, we can easily find only the Jacobi integral and two independent
integrals of the stellar motion in the plane of the Galaxy (�1) and perpendicularly to
the Galactic plane (�2). An analytical solution for the trajectory of the stellar motion
in the field of a homogeneous ellipsoid rotating in a circular orbit was obtained
by Danilov (2005). It is of interest to construct a third independent integral �3 of
the stellar motion using this solution. Distribution of the stellar velocities in such
ellipsoid can be obtained using the phase density function (PDF), which depends on
independent single-valued integrals of motion.

45
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A satisfactory theoretical description of the stellar motion at the OSC periphery is
currently lacking. The stationary collisionless cluster model (Heggie and Ramamani,
1995) depends only on one Jacobi integral of the stellar motion in the joint field of
the cluster and the Galaxy. Distribution of the stellar velocities in such model is
spherically symmetric. However, this velocity distribution is not formed in the nu-
merical experiments on a modeling of the OSC dynamics. Known stationary models
of isolated stellar clusters with the PDF 5 (�, !) that depends on the integrals of en-
ergy � and of the angular momentum ! (see, for example, King (2002, p. 189−191))
are inapplicable in this case, since the angular momentum of the stars in OSC is not
conserved because of the influence of the Galaxy force field on the cluster. Numerical
experiments show stellar motion at the OSC periphery, which is very different from
that in the models with 5 = 5 (�, !). According to Danilov (1997a), the distribution
of the stellar velocities at the periphery of the numerical dynamic OSC models is
elongated along the direction of the cluster motion in the Galaxy, and is also per-
pendicular to the Galactic plane. Nezhinskii (1990) considered the quasi-integral of
Jacobi ℎ and the area quasi-integral� (of the sixth order) for motion of the test body
in the restricted circular three-body problem and analyzed the velocity field and the
motion regions of the test body. Unfortunately, such a cluster model allows only an
approximate description of the stellar motion in the Galactic plane at the cluster pe-
riphery, since a significant stellar mass in OSC is located on the clusters peripheries
(Danilov and Dorogavtseva, 2003; Terlevich, 1987). In addition, Nezhinskii (1990)
does not define the limits of the allowed� values depending on the accepted ℎ value,
and instead of considering the most typical situations, he discusses only two cases of
trajectories with the � values close to the extremely permissible one (in these cases,
the signs of the angular momentum values and � coincide, which is most often not
realized in our cluster model).

It is of interest to analyze theoretically the stellar motions at the OSC periphery in
the framework of the model of triaxial homogeneous ellipsoidal cluster; to construct
a corresponding PDF that depends on two and on three independent single-valued
integrals of motion. Such description will allow us to explain the features of stellar
velocity distributions observed in numerical dynamic OSC models, making it possi-
ble to analyze observational data on stellar velocities in the vicinity of real OSC. The
function of the phase density for the model of a homogeneous gravitating ellipsoid
moving in the field of the Galaxy can be used to solve the following problems. First,
such PDF can be used as an initial approximation in the theoretical elaborations
while constructing more complex PDF in the stellar cluster models which consist of
# gravitating points. Secondly, the PDF of a homogeneous ellipsoidal cluster can be
useful both for specifying the initial phase coordinates of stars in numerical dynamic
OSC models, and for estimating the total masses of the observed OSC from data on
the velocities and coordinates of stars in clusters.

The objectives of this chapter are as follows: discussion of the features of stellar
motion at the OSC periphery; construction of the integrals of stellar motion in the
model of Danilov (2005) of a homogeneous ellipsoidal cluster moving in a circular
orbit around the center of the Galaxy; discussion of the phase density function and
the velocity distribution of stars in this cluster model.
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4.2 Equations and Integrals of Stellar Motion

Following to Danilov (2005), we will consider the open stellar cluster moving along
a circular orbit in the Galactic plane. The linearized equations of stellar motion in
the rotating coordinate system b, [, Z (Chandrasekhar, 1942, p. 222), according to
Danilov (2005), can be written as

¥b = −V2
1b + 2l ¤[, ¥[ = −V2

2[ − 2l ¤b, ¥Z = −V2
3Z , (4.1)

where ¤b =
3b

3C
, ¥b =

3 ¤b
3C

, the values ¤[, ¤Z , ¥[, ¥Z are defined similarly; values V2
8 > 0

are defined by Danilov (2005) using the parameters of the ellipsoid potential of the
cluster, see (4.2) and (4.6) in the paper of Danilov (2005); l is angular velocity of
cluster motion relative to the center of the Galaxy. According to Danilov (2005), the
Jacobi integral for the system of equations (4.1) has the form

+2 + V2
1b

2 + V2
2[

2 + V2
3Z

2

2
= n = 2>=BC, n ≥ 0, (4.2)

where +2 = ¤b2 + ¤[2 + ¤Z2 is a square of the modulus of the stellar motion velocity.
We note that the first two equations and the third equation of the system (4.1) can be
integrated independently of each other and give two integrals �1 and �2 associated
with the integral n from (4.2):

¤b2 + ¤[2 + V2
1b

2 + V2
2[

2
= �1 = 2>=BC, ¤Z2 + V2

3Z
2
= �2 = 2>=BC. (4.3)

It is easy to see that �1 + �2 = 2n = 2>=BC. A general solution of the system (4.1),
obtained by Danilov (2005), can be written in the following form:

b = �12>B(q1) + �22>B(q2) ,
[ = ��1B8=(q1) + ��2B8=(q2) ,
Z = �32>B(q3) ,

(4.4)

where
q 9 = a 9 (C − C 9 ) , 9 = 1, 2 ,

q3 = V3(C − C3) ;

� =
V2

1 − a2
1

2la1
;

� =
V2

1 − a
2
2

2la2
;

a1, a2, V3 are natural frequencies of the system (4.1). �8 , C8 are constant values (8 =
1, 2, 3). Constants a1, a2 were defined by Danilov (2005) from a condition of the
existence of the non-zero solutions for the system of the first two equations (4.1).

Following to Danilov (2006), we use the solution (4.4) in order to find new
integrals of the system (4.1). We differentiate b and [ from (4.4) by time C, and using
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the expressions for ¤b, ¤[, b, and [, we write the system of four linear equations for the
values 2>B(q 9 ), B8=(q 9 ), 9 = 1, 2. Solving this system, we find

2>B(q1) = ¤[−ba2�

B1�1
, B8=(q1) = − ¤b�+[a2

B2�1
,

2>B(q2) = ba1�− ¤[
B1�2

, B8=(q2) = [a1+ ¤b �
B2�2

,
(4.5)

where B1 = a1� − a2�; B2 = a1� − a2�.
We use the first two equations of the system (4.1) to find the angular momentum

;Z = ¤[b − [ ¤b of the rotational stellar motion relatively to Z axis:

{;Z + l(b2 + [2)}C0 = −_
∫ C

0
b[3C, (4.6)

where {� (C)}C0 = � (C) − � (0), _ = V2
2 − V2

1.
Substituting b and [ from (4.4) to the right-hand side of (4.6), we compute the

integral of b[ for C. The expression obtained as a result of integration contains
functions 2>B(q1 ± q2) and 2>B(2q 9 ), 9 = 1, 2. Expressing them through 2>B(q 9 )
and B8=(q 9 ), and expressing 2>B(q 9 ) and B8=(q 9 ) through the phase coordinates of
the star, according to (4.5) and (4.6), we find the third integral of the motion �3

associated with ;Z :

¤[b@1 − ¤b[@2 + b2@3 + [2@4 + ¤b2@5 + ¤[2@6 = �3 = 2>=BC, (4.7)

where @1 = 1 + _Ω5; @2 = 1 − _Ω6; @3 = l + _Ω3; @4 = l + _Ω4; @5 = _Ω1;
@6 = _Ω2; @: = 2>=BC; : = 1, ..., 6.

Values Ω: , (: = 1, ..., 6) can be written as follows:

Ω1 =
��

4B22
( �
a1

+ �

a2
−&1 +&2) ,

Ω2 = − 1

4B21
( �
a1

+ �

a2
−&1 −&2) ,

Ω3 = − ��
4B21

(
�a2

2

a1
+
�a2

1

a2
− (&1 +&2)a1a2) ,

Ω4 =
1

4B22
(
�a2

2

a1
+
�a2

1

a2
+ &3) ,

Ω5 =
��

2B21
(&4 +&5) ,

Ω6 =
��

2B22
(&4 +&6) ,

where

&1 =
2(� + �)
a1 + a2

,
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&2 =
2(� − �)
a1 − a2

,

&3 = a1a2(&2 − &1) ,

&4 =
a2

a1
+ a1

a2
,

&5 = − a1� + a2�

2��
(&1 + &2) ,

&6 =
a1� + a2�

2��
(&2 −&1) .

Performing the similar calculations of the integrals �[ and �b of the system (4.1),
related to the angular momenta ;[ = ¤bZ − b ¤Z and ;b = ¤Z[ − Z ¤[ of the rotational
stellar motion with respect to the axes [ and b, respectively, we find

¤bZ ?1 − b ¤Z ?2 − [Z ?3 − ¤[ ¤Z ?4 = �[ = 2>=BC ,
¤Z[A1 − Z ¤[A2 − bZA3 − ¤b ¤ZA4 = �b = 2>=BC .

(4.8)

Expressions for the coefficients ? 9 and A 9 for 9 = 1, ..., 4 have a cumbersome form,
and, for the sake of brevity, are not given here.

According to the data on the parameters a1, a2, V8 (8 = 1, ..., 3) for homoge-
neous ellipsoids (Danilov, 2005), potentials of which approximate the gravitational
potential at the periphery of the numerical dynamic OSC models 1−6 (Danilov and
Dorogavtseva, 2003), we find: @: > 0 for : = 1, ..., 5, @6 < 0; ? 9 = A 9 = 0 for
9 = 1, ..., 4. Thus, integrals �[ and �b do not impose any restrictions on the stellar
motion in the considered models of homogeneous ellipsoid, since any finite values
of the phase coordinates of stars (PCS) are admissible for ? 9 = A 9 = 0, 9 = 1, ..., 4.

Integrals �1, �2 and �3 from (4.3) and (4.7) are represented by quadratic forms
of PCS; they are independent and single-valued PCS functions, which can be used
as arguments in the phase density function of the number of stars in the considered
model of homogeneous ellipsoid. Equations for �1 and �3 in a general case define a
circle and a hyperbola in the velocity space ( ¤b, ¤[), respectively. Equation for �2 in a
general case defines an ellipse in the space (Z , ¤Z).

According to Danilov (2005) the generalized momenta of a star with mass <
moving in the homogeneous ellipsoid force field and in the linearized force field of
the Galaxy, can be written as follows:

%1 = <( ¤b − l[), %2 = <( ¤[ + l('0 + b)), %3 = < ¤Z , (4.9)

where '0 is distance of the center of the cluster masses from the center of the Galaxy.
We consider equations (4.9) as a system for defining the values ¤b, ¤[, ¤Z . Solving this
system and substituting values ¤b, ¤[, ¤Z in (4.2), (4.3) and (4.7), we find hamiltonian�
for the motion of the star with mass < in the joint field of the cluster and the Galaxy

� = <n =
<

2
(�1 + �2) ,
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as well as integrals �8 in the independent variables: b, [, Z and %8 , (8 = 1, 2, 3). We
denote: b = G1, [ = G2, Z = G3. Calculating Poisson brackets

{�, �:} =
3∑
8=1

( m�
mG8

m�:

m%8
− m�:

mG8

m�

m%8
),

we find:
{�, �8} = 0, {�: , �8} = 0, (8, : = 1, 2, 3). (4.10)

The relations (4.10) are satisfied for all six models of homogeneous ellipsoidal
clusters considered by Danilov (2005). Thus, integrals �1, �2, �3 (or, for example,
�, �2, �3) are in involution to each other (the system (4.1) is completely integrable).
Consequently, to find the remaining integrals of motion, we can use the Liouville
theorem on the solution of dynamical problem with = degrees of freedom, for which
= integrals of motion are known (Whittaker, 1937, p.354).

We write integrals �, �2, �3 of the system (4.1) in the form

2

<
� (−→G , ¤−→G ) = 01, �2(−→G , ¤−→G ) = 02, �3 (−→G , ¤−→G ) = 03, (4.11)

where −→G = (b, [, Z ); ¤−→G = ( ¤b, ¤[, ¤Z ); 08 are arbitrary constants, 8 = 1, 2, 3. We denote
−→0 = (01, 02, 03). To find new integrals of the system (4.1) it is necessary to solve
the system of algebraic equations (4.11) relative to the values ¤G8 , express ¤G8 through
%8 using (4.9), and to obtain the expressions for the generalized momenta in the
form %8 = %8 (−→G ,−→0 ), 8 = 1, 2, 3. Calculating the value %3 according to the second
equation from (4.11), we easily find

%3 = ±<
√
02 − V2

3Z
2.

The system of the first and third equations from (4.11) can be reduced to the form
more convenient for solution:

¤b2(@6 − @5) + b2(@6V
2
1 − @3) + [2(@6V

2
2 − @4) − ¤[b@1 + ¤b[@2 = @6 (01 − 02) − 03,

¤[2(@5 − @6) + b2(@5V
2
1 − @3) + [2(@5V

2
2 − @4) − ¤[b@1 + ¤b[@2 = @5 (01 − 02) − 03.

(4.12)
In this work, we obtain analytic solution of the system of equations (4.12) with

respect to the values ¤b, ¤[:

¤b; = ¤b; (−→G ,−→0 ), ¤[; = ¤[; (−→G ,−→0 ), ; = 1, ..., 4, (4.13)

that in a general case, gives the coordinates in the plane ( ¤b, ¤[) of the four intersecton
points of two branches of the hyperbola and the circle given by the equations (4.12).
The solution (4.13) is very cumbersome, so its specific form is not given here. A
complex form of the expressions (4.13) does not allow calculating the remaining
integrals of the system (4.1) in analytical form according to the scheme indicated by
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Whittaker (1937, p. 354). However, the solution (4.13) was used by Danilov (2006)
when studying the admitted region of �1 and �3 integrals.

4.3 Stellar Motion in the Plane (/, ()

Let �2 = 0. In this case, according to (4.3), �1 = 2n . To study stellar motion on the
periphery of a homogeneous ellipsoidal cluster, it is necessary to consider the values
n close to the critical one, n = nC . The value nC was defined by Danilov (2005). With
a given n , the boundary values of �3 can be found using the solution (4.4) from the
conditions: �1 ≠ 0, �2 = 0 and �1 = 0, �2 ≠ 0. To simplify the analysis of stellar
motion, let us consider the trajectories beginning at the time point C = 0 on the b
axis and satisfying the following conditions:

¤b0 = 0, ¤[0 ≠ 0, b0 ≠ 0, [0 = 0, C1 = C2 = 0, (4.14)

here, b0 = b (0); values ¤b0, ¤[0, [0 are defined similarly.
According to (4.3) and (4.7), in this case we find

�1 = ¤[2
0 + V2

1b
2
0 , �3 = ¤[0b0@1 + b2

0@3 + ¤[2
0@6. (4.15)

Let us consider the case �1 ≠ 0, �2 = 0. In this case, the star motion in the plane
(b, [) is one-frequency (with the lowest frequency in this problem a1; a1 < a2 < V3

(Danilov, 2005)). According to (4.4) and (4.14), we find

b0 = �1, ¤[0 = ��1a1, ;Z (0) = ��2
1a1 > 0

(here, we used the values � ≃ 0.48271 > 0, � ≃ −1.38109 < 0, obtained for model
1 of a homogeneous ellipsoid by Danilov (2005); for the remaining five ellipsoid
models, values � and � differ little from the values given here). As in the paper of
Danilov (2005), the calculations were performed in the system of units: 1 <⊙ , 1 pc,
1 Myr. Using (4.4), we can obtain equation of the stellar orbit in the plane (b, [) in
the form

b2

02
?

+ [2

12
?

= 1,

where 02
? = �2

1 ; 12
? = �2�2

1 . Thus, 1?/0? = � < 1, see above, and the orbit is
elliptical, elongated along b axis. The star in such an orbit moves in a "prograde"
direction. Substituting b0 = �1 and ¤[0 = ��1a1 in (4.15), excluding �2

1 from the
expression for �1, �3, we find the maximum value

�3,<0G = �1(
@3 + �a1(@1 + @6�a1)

�2a2
1 + V2

1

) > 0, �3,<0G ≃ 3.71651 (pc2/Myr);

here we accepted �1 = 2nC .
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Let us consider the case �1 = 0, �2 ≠ 0. In this case, the star motion in the plane
(b, [) is also one-frequency (with the frequency a2). According to (4.4) and (4.14),
we find: b0 = �2, ¤[0 = ��2a2, ;Z (0) = ��2

2 a2 < 0. The equation of the stellar orbit
in the plane (b, [) has the form

b2

02
A

+ [
2

12
A

= 1 ,

where 02
A = �2

2 ; 12
A = �2�2

2 . Thus, 1A/0A = |�| > 1, the orbit is "retrograde" ,
elliptical, elongated along the axis [. Substituting b0 = �2 and ¤[0 = ��2a2 in (4.16),
excluding �2

2 from the expressions for �1, �3, we find the minimum value

�3,<8= = �1(
@3 + �a2 (@1 + @6�a2)

�2a2
2 + V

2
1

) < 0, �3,<8= ≃ −1.48661 (pc2/Myr).

According to (4.4) angular momentum ;Z is preserved when the star moves in
these two orbits. Let us consider a general case: �1 ≠ 0, �2 ≠ 0. In this case, the
angular momentum ;Z in the stellar motion is not preserved. According to (4.5) and
(4.14), we find

�1 = ( ¤[0 − b0a2�)/B1 , �2 = (b0a1� − ¤[0)/B1 .

These formulas follow from the espressions (4.5) for 2>B(q8) when q8 = 0, 8 = 1, 2.
When b0 = 0, from the first equation (4.15) we find ¤[2

0 = �1, �3 = @6�1 = �
(0)
3 < 0.

In this case, ;Z (0) = ¤[0b0 = 0. Let 0 and 1 be large and middle axes of the cluster
ellipsoid and zero velocities ellipse (at n = nC ) in the plane (b, [). At b0 = ±0, the
value ¤[0 = 0 (and ¤b0 = 0). In this case, also ;Z (0) = 0, and corresponding �1 and �3

values, according to (4.15) and Danilov (2005), are

�1 = V2
10

2
= 2nC , �3 = 02@3 = �

(1)
3 > 0 .

At n = nC , we find � (0)3 ≃ −0.82958 (pc2/Myr), � (1)3 ≃ 3.05948 (pc2/Myr) and,

consequently, we have the following inequalities: �3,<8= < �
(0)
3 < �

(1)
3 < �3,<0G .

We express the value ¤[0 in terms of �1 from the first equation of the system (4.15)
and substitute ¤[0 in the second equation (4.15). After simple transformations, we
obtain a biquadratic equation with respect to b0, solving which, we find

b0 = ±
√
g1 ± g2, ¤[0 = ±40, (4.16)

where

g1 = (24142 + �1@
2
1)/(243) ; g2 =

√
g2

1 − 42
1/43 ;

40 =

√
�1 − V2

1b
2
0 ; 41 = �3 − @6�1 ; 42 = @3 − V2

1@6 ; 43 = 42
2 + V

2
1@

2
1 .

For the different values of �1 and �3, it is necessary to use the different quadruples
of the eight roots (b0 ¤[0), given in (4.16). Let �1 = 2nC . At �3 ∈ [�3,<8= , �

(0)
3 ]
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substitution of roots in the equations (4.15) shows that the roots of the system (4.15)
are the following values of (b0, ¤[0):

(b0 = −
√
g1 ± g2, ¤[0 = 40) , (b0 =

√
g1 ± g2, ¤[0 = −40) .

At �3 ∈ (� (0)3 , �
(1)
3 ) we similarly find

(b0 = ±
√
g1 ∓ g2, ¤[0 = 40) , (b0 = ±

√
g1 ± g2, ¤[0 = −40) .

In this group of roots, when calculating b0, it is necessary to use either upper or
lower signs. At �3 ∈ [� (1)3 , �3,<0G] we find

(b0 =
√
g1 ± g2, ¤[0 = 40) , (b0 = −

√
g1 ± g2, ¤[0 = −40) .

At �3 < �3,<8= and �3 > �3,<0G the real roots of the equations (4.15) are absent.
Thus, the region of admissible �3 values is the interval [�3,<8=, �3,<0G]. According

to the solutions of the system of equations (4.15) for each value �3 in the interval
�3 ∈ (�3,<8= , �3,<0G) there are two different values ;Z (0) (about the two-valuedness
of the velocity field of the test body, see also in the model of Nezhinskii (1990)).
At �3 = �3,<8= , there is only one value ;Z (0) = ��2

2 a2 < 0, see above. At �3 ∈
(�3,<8= , �

(0)
3 ) the both possible values ;Z (0) < 0. At �3 = �

(0)
3 we have one value

;Z (0) = 0 and one value ;Z (0) < 0. At �3 ∈ (� (0)3 , �
(1)
3 ), we find one value ;Z (0) > 0

and one value ;Z (0) < 0. At �3 = �
(1)
3 we find one value ;Z (0) = 0 and one value

;Z (0) > 0. At �3 ∈ (� (1)3 , �3,<0G), the both possible values ;Z (0) > 0. At �3 = �3,<0G ,
there is only one value ;Z (0) = ��2

1 a1 > 0, see above.
In this work, we used the formulas (4.4) and initial conditions (4.14), (4.16)

to calculate stellar trajectories in the cluster at �1 = 2nC for a number of values
�3 ∈ [�3,<8= , �3,<0G]. Only in the intervals �3 ∈ [�3,<8= , �

(0)
3 ], �3 ∈ [� (1)3 , �3,<0G],

for the values �3 close to �3,<8= and �3,<0G , signs of the values ;Z (0), ;Z (C) and �3

coincide. As the value �3 deviates from �3,<8= , �3,<0G in the indicated intervals of �3

the oscillation amplitude of ;Z (C) with respect to ;Z (0) increases. Stellar trajectory
is located in narrow elliptical annular zones in the planes (b, [) and ( ¤b, ¤[). In the
plane (b, [), these annular zones also contain the trajectories considered above

b2

02
?

+ [2

12
?

= 1 (�3 ≃ �3,<0G) and
b2

02
A

+ [
2

12
A

= 1 (�3 ≃ �3,<8=).

The width of these annular zones increases with deviation �3 from �3,<8= and �3,<0G .
Similar elliptical annular regions of possible motion of the test body are also noted

in the model of Nezhinskii (1990). At �3 ∈ (� (0)3 , �
(1)
3 ), stellar trajectory in the plane

(b, [) largely fills the region inside the ellipse of zero velocities b2/02 + [2/12 = 1.
The shape of the region occupied by the trajectory does not depend on the sign of
;Z (0). When the star moves, the value ;Z (C) often changes a sign in the whole range
of ;Z (C) values admissible by the solution (4.4). At �3 ≃ 〈�3〉 = (�3,<8= + �3,<0G)/2,
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the value ;Z (C) equally often can be both positive and negative during the sufficiently
large intervals of time ΔC of stellar motion. At �3 > 〈�3〉, positive ;Z (C) values are
realized more often.

The formula (4.7) for the integral �3 can be reduced to the form

@5( ¤b − ¤bℎ)2 + @6( ¤[ − ¤[ℎ)2
= �3 + b2(

@2
1

4@6
− @3) − [2(

@2
2

4@5
+ @4) = ', (4.17)

where
¤bℎ = ( @2

2@5
)[; ¤[ℎ = −( @1

2@6
)b

are coordinates of the hyperbola center in the plane ( ¤b, ¤[).
At the cluster periphery, the values | ¤bℎ | and | ¤[ℎ | reach the highest values, and the

hyperbola center (4.17) in the plane ( ¤b, ¤[) is located at the greater distance from the
origin ¤b = ¤[ = 0, than near the cluster center. Depending on the sign of ', the real
axis of the hyperbola (4.17) in the velocity space can be located both on the axis
¤b and on the axis ¤[. At ' = 0, we obtain the equations for the asymptotes of the
hyperbola:

¤[ − ¤[ℎ = ±
√
−@5

@6
( ¤b − ¤bℎ) .

The value

(
@2

1

4@6
− @3) < 0

for models of homogeneous ellipsoidal clusters from the work of Danilov (2005).
Therefore, the hyperbola branches degenerate in the line of asymptotes at ' = 0,
�3 > 0 for the points (b, [), located on the ellipse:

�3 = −b2(
@2

1

4@6
− @3) + [2(

@2
2

4@5
+ @4) .

When ' passes through ' = 0, the direction of the real and conjugate axes of the
hyperbola changes on 90◦.

Let �1,<8= = V2
1b

2 + V2
2[

2 (see (4.3)), the point (b, [) is located inside the region
bounded by the ellipse of zero velocities, � ′1 ∈ (�1,<8= , 2nC ], � ′3 ∈ (�3,<8= , �3,<0G].
In the case �1 ∈ [�1,<8= , �

′
1], �3 ∈ [�3,<8= , �

′
3] the region ( of admissible values

( ¤b, ¤[) for a star located at the time C in the point (b, [), is determined by intersection
of the circle with the radius

E′ =
√
� ′1 − V2

1b
2 − V2

2[
2

with the center at the point ¤b = ¤[ = 0 and the region located between the branches
of two hyperbolas (4.17), corresponding to the values �3 = �3,<8= and �3 = � ′3.
When passing from one point (b, [) to another, the shape and dimensions of the
region ( in the plane ( ¤b, ¤[) significantly change. There is also a change in the mutual
arrangement of the circle corresponding to the given value �1 from (4.3) and of the
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hyperbola branches (4.17) in the plane (b, [). Analysis of these changes is related to
the use of solutions (4.13), which makes it difficult to construct the PDF of the star
number of a homogeneous ellipsoidal cluster in the analytical form. Therefore, we
restrict ourselves here to consideration of only certain properties of this PDF.

Let us consider the following quadratic form of the phase coordinates of stars:
) = �1 +f2�3 = 2>=BC;f2 = 2>=BC > 0. ) value is conserved along the trajectory of
a star. We can consider) as an argument of the PDF. Substituting in) the expressions
for �1 from (4.3) and �3 from (4.7), we find

) =
¤b2

02
)

+ ¤[2

12
)

+ f2 (@1 ¤[b − @2[ ¤b) + b2(1 + [2(2, (4.18)

where

0−2
) = 1 + @5f

2 ; 1−2
) = 1 + @6f

2 ; (1 = V2
1 + f2@3 ; (2 = V2

2 + f2@4.

At f2 < −1/@6 the equation (4.18) in the plane ( ¤b, ¤[) describes an ellipse with
semiaxes 0) and 1) . Since @5 > 0, @6 < 0, then 0) < 1, 1) > 1. Consequently,
the velocity distribution of the stars at the point with coordinates (b, [) is elongated
along the axis ¤[ (along the direction of cluster motion in the Galaxy). The same
result was obtained in the paper of Danilov (1997a) for the OSC models containing
500 stars and moving in the Galactic plane along a circular orbit around the center
of the Galaxy. Let f2

¤b , f2
¤[ , f2

¤Z be the dispersions of the residual velocities of stars

along the axes b, [, Z , respectively. For the model 5 of Danilov (1997a) (OSC model
with a halo having the largest sizes and number of stars; parameters of this model
are closest to the parameters of model 1 of Danilov (2005)) from the ratio of the
values f2

¤b and f2
¤[ we find f2 ≃ 0.052 (Myr −1) < −1/@6 ≃ 0.422 (Myr −1). Here is

assumed f2
¤[/f2

¤b = 12
)
/02
)
= F. Consequently, f2

= (F − 1)/(@5 − @6F).
In the paper of Danilov (2006), 132 trajectories of halo stars were selected for

cluster model 1 (Danilov, 2005; Danilov and Dorogavtseva, 2003). According to
Danilov and Leskov (2005), these trajectories correspond to small positive values of
MLCE, which are smaller than the average MLCE value of stellar trajectories in this
cluster model. These trajectories have the least complex Fourier spectra (for three
sinusoidal components with the largest amplitudes in the dependencies of the stellar
distance from the cluster center on the time, there is 41−95 % of the total energy
of the Fourier spectrum of these dependencies (Danilov and Leskov, 2005)). The
maximum distances of these stars from the center of the cluster during 1.5 × 108

years do not exceed (5−11) pc (the tidal radius 'C of a stability of this cluster model,
obtained according to King (2002, p. 198), is 'C ≃ 10.44667 pc). For the considered
trajectories, the following mean values over the period of oscillations of a regular
field are obtained: f2

¤b ≃ 0.07016 ± 0.00315 (pc2/Myr2), f2
¤[ ≃ 0.08861 ± 0.00406

(pc2/Myr2), f2
¤Z ≃ 0.14941± 0.01457 (pc2/Myr2). According to these estimates, we

find f2 ≃ 0.03868 (Myr−1), which is comparable with the estimate f2 for model 5
from the paper of Danilov (1997a).



56 4 Dynamic Models of the Stellar Motion at the Periphery of Open Star Clusters

Assuming that b and [ are constant values, we reduce the quadratic form (4.18)
to the canonical form:

) =
( ¤b − ¤b2)2

02
)

+ ( ¤[ − ¤[2)2

12
)

+ b2((1 − @2
1f

412
) /4) + [2((2 − @2

2f
402
) /4), (4.19)

where
¤b2 = (@2f

202
) /2)[ ; ¤[2 = −(@1f

212
) /2)b

are coordinates of the center of the stellar velocity distribution ellipse at the point
(b, [).

According to (4.19), we find ¤b2 ≃ 0.19016 (pc/Myr) and ¤[2 = 0 in the point
b = 0, [ = 1; ¤[2 ≃ 0.17321 (pc/Myr) and ¤b2 = 0 in the point b = −0, [ = 0 for
model 1 of the homogeneous gravitating ellipsoid from the paper of Danilov (2005).
Thus, on the periphery of a homogeneous ellipsoidal cluster in the plane (b, [), the
"retrograde" stellar motions predominate. This result also agrees with the data of the
paper of Danilov (1997a), according to which the tidal cluster sizes for stars with
"retrograde" motion are 1.5-2 times larger than ones for the stars with "prograde"
motion. Greater stability of the "retrograde" stellar trajectories in unisolated clusters
has also long been known (see, for example, Innanen (1979); Keenan and Innanen
(1975)). The values ¤b2 and ¤[2 obtained here are ∼ 29 and ∼ 32 % of the velocity
value +C =

√
2nC , which is, according to (4.2), sufficient for the exit of the star from

the center of the ellipsoidal cluster to the surface of zero velocities corresponding to
n = nC .

4.4 Phase Density Function Depending on the Integrals P1 and P2

Let the motion of a star be bounded in phase space by two hypersurfaces correspond-
ing to some constant values of the integrals �1 and �2. Let us consider the following
quadratic form of PCS: ) = �1 + ^2�2 = 2>=BC > 0, ^2 = 2>=BC > 0. As in the case
(4.18), ) is unchanged along the trajectory of the motion of the star. Therefore, we
can consider the expression for ) as the argument of the PDF. Substituting in ) the
expressions for �1 and �2 from (4.3), we find

) = ¤b2 + ¤[2 + V2
1b

2 + V2
2[

2 + ^2 ( ¤Z2 + V2
3Z

2) =  (−→G , ¤−→G ), (4.20)

where vectors −→G , ¤−→G are defined in the explanation of the formulas (4.11). In the
space of velocities ( ¤b, ¤[, ¤Z), the equation (4.20) specifies the surface of the spheroid
elongated at ^2 < 1 (or compressed at ^2 > 1) along the axis ¤Z . The center of this
spheroid coincides with the origin of coordinates ¤b = ¤[ = ¤Z = 0. Let us consider the
zero-velocity surfaces given by equations

�1 + �2 = 2nC , �1 + ^2�2 = ) (4.21)
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at ¤b = ¤[ = ¤Z = 0. For brevity, we will call them as n- and )-surfaces, and regions in
the space (b, [, Z ), bounded by n- and)-surfaces, as n- and)-ellipsoids, respectively.
Centers of these ellipsoids coincide with the origin of coordinates b = [ = Z = 0.
)-ellipsoid in the case ^2 < 1 (^2 > 1) is more elongated (compressed) along the
axis Z , than n-ellipsoid. Excluding �1 from the system (4.21) at ¤b = ¤[ = ¤Z = 0,
expressing ) in terms of Z and Z in terms of ) , we find

) = 2nC − V2
3Z

2(1 − ^2), Z = ±
√

2nC − )
V2

3 (1 − ^2)
= Z) . (4.22)

According to (4.22), intersection of n- and )-surfaces takes place on Z coordinates
equal to Z) .

Let us first consider the case ^2 < 1. At Z) = ±2, n- and )-surfaces are tangent
at two points: b = [ = 0, Z = ±2, which corresponds to the value ) = ) (1) = 2nC ^2

(since V2
3 = 2nC/22, 2 is the value of the semiminor axis of the cluster ellipsoid

(Danilov, 2005)). When Z) = 0, according to (4.22), we find the value ) = ) (2)
=

2nC . In this case, n- and )-surfaces are tangent along the line set by the equation
b2/02 + [2/12 = 1 in the plane Z = 0. Thus, 0 < ) (1) < ) (2) .

Let us consider the case ^2 > 1. At Z) = 0, we find ) = ) (1) = 2nC , since )-
ellipsoid is more compressed along the Z axis, than n-ellipsoid, and n- and)-surfaces
are tangent along the line, set by the equation b2/02 + [2/12 = 1 in the plane Z = 0.
At Z) = ±2, we find ) = ) (2) = 2nC ^2, and n- and )-surfaces are tangent at two
points: b = [ = 0, Z = ±2. In this case also 0 < ) (1) < ) (2) , but ) (2) at ^2 > 1 is
greater, than ) (2) at ^2 < 1. For any finite values of ^2 > 0 the section lines of n-
and )-surfaces by the plane Z = 2>=BC (for those values Z , at which such section is
possible) are similar concentric ellipses, equations of which can easily be written in
the coordinates (b, [). At ) (1) < ) < ) (2) , the motion of a star, which is bounded
by hypersurfaces of the integrals �1 and �2, is possible in the intersection of n- and
)-ellipsoids.

We note that the values f2 from (4.18) and ^2 from (4.20) are related to the
conditions corresponding to the initial values of PCS in the numerical dynamic OSC
models, assumed in the paper of Danilov (2005) as the initial ones for approximation
by homogeneous gravitating ellipsoids. Depending on the initial conditions in the
initial dynamic models of OSC, ^2 can be either greater or less than unity. Let us
define PDF, depending on the integrals �1 and �2, for the case ^2 < 1. The formulas
obtained for the PDF can easily be rearranged for ^2 > 1 if necessary.

Let Γ()) be the volume of the phase space (PS) occupied by stars, the motion of
which is described by the integral (4.20) with the value ) ′ ∈ [0, )], and W()) be
the PS volume, occupied by the stars with ) ′ ∈ [), ) + 3)], corresponding to the
interval 3) :

Γ()) =
∫ )

0
W() ′)3) ′, W()) = 3Γ())

3)
. (4.23)

Functions Γ()) and W()) are the integral and differential distributions with respect
to ) of the PS volume, occupied by the stars from the corresponding intervals of ) ,
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see above. Taking into account (4.23), we write

3# ()) = 5 ())3) =
5 ())
W()) 3Γ()). (4.24)

Here, 3# ()) is the star number in the interval 3) , 5 ()) is stellar distribu-
tion in ) , W()) > 0, and Γ()) is monotonically increasing function of ) . As-

suming ) = ) (−→G , ¤−→G ) in (4.24), we can define PDF in the form � (−→G , ¤−→G ) =

5 () (−→G , ¤−→G ))/W() (−→G , ¤−→G )). Thus, in order to find PDF, it is necessary to find the
functions 5 ()) and W()). Following to Danilov (2002a), we write the value Γ()) as

an integral over the PS region where the condition 0 ≤  (−→G , ¤−→G ) ≤ ) is satisfied:

Γ()) =
∫

· · ·
∫

0≤ (−→G , ¤−→G ) ≤)

33G33 ¤G. (4.25)

The third equation of the system (4.1) describes the motion of a star in Z -coordinate,
and can be integrated independently of the first two equations. Therefore, at first,
it is convenient to perform an integration in (4.25) by the variables ¤Z and Z . Let
0 < ) < ) (1) . To find the limits of integration with respect to ¤Z and Z in (4.25), we
write the solution of equation (4.20) with respect to ¤Z in the following form:

¤Z = ±V3

√
Z2
<0G − Z2, Z2

<0G =
) − �1

V2
3^

2
. (4.26)

Assuming in (4.26) ¤Z = 0, we find the maximum value Z2
<0G . At Z ≠ 0 the equation

(4.26) gives the maximum value ¤Z2 = ¤Z2
<0G for a given ) . The value ¤Z2

<0G is the
largest for all ) ≥ �1. At ) = �1, according to (4.26), Z2

<0G = 0 and ¤Z2
<0G = 0. Let us

introduce the following notations:

E2
= ¤b2 + ¤[2, ¤b = E cosi, ¤[ = E sin i,

A2
=
b2

02
+ [

2

12
, b = 0A cosk, [ = 1A sink,

where i, k ∈ [0, 2c]. Using the Jacobians of the transition from the coordinates ¤b, ¤[
and b, [ to the coordinates E, i and A, k, respectively, and taking into account the
symmetries of n- and )-ellipsoids considered above, we obtain

3 ¤b3 ¤[ = 2cE3E, 3b3[ = 2c01A3A.

Taking into account accepted notations, we find from the equation ) = �1 the
maximum value of E2 for given values of) and A2: E2 = ) −2nCA2 = E2

<0G (according
to Danilov (2005) V2

1 = 2nC/02, V2
2 = 2nC/12). Setting E2

<0G = 0, we find the
maximum value A2

= )/(2nC ) = A2
<0G . Passing to integration over E and A in (4.25),

taking into account (4.26), we find:
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Γ()) = 16c201

∫ A<0G

0
A3A

∫ E<0G

0
E3E

∫ Z<0G

0
3Z

∫ ¤Z<0G

0
3 ¤Z,

Γ()) = c3012)3

6^2(2nC )3/2 , (4.27)

where ) ∈ [0, ) (1) ]; A<0G > 0; E<0G > 0; Z<0G > 0; ¤Z<0G > 0; the value V2
3

is expressed through 22, see above. At ) ∈ () (1) , ) (2) ] the expression for Γ())
can not be obtained analytically, but it is clear that in this range of values ) , the
value Γ()) increases less rapidly with increasing ) , than in (4.27). At ) → ) (2)

and ) ∈ () (1) , ) (2) ], the value Z) tends to zero, and only a part of the volume of
)-ellipsoid is used in the integration (4.25). According to (4.23) and (4.27), we find

W()) = 3Γ())
3)

= :2)2, :2
=

c3012

2^2(2nC )3/2 , ) ∈ [0, ) (1) ] . (4.28)

Let us denote
Ψ()) = 5 ())/(:2)2) = � () (2) − )),

where � = � (b, [, Z ) is the normalization function for the PDF, and Ψ() (−→G , ¤−→G )) =
� (−→G , ¤−→G ). In this case, the distribution of stellar trajectories 5 ()) by the value of the
integral ) has the form:

5 ()) = �:2)2 () (2) − )) at ) ∈ [0, ) (1) ]

and
5 ()) = �W()) () (2) − )) at ) ∈ [) (1) , ) (2) ] .

The maximum value of the function 5 ()) is reached at the point ) = 2) (2)/3 = )<,
if )< ≤ ) (1) . The value )< is defined by the equation:

)< = ) (2) − W()<)/(
3W())
3)

))=)< ,

if )< ∈ () (1) , ) (2) ]; 5 ()) = 0 at ) = 0 and ) = ) (2) .
Let us define the normalization function� = � (b, [, Z ) for the functionΨ()). To

do this, we compute the density d at the point (b, [, Z ) of the cluster ellipsoid. We
note that stars with the different values of the integrals) ′ ∈ [), ) (2) ] and n ′ ∈ [n, nC ]
can arrive at the point (b, [, Z ). We denote

E2
∗ = 6

2 + ^2V2
3Z

2 , 62
= V2

1b
2 + V2

2[
2.

Then the value ) from (4.20) can be written in the form

) = E2 + ^2 ¤Z2 + E2
∗ .

The motion of the cluster stars occurs under the surface of zero velocities within
n-ellipsoid. Therefore, the maximum value of the integral �1+ �2 for stars at the point
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(b, [, Z ) equals to
2nC = E

2 + 62 + ¤Z2 + V2
3Z

2.

Consequently,
E2

= 2nC − V2
3Z

2 − 62 − ¤Z2.

At ¤Z2 = 0, at the point (b, [, Z ) E2 reaches its maximum value, which is equal to

E2
< = 2nC − V2

3Z
2 − 62.

We note that
E2
< + E2

∗ = 2nC − V2
3Z

2(1 − ^2) = B2.

Taking into account the accepted notation for B2 we find E2
∗ = B

2 − E2
<. Substituting

E2
∗ in the expression for ) , and E2

< in the expression for E2, we find

) = E2 + ^2 ¤Z2 + B2 − E2
< , E2

= E2
< − ¤Z2.

Consequently, the maximum value of ¤Z2 at the point (b, [, Z ) equals to ¤Z2
< = E2

<−E2.
Integrating the function Ψ()) with respect to E and ¤Z and taking into account the
accepted notation we find

d = 4c�

∫ E<

0
E3E

∫ ¤Z<

0
() (2) − ))3 ¤Z = 4c�

E3
<

3

(
42 + 3

5
(1 − ^2

3
)E2
<

)
, (4.29)

where
E< > 0 ; ¤Z< > 0;

) (2) − ) = E2
< − E2 + 42 − ^2 ¤Z2 ; 42

= V2
3Z

2(1 − ^2).

Since the expression for d has been obtained by Danilov (2005), the equation (4.29)
can be used to find the value �. Using the function Ψ()), we calculate the mean
values for E2 and ¤Z2 at the point (b, [, Z ):

〈E2〉 = 1

&

∫ E<

0
E33E

∫ ¤Z<

0
Ψ3 ¤Z , 〈 ¤Z2〉 = 1

&

∫ E<

0
E3E

∫ ¤Z<

0

¤Z2
Ψ3 ¤Z, (4.30)

where

E< > 0 ; ¤Z< > 0 ; & =

∫ E<

0
E3E

∫ ¤Z<

0
Ψ3 ¤Z .

Calculating the integrals from (4.30), we find

〈E2〉 = 2

5
E2
<

(
42 + 3

7 (1 − 1
3 ^

2)E2
<

42 + 3
5 (1 − 1

3 ^
2)E2

<

)
,

〈 ¤Z2〉 = 1

5
E2
<

(
42 + 5

7 (1 − 3
5 ^

2)E2
<

42 + 3
5 (1 − 1

3 ^
2)E2

<

)
. (4.31)
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Fig. 4.1 Dependencies of 〈E2〉 and 〈E2
Z
〉 = 〈 ¤Z 2 〉 on ℎ for two cluster models with ^2 = 0.53873

(a) and ^2 = 1.5 (b). The solid lines correspond to b = [ = 0, the dashed lines indicate curves
with Z = 0

Since

E2
< = 2nC (1 − ℎ2) , ℎ2

=
b2

02
+ [

2

12
+ Z

2

22
≤ 1,

see above, then E2
< = 0 at ℎ2 = 1 (on the n-surface) and E2

< = 2>=BC at ℎ2 = 2>=BC

(on surfaces of ellipsoids similar to n-ellipsoid). Consequently, on the n-surface at
ℎ2 = 1 the values 〈E2〉 and 〈 ¤Z2〉 are equal to zero. In the center of the n-ellipsoid (at
ℎ2 = 0, Z = 0), according to (4.31), for the values 〈E2〉 and 〈 ¤Z2〉, we find

〈E2〉0 =
4

7
nC , 〈 ¤Z2〉0 =

10

21
nC

(
1 − 3

5 ^
2

1 − 1
3 ^

2

)
. (4.32)

We note that
2

7
nC < 〈 ¤Z2〉0 ≤ 10

21
nC at 0 ≤ ^2 < 1.

In the case Z = 2>=BC and ℎ2 = 2>=BC < 1, the values of 〈E2〉 and 〈 ¤Z2〉 retain constant
on the intersection line of the plane Z = 2>=BC and of the elliptical cylinder

A2
= ℎ2 − Z2

22
=
b2

02
+ [

2

12
= 2>=BC.

With the increase of a distance from the cluster center along Z axis and in the plane
(b, [), the values 〈E2〉 and 〈 ¤Z2〉 decrease in comparison with the values indicated in
(4.32), and reach zero on the n-surface at ℎ2 = 1, see fig. 4.1.
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Since � ∼ E−3
< , see (4.29), then the function � (−→G , ¤−→G ) → ∞ at ℎ2 → 1. The

density of the matter d inside the n-ellipsoid is constant, but the density in the
velocity space tends to infinity as ℎ2 → 1, which is caused by the tendency to zero
of the size of a range of admissible values of ¤b, ¤[, ¤Z at ℎ2 → 1. Taking into account
the equation (4.29), as well as the formulas for E2

< and 42, we write an expression
for the two-integral PDF of the cluster:

� (−→G , ¤−→G ) = 3d

4cE3
<

(
42 + E2

< − E2 − ^2 ¤Z2

42 + 3
5 (1 − 1

3 ^
2)E2

<

)
, ^2 < 1. (4.33)

In the case ^2 > 1 for the values d, 〈E2〉, 〈 ¤Z2〉, and � (−→G , ¤−→G ), we can use the
expressions (4.29), (4.31), (4.33), in which it is necessary to use the value

42
= 2nC (^2 − 1) (1 − Z2/22)

as 42. In this case, the formulas (4.32) have the following form:

〈E2〉0 =
4

7
nC

(
3^2 − 2

2^2 − 1

)
, 〈 ¤Z2〉0 =

2

7
nC . (4.34)

We note that (
3^2 − 2

2^2 − 1

)
> 1 at ^2 > 1.

Consequently, at ^2 > 1, the value 〈E2〉0 is greater than at ^2 < 1, and the value
〈 ¤Z2〉0 at ^2 > 1 is smaller than at ^2 < 1.

4.5 Distribution of the Stellar Velocities in the Case

of Three-Integral PDF

Let us consider the quadratic form for the PCS of the following type:

) = �1 + ^2�2 + f2�3.

) is conserved along the stellar trajectory. Therefore, ) can be used as an argument
in PDF. Taking into account the expressions for the integrals �1, �2, �3, according to
(4.19) and (4.20) we find

) =
( ¤b− ¤b2)2

02
)

+ ( ¤[− ¤[2)2

12
)

+Ω,

Ω = b2((1 − @2
1f

412
)
/4) + [2((2 − @2

2f
402
)
/4) + ^2 ( ¤Z2 + V2

3Z
2).

(4.35)

According to (4.35) we write two relations for the value ^2:
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^2
= (f2

¤b /f
2
¤Z )0

−2
) and ^2

= (f2
¤[/f2

¤Z )1
−2
) .

Using values f2
¤b , f2

¤[ , f2
¤Z , obtained by Danilov (1997a) for the cluster model 5, as

well as the value f2 for this model obtained above, we find ^2 ≃ 0.387 < 1 (both
relations for estimation of ^2 lead to the same value of ^2 up to the first three digits
after the decimal point). In the case of the cluster model 1 of Danilov (2005) and
Danilov and Dorogavtseva (2003), both relations for ^2 lead to the similar value of
^2

= 0.53873766 to within the first eight digits after the decimal point. We note that
in the cluster model 5 from Danilov (1997a) at the initial time C = 0 a small excess of
stars with the large initial values of Z and ¤Z is given in comparison with the cluster
model 1 of Danilov and Dorogavtseva (2003). Therefore, the value f2

¤Z for the model

5 of Danilov (1997a) is greater, than for the model 1 of Danilov and Dorogavtseva
(2003), and ^2 for model 5 of Danilov (1997a) is smaller than for model 1 of Danilov
and Dorogavtseva (2003).

Let us denote

\2
=
@3 + �a1(@1 + @6�a1)

�2a2
1 + V

2
1

> 0.

Then �3,<0G = \2�1 > 0, see explanations for the formula (4.15), where this ex-
pression for �3,<0G was obtained at �2 = 0. The same expression for �3,<0G can be
obtained also in the case �2 ≠ 0, if the conditions �1 = 2>=BC, �3 = 2>=BC at �1 ≠ 0,
�2 = 0 are taken into account. Substituting the values �3 = �3,<0G in ) , taking into
account the limitation on the value �1 + �2, we write

) ≤ a2�1 + ^2�2 , �1 + �2 ≤ 2nC , where a2
= 1 + \2f2.

These conditions allow us to define the maximum value )<0G for the value of ) :
)<0G = 2nC ^2 at a2 ≤ ^2 and )<0G = 2nC a2 at a2 > ^2. For model 5 of Danilov
(1997a) and model 1 of Danilov and Dorogavtseva (2003), according to Danilov
(2006), a2 ≃ 1.552 and a2 ≃ 1.410, respectively.

Let us consider the function Ψ()) = � ()<0G − )). Substituting ) from (4.35),
we can find the distribution of stellar velocities at the point (b, [, Z ) of a homoge-
neous ellipsoidal cluster accurate to the constant factor �. We consider the general
distribution of stellar velocity in the ellipsoidal cluster. To do this, we calculate the
integral of the function Ψ()) by the volume & of the cluster ellipsoid:

F ( ¤b, ¤[, ¤Z ) = 〈�〉
∫
&

()<0G − ))3& = 〈�〉&
(
+2

0 −
¤b2

02
)

− ¤[2

12
)

− ^2 ¤Z2

)
, (4.36)

where& =
4
3c012; 〈�〉 is the � value at some inner point of the cluster ellipsoid

(here, the value 〈�〉 was removed from the sign of the integral by& according to the
mean-theorem);

+2
0 = )<0G −

1

5
((10

2 + (21
2 + ^2V2

32
2).
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Since both estimates of the value ^2 received here correspond to ^2 < 1, we choose
the following value as )<0G : )<0G = 2nC a2�E . Here, �E = 2>=BC > 1. The value
�E is close to unity and is introduced as a free parameter for better matching
of the velocity distribution of stars in the model of a homogeneous ellipsoid and in
numerical dynamic cluster model 1 of Danilov (2005) and Danilov and Dorogavtseva
(2003). To find the value 〈�〉, we integrate the function F ( ¤b, ¤[, ¤Z) by the volume
&E of the velocity ellipsoid

+2
0 =

¤b2

02
)

+ ¤[2

12
)

+ ^2 ¤Z2.

We obtain the number of stars # in an ellipsoidal cluster (according to Danilov
(2005) # ≃ 500):

# = 8c0) 1)+
5
0 〈�〉&/(15^).

This relation for 〈�〉 can be used as the initial one when approximating the velocity
distribution in the numerical dynamic cluster model 1 of Danilov and Dorogavtseva
(2003) by the function F ( ¤b, ¤[, ¤Z ). In order to find the general distribution of stars in
an ellipsoidal cluster with respect to ¤b, we calculate the integral

�1 ( ¤b) =
∫
Ω

F ( ¤b, ¤[, ¤Z)3 ¤[3 ¤Z

over all values of ¤[, ¤Z within the region Ω, located inside the velocity ellipse

+2
0 −

¤b2

02
)

=
¤[2

12
)

+ ^2 ¤Z2 ≤ +2
0

for a fixed value of ¤b2. Performing the corresponding calculations of the functions
�2 ( ¤[), �3 ( ¤Z) of distributions of stars by the values ¤[, ¤Z , we find

�1 ( ¤b) = 〈�〉& c1)
2^

(
+2

0 − ¤b 2

02
)

)2
,

�2 ( ¤[) = 〈�〉& c0)
2^

(
+2

0 − ¤[2

12
)

)2
,

�3 ( ¤Z) = 〈�〉& c0) 1)
2

(
+2

0 − ^2 ¤Z2
)2
,

(4.37)

where
¤b2 ≤ +2

0 0
2
) , ¤[2 ≤ +2

0 1
2
) ,

¤Z2 ≤ +2
0 /^2.

Fig. 4.2 shows the distributions by the values b, [, Z of the 132 halo stars from model
1 of Danilov and Dorogavtseva (2003) considered above, averaged over the period of
oscillations of a regular field, as well as distributions �1( ¤b)Δ ¤b, �2 ( ¤[)Δ ¤[, �3 ( ¤Z)Δ ¤Z ,
obtained according to (4.37) at �E = 1.2. On the fig. 4.2, we used the notations
E b = ¤b, E[ = ¤[, EZ = ¤Z . In constructing the theoretical distributions, we used the
same values of the intervals ΔE b , ΔE[ , ΔEZ , as for the corresponding numerical-
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Fig. 4.2 The distributions of stars by the projections of the velocity vector for the cluster model
1 of Danilov and Dorogavtseva (2003). Solid lines correspond to the numerical experiment of
Danilov and Dorogavtseva (2003); dashed lines show the curves for the ellipsoidal cluster model
with ^2 = 0.53873

experimental distributions. The obtained theoretical and numerical-experimental
distributions of halo stars by the velocities of motion in the cluster model 1 of
Danilov and Dorogavtseva (2003) are in good agreement with each other. However,
a significant part of the halo stars (∼ 2/3) from the considered sample has "ener-
gies" n > nC . One of the reasons for this is the absence of a dense gravitating core in
the considered model of the ellipsoidal cluster (the adding of a core at the center of
this model will increase the nC and the work of the exit of a star from the cluster center
to the cluster periphery). The second reason is the formation of a significant group of
stars (∼ 70 stars) in the cluster model 1 of Danilov and Dorogavtseva (2003), located
at the distances from one to two tidal radii 'C of the cluster (ie, up to ∼ 20 pc)
from its center (Danilov and Leskov, 2005). According to Danilov and Dorogavtseva
(2003) and Danilov and Leskov (2005), these stars accompany the cluster during the
all considered time interval (1.5 × 108 years) and return to the cluster at distances
from its center less than 'C only briefly. These stars have the large "energy" n and
also contribute to the cluster potential averaged by the oscillation period of a regular
field.

The results obtained here (a large number of the halo stars with "energies" n > nC ,
and also �E > 1) indicate that for the cluster model 1 (Danilov and Dorogavtseva,
2003) the sizes of semi-axes 0, 1, 2 and the mass of a homogeneous ellipsoid, the
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potential of which approximates the potential at the periphery of the cluster model 1
(Danilov, 2005), should be increased in comparison with those obtained by Danilov
(2005) using the Jacobi integral.

The three-integral PDF is of great interest in the study of nonisolated homo-
geneous ellipsoidal OSC models. However, construction of a three-integral PDF
requires the use of equations (4.12) and their solutions (4.13) in determining the
range of admissible values of the integrals �1, �2, �3 and the projections of the star
velocity vector for each internal point of the cluster ellipsoid. Due to the cumbersome
form of the obtained solutions (4.13), the construction of a three-integral PDF can
only be performed numerically, which is beyond the scope of this study. Apparently,
in order to construct a three-integral PDF, it is necessary to approximate the potential
of the halo in the numerical dynamic models of OSC by the potential of a homo-
geneous ellipsoid, taking into account not only the corresponding Jacobi integral,
but also the integral �3, and also specifying the mean star motion with the velocity
−→E 2 = ( ¤b2 , ¤[2) at each point of the ellipsoid.

4.6 Conclusions

1. We have considered the model of a homogeneous gravitating ellipsoidal star cluster
moving along a circular orbit around the Galactic center. For this model, we have
written three independent isolating integrals of stellar motion. We have noted that
these three integrals are in involution to each other. We have found the domain of
the admissible values of the third integral �3. Peculiarities of the cluster star motion
have been considered taking into account the influence of three integrals of motion.
On the periphery of the considered cluster model, the "retrograde" stellar motion
predominates, and the distribution of stellar velocities is elongated along the direction
of cluster motion. These conclusions are consistent with the results of numerical
experiments on modeling OSC dynamics (Danilov, 1997a). The average velocities
of "retrograde" stellar motion at the peripheryof the homogeneousellipsoidal cluster
model reach ∼ 0.17 − 0.19 (pc/Myr), which is approximately 30 % of the escape
velocity of the star from the center of the ellipsoidal cluster model to the zero-velocity
surface corresponding to "energy" n = nC .

2. We have made a comparison between the parameters of the distribution of the
stellar motion velocity in a homogeneous ellipsoidal model and in two numerical
dynamic models of OSC (Danilov and Dorogavtseva, 2003; Danilov, 1997a), con-
sisting of # gravitating points. Values f2 and ^2 have been given, which ensure the
proximity of the velocity distribution parameters in the model of a homogeneous
gravitating ellipsoid and in two OSC models (Danilov and Dorogavtseva, 2003;
Danilov, 1997a). In the range of values ) ∈ [0, ) (1) ], we have presented the distri-
bution of stellar trajectories by the value of the integral ) of the stellar motion in a
two-integral homogeneous ellipsoidal cluster model; we have discussed the integral
and differential distributions by ) of the phase space volume occupied by the stars
from corresponding intervals of ) values.
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3. We have presented formulas for a phase density function that depends on two
integrals of motion. The correspondingvelocity distributionof the stars is spheroidal.
Formulas for the mean squares of the residual velocities of stars in the two-integral
model of an ellipsoidal cluster are presented and discussed. The average squares of
residual stellar velocities in such model decrease with distance from the center of
the cluster along Z axis and in the plane Z = 0 to zero at the cluster boundary.

4. In the case of the three-integral phase-density function, the local and general
triaxial ellipsoidal distributions of stellar velocities in a homogeneous ellipsoidal
cluster have been given. General distribution of stellar velocities agrees well with
the distribution of halo stars’ velocities, constructed from the results of calculations
of corresponding numerical dynamic cluster model 1 of Danilov and Dorogavtseva
(2003).

5. The distributions of stars by the velocities and the integral of motion ) consid-
ered in this chapter can be used for comparison with the corresponding distributions
obtained in the numerical simulations of the OSC dynamics. The formulas consid-
ered above can also be used to analyze observational data on the radial velocities
and the proper motions of stars in the vicinity of clusters; in constructing a PDF at
the OSC periphery by the observational data; for estimating the masses of the ob-
served OSCs by the data on the stellar velocities and coordinates; when specifying
the initial conditions for constructing the numerical dynamic models of OSCs with
given characteristics of the velocity distribution.
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Chapter 5

Investigation of the Stellar Trajectories
in the Two-Point Model of Open Star Cluster

Abstract In this chapter, we consider a two-point model of a non-isolated star
cluster with a circular orbit in the Galactic plane. The equations of stellar motion are
linearized in the neighborhoodof a singular point on the critical zero-velocity surface
(CZVS) and in the neighborhood of the point under CZVS on the trajectory with the
"energy" of the star less than critical. We give the eigenvalues and eigenvectors of
these equations. We note the instability of two singular points located on the CZVS
and give a numerical solution for the separatrix line connecting these points with each
other. For the trajectories located under the CZVS, the moduli of the eigenvalues
of the linearized equations of motion increase with decreasing of the energy of
the star and the maximum trajectory distance from the center of cluster masses.
This leads to an increase in the numerical estimates of the maximum Lyapunov
characteristic exponents (MLCE) of trajectories located closer to the mass center
of the cluster. We consider the properties of stellar trajectories with the use of
Poincare sections and MLCE. A number of periodic orbits is noted for different
values of stellar "energy". The properties of trajectories in the neighborhood of these
periodic orbits are discussed. Almost all stellar trajectories are stochastic; the degree
of stochasticity increases with decreasing "energy" of the star. On Poincaré maps,
regions with different degrees of stochasticity are marked.

5.1 Introduction

The study of stellar trajectories in numerical dynamic models of OSC was carried
out in the paper of Danilov and Leskov (2005), in which the MLCE estimates Λ

of stellar trajectories were obtained and a Fourier analysis of these trajectories was
carried out. Cluster cores are regions of increased stochasticity, and halos are the
regions of much more ordered motions. The values of Λ for the stellar trajectories
in the cores are 200−250 times greater than in the halo. All the stellar trajectories
considered by Danilov and Leskov (2005) are stochastic, and the corresponding Λ

values are positive. In the distributions of stellar trajectories by the periods of the
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most significant oscillations, we found the peaks with periods corresponding to (or
close to) the periods commensurate with the oscillation period of a regular cluster
field. Comparing the periods of these peaks with the periods obtained by Danilov
(2005) as a result of applying the small parameter method to the study of stellar
trajectories in such systems, we could highlight the main resonances in the motion of
the halo stars in the OSC models. In the paper (Danilov, 2005), we write equations
of stellar motion on the OSC periphery, containing the small parameter `. A general
analytical solution of the star motion equations was obtained at ` = 0. As one of
simplifications in the construction of initial approximation for the trajectories of
halo stars (Danilov, 2005), the unperturbed potential of the OSC was proposed to
be sought in the form of potential of a certain homogeneous ellipsoid (see (2) from
Danilov (2005)). We note that a general solution of the stellar motion equations in
the joint force field of the homogeneous ellipsoid and the Galaxy was also obtained
much earlier (Bok, 1934; Mineur, 1939) (in this case, the solution of the equations
of the stellar motion by Mineur (1939) and by Danilov (2005) was written in a more
compact form than by Bok (1934)).

In the paper (Danilov, 2006) we considered the model of a homogeneous gravitat-
ing ellipsoidal star cluster moving along a circular orbit around the Galactic center.
For this model, three independent isolating integrals of stellar motion were written.
An analysis was made of the features of the cluster star motion, taking into account
the influence of these three integrals of motion. At the periphery of the considered
cluster model, the retrograde star motions prevail; stellar velocity distribution is
elongated along the direction of cluster motion and perpendicular to the plane of
the Galaxy (as in numerical dynamic models of OSC of Danilov and Dorogavtseva
(2003)). We also note that Mineur (1939) obtained three adiabatic invariants W8 of
the star motion in the joint force field of the homogeneous ellipsoid and the Galaxy
by varying the constant parameters D and E, which describe the system (8 = 1, 2, 3,
see also formulas (28) of Mineur (1939)).

Invariants W1 and W2, corresponding to the stellar motion in the plane (b, [)
(Mineur, 1939), which coincides with the plane of the Galaxy, have much more
complicated form in comparison with the integrals �1 and �3 of the stellar motion
in this plane obtained in the paper (Danilov, 2006). Values �1 and �3 from the
paper (Danilov, 2006) are related to the energy and angular momentum of the star
in the plane (b, [), respectively. The physical meaning of the invariants W1 and W2

remains unclear (their approximate constancy for a sufficiently slow change in the
Hamiltonian of the system with time does not indicate a relationship between the
values W1 and W2 with known physical characteristics of the motion). Apparently,
values W1 and W2 can be represented as linear combinations of �1 and �3 from the
paper (Danilov, 2006). The coefficients of these linear combinations are related to
the system parameters, and are the constant values. The value W3 agrees with the
value �2 from (Danilov, 2006) with the accuracy of a multiplicative constant, and is
therefore related to the energy of the stellar motion along the coordinate Z .

A two-point model of a non-isolated cluster considered by Danilov (2005) rep-
resents another extreme case of the mass density distribution at the OSC periphery
in comparison with the mass density distribution in the model of a homogeneous
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ellipsoid. The study of the two-point cluster model in the linearized force field of the
Galaxy has much in common with the study of equations for the circular bounded
three-body problem. The equations of the body motion of the smallest mass in both
problems have a similar form (the differences are only in the values of the constant
factors for the corresponding terms of the equations). Therefore, it is of interest to
discuss some of the results obtained recently in the study of the three-body problem.

Gidea and Masdemont (2007); Vela-Arevalo and Marsden (2004); Winter and
Vieira Neto (2001); Paskowitz and Scheeres (2006), in the framework of the circu-
lar bounded planar and three-dimensional three-body problems, used the Poincaré
sections in discussing a number of questions related to the motion of the body of an
infinitesimal mass with the values of the Jacobi integral constant slightly above the
critical value.

The Poincaré sections were used to analyze the manifolds of stable and unstable
trajectories (Gidea and Masdemont, 2007) connected with the Lyapunov’s orbits
(periodic orbits near the libration point !1 between the principal bodies), in the
planar circular restricted three-body problem (CR3BP). The masses of two main
(most massive) bodies were assumed by Gidea and Masdemont (2007) to be equal;
Gidea and Masdemont (2007) consider the "energies" (the values of the Jacobi
integral) slightly exceeding the critical value. The manifolds of stable and unstable
trajectories are two-dimensional and degenerate into one-dimensional ones at the
critical "energy". These two-dimensional manifolds are separatrices of the phase
space. The branches of each of the manifolds of the motion of the body of an
infinitesimally small mass in the plane (G, H) form a tube of orbits (fig. 9, 14 from
Gidea and Masdemont (2007)), asymptotically approaching to (or moving away) the
corresponding Lyapunov orbit. They divide the phase space (PS) into two regions.
The trajectories inside the tube correspond to the passage of orbits near the point !1

from one main body to another. Trajectories outside the tube are reflected back to the
region of their origin to make at least one complete revolution around the main body.
The transverse (non-tangent) intersections of stable and unstable two-dimensional
manifolds of trajectories on the Poincaré map make it possible to determine the
homoclinic orbits for a body of an infinitesimal mass (see fig. 12, 13 from Gidea and
Masdemont (2007), and determination of the homoclinic solution by Chandrasekhar
(1942, p. 229)).

Vela-Arevalo and Marsden (2004) analyze the motions of the body with infinites-
imal mass (comet) in the force field of the Sun − Jupiter system in the framework of
a planar CR3BP applying the Poincaré section and the wavelet extractions of the in-
stantaneous trajectory frequencies. The resonance ratios of the trajectory frequencies
for the resonance islands on Poincaré maps are determined. The close neighborhood
(mixture) of different frequencies in the "chaotic regions" of the PS indicates that
the frequencies of the trajectories in these regions vary significantly and frequently
with time C. Simultaneous application of two methods (Poincaré sections and wavelet
analysis) when studying the trajectories in this problem allows: a) to trace the dy-
namics of chaotic trajectories (they can be temporarily captured near the resonant
islands); b) to detect and investigate resonant transitions (i.e., the transitions of the
trajectories from one PS region to another and, respectively, from one resonant is-
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land to another). Trajectories located always in the region of resonant islands have
constant frequencies that satisfy the resonance relationship. Therefore, the change
in the frequencies of the trajectories with time is used by Vela-Arevalo and Marsden
(2004) as a criterion of the stochasticity of these trajectories.

Winter and Vieira Neto (2001), in the framework of a flat and a spatial CR3BP,
applied the Poincaré sections in discussing the criterion and reasons for the departure
of the spacecraft trajectory from the planet Uranus (in the force field of the Sun −
Uranus system). Poincaré sections in this problem allow them to localize in the
phase space the position of periodic rtrograde orbits associated with the regions of
stability of the spacecraft motion found earlier for estimating the dissipation time
of spacecraft from the vicinity of the planet Uranus (see references in the paper of
Winter and Vieira Neto (2001)). The stability of the plane retrograde trajectories of
a spacecraft is caused by the existence of a family of periodic orbits and associated
quasiperiodic trajectories that oscillate near one flat periodic orbit (the amplitude of
these oscillations increases with the decreasing initial inclination 8 of a quasiperiodic
trajectory).

Paskowitz and Scheeres (2006) consider a dynamics of the temporarily trapped
trajectories in the planar and spatial CR3BP with reference to the spacecraft orbits
near Europe (in the system Jupiter − Europe). They discuss the methods for the
spacecraft transition from a safe trajectory (not leading to a spacecraft impact on the
surface of Europe) to a long-term, more stable trajectory. To analyze the spacecraft
trajectories captured by the force field of Europe, they apply the pericentric Poincaré
section, obtained with the help of the following conditions at the pericenter of the
trajectory: ¤A = 0, ¥A > 0, where A is the spacecraft distance from the mass center
of Europe (see fig. 1 from the paper of Paskowitz and Scheeres (2006)), ¤A =

3A
3C

,
¥A is defined similarly. In this case, the Poincaré map is obtained by mapping the
pericentric passages of the spacecraft onto the plane (G, H), which coincides with the
plane of motions of the main bodies (Jupiter and Europe). This approach allows: a) to
easily identify on the Poincaré map the safety zones for the spacecraft preventing its
collisions with the surface of Europe; b) to investigate the spacecraft motion under
the open zero-velocity surface (ZVS) for energies slightly exceeding the critical value
(see fig. 2 from the paper of Paskowitz and Scheeres (2006)). Fig. 4 from the paper of
Paskowitz and Scheeres (2006) shows the pericentric Poincaré maps for a series of
values of the Jacobi integral. According to this figure, the trapped trajectories lead to
dissipation from the vicinity of Europe after passing through the dissipation region
at the first pericentric passage. Overlapping of the regions of capture and dissipation
on the pericentric Poincare map yields the path (mechanism), following which the
trajectory captured by Europe leads further to a dissipation.

The results obtained by Gidea and Masdemont (2007); Vela-Arevalo and Marsden
(2004); Winter and Vieira Neto (2001); Paskowitz and Scheeres (2006) can be applied
at a qualitative level in the discussion of: a) a dynamics of the stellar motion in the
OSC in the neighborhood of singular points, as well as motion in the vicinity of
some planar periodic orbits in the cluster, considered in Section 5.2; b) a dissipation
of stars from the cluster; c) formation in the OSC vicinity of a stellar grouping
with the "energies" greater than critical one, which accompany the cluster for a
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sufficiently long time interval (Danilov and Leskov, 2005; Danilov, 2005, 2006), and
then gradually leave it to the long distances. Since Gidea and Masdemont (2007);
Vela-Arevalo and Marsden (2004); Winter and Vieira Neto (2001); Paskowitz and
Scheeres (2006) and we consider the different systems (the force field of the Galaxy
in the vicinity of the cluster is not the point mass field; when describing the motions
of the body of the smallest mass, Gidea and Masdemont (2007); Vela-Arevalo and
Marsden (2004); Winter and Vieira Neto (2001); Paskowitz and Scheeres (2006) and
we use the different approximations), it is of interest to analyze the stellar motions
in the joint force field of the OSC and the Galaxy.

It is also of interest to apply the Poincare sections to study the properties of
stellar trajectories in the two-point model of a nonisolated cluster at "energies"
less than the critical value. The use of Poincaré sections in this problem allows us
to present data on a very large number of trajectories in a concentrated form; to
determine the parameters and localize the position of stable and unstable periodic
orbits in the PS (with greater accuracy for the stable orbits); to estimate the sizes
of the regions of regular and stochastic motion in this model (see, for example, the
paper of Winter and Vieira Neto (2001)). When discussing the properties of stellar
trajectories in a two-point OSC model, it is very useful to use estimates of MLCE
for these trajectories.

The objective of this chapter is to study the properties of stellar trajectories in
the two-point OSC model at the "energies" below the critical value. The simplicity
of such model allows us to advance further in the study of the properties of stellar
trajectories in the OSC.

5.2 Two-Point Model of Non-Isolated Star Cluster

Let us consider the cluster model in the form of a system of two point masses, one of
which (<2) is approximately equal to the mass of the cluster, and the other one (<1)
is equal to the mass of the Sun. In the presence of an external field of the Galaxy,
such a model describes approximately the stellar motion at the cluster periphery with
a dense massive core and an extended low-density halo with the small mass. Such a
model has already been considered by Danilov (2005), in which the dimensions of
the critical ZVS (CZVS) in the cluster along the coordinate axes were determined
using an unisolated two-point cluster model. Danilov (2005) adopted the form of the
CZVS of a homogeneous ellipsoidal OSC model as a surface of an ellipsoid with the
semiaxes equal to the dimensions of the CZVS in a two-point cluster model.

Let the mass of the cluster be equal to" = <1+<2, where the star mass<1 = <⊙;
<2 = " − <1. Following to Danilov and Leskov (2005); Danilov (2005), we take
" = 500<⊙ and consider a cluster moving along a circular orbit of radius ' = '0

in the Galactic plane.
According to Chandrasekhar (1942), the equations of motion of the star with mass

<1 in the cluster force field and in the linearized force field of the Galaxy can be
written in the following form:
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¥b1 − 2l ¤[1 + U1b1 = −6(b1 − b2),
¥[1 + 2l ¤b1 = −6([1 − [2),
¥Z1 + U3Z1 = −6(Z1 − Z2),

(5.1)

where ¤b1 =
3b1
3C

, ¥b1 =
3 ¤b1
3C

, values ¤[1, ¤Z1, ¥[1, ¥Z1 are defined similarly;l is the constant
angular velocity of the cluster motion around the center of the Galaxy; 6 = �<2/A3

1,2,
� is the gravitational constant; A1,2 is the distance between two gravitating masses
<1 and <2. According to Chandrasekhar (1942), the system of equations (5.1) is
written in the coordinate system (b, [, Z ) rotating at angular velocity l; the origin
of coordinates coincides with the mass center of the cluster, axis b is directed from
the center of the Galaxy, axis [ − in the direction of cluster motion in the Galactic
plane, axis Z is perpendicular to the Galactic plane.

U1 = ( 1

'

mΦ

m'
− m2Φ

m'2
)0 < 0 , U3 = −( m

2Φ

m/2
)0 > 0.

Here, ' and / are cylindrical Galactocentric coordinates of a point. Indices "0"
indicate that derivatives of the Galaxy potential Φ are calculated at the point with
coordinates ' = '0 = 8200 pc and / = 0.

Following toDanilov and Chernova (2008), we use the integrals of motion of the
center of mass for the system of bodies <1 and <2 in order to unlock the equations
of motion of these bodies. As a result, for a star with mass <1 we find

¥b1 − 2l ¤[1 + (U1 + V)b1 = 0,
¥[1 + 2l ¤b1 + V[1 = 0,
¥Z1 + (U3 + V)Z1 = 0,

(5.2)

where V = W/A3
1; W = �<2/`2; ` = 1 + <1/<2; A1,2 = `A1; A1 =

√
b2

1 + [2
1 + Z2

1 is a

distance of a star with mass <1 from the mass center of a cluster. The system (5.2) is
a closed system of nonlinear differential equations. Further calculations in our paper
relate to the motion of a star with a mass of <1. Therefore, for the sake of brevity, we
will omit the index "1" for all the values characterizing the motion and parameters
of a star with the mass <1.

From the conditions ¤b = ¤[ = ¤Z = ¥b = ¥[ = ¥Z = 0, we find three singular points
(the rest, or equilibrium points) for the system (5.2): 1) b = ± |bC |, [ = Z = 0, where
|bC | = (−W/U1)1/3 = 'C ; 2) b = [ = Z = 0. The value A = 'C closely agrees with
the value of the tidal radius of the spherical cluster model in the field of the Galaxy
(King, 2002, p. 198), since `2 ≃ 1. The point b = [ = Z = 0 coincides with the mass
center of the cluster.

The Jacobi integral of the system (5.2) can be written in the following form:

¤b2 + ¤[2 + ¤Z2 + U1b
2 + U3Z

2

2
− W

A
= Y = 2>=BC. (5.3)

Substituting ¤b = ¤[ = ¤Z = 0 in (5.3), we obtain the ZVS equation for the star with
"energy" Y:
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U1b
2 + U3Z

2

2
− W

A
= Y. (5.4)

We substitute the coordinates of one of the singular points in (5.4): b = ±|bC |,
[ = Z = 0. Taking into account that U1 = −W/|bC |3, we find the corresponding value
the critical "energy" Y: YC = −3W/(2|bC |). Substituting Y = YC in (5.4), we can obtain
the CZVS equation for the given OSC model. Substituting b = Z = 0 in the equation,
we find YC = −W/|[C |, where |[C | is the distance from the origin to the CZVS along
the axis [. Comparing it with |bC |, we find |[C | = 2|bC |/3. The same relation between
|[C | and |bC | is given by Spitzer (1987), when he discusses the dimensions of the
cluster CZVS in the case when both the Galaxy and the cluster are modeled by the
point masses. Let |ZC | be distance from the origin to the CZVS along the Z axis in our
cluster model. Substituting b = [ = 0, Y = YC and ( = |ZC |/|bC | in (5.4), we obtain the
equation (3 + 3@( − 2@ = 0, the real root of which, according to Cardano’s formulas
(Korn and Korn, 1961), can be written in the following form:

|ZC | = |bC |@1/3 [(
√

1 + @ + 1)1/3 − (
√

1 + @ − 1)1/3] ≃ 0.5016|bC |,

where @ = −U1/U3, and in order to determine the values |ZC |, U1 and U3, we applied
the Galaxy potential model of Kutuzov and Osipkov (1980).

The coordinates of three singular points considered above are particular solutions
of the equations (5.2). It is important to perform stability analysis of these points
(see, for example, Markeev (1978)) when studying stellar motion in the vicinity of
these points.

In order to discuss the properties of stellar motion in the neighborhood of solutions
of the system (5.2) (of periodic orbits, nonclosed trajectories, singular points), we
linearize the system (5.2) in the neighborhood of some solution of this system. We
denote ¤b = D, ¤[ = E, ¤Z = F. Let Xb, X[, XZ , XD, XE, XF be variations of the functions
b (C), [(C), Z (C), D(C), E(C), F(C), which have small absolute values. Following to
Nemytsky and Stepanov (1947, p. 184), we write the variational equations for the
system (5.2):

X ¤b = XD, X ¤[ = XE, X ¤Z = XF,

X ¤D = 2lXE − (U1 + V)Xb + bXB,
X ¤E = −2lXD − VX[ + [XB,
X ¤F = −(U3 + V)XZ + ZXB,

(5.5)

where XB = 3V(bXb + [X[ + ZXZ )/A2. Values V, A, b, [, Z here are determined by
the solution of system (5.2), in the vicinity of which the system (5.5) defines the
variations of phase coordinates of stars.

Let us consider the equations (5.5) in the neighborhood of a singular point:
b = −|bC |, [ = Z = 0. In this case, the values of V and A are constant: V = W/|bC |3,
A = |bC |; XB = −3VXb/|bC |, and the equations (5.5) are simplified:

X ¤b = XD, X ¤[ = XE, X ¤Z = XF,

X ¤D = 2lXE + 3VXb,
X ¤E = −2lXD − VX[,
X ¤F = −(U3 + V)XZ .

(5.6)
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The characteristic equation of system (5.6) has the form

[_4 + 2_2 (2l2 − V) − 3V2] (_2 + U3 + V) = 0. (5.7)

The roots of the equation (5.7) can be written in the following form:

_1,2 = ±√a1, where a1 = @1 + @2 > 0,
_3,4 = ±8√−a2, where a2 = @1 − @2 < 0,

_5,6 = ±8
√
U3 + V,

(5.8)

where @1 = V − 2l2; @2 = 2
√
l4 − l2V + V2. The estimates of these values and the

signs of a1 and a2 are obtained for the parameters of the cluster and its orbit assumed
here. Thus, the characteristic equation (5.7) has one pair of real roots (_1,2) and two
pairs of imaginary roots (_3,4, _5,6). One of the real roots is positive. Therefore,
according to Lyapunov’s Theorem 1 (Markeev, 1978, p. 25), the singular point with
coordinates b = −|bC |, [ = Z = 0 is unstable. The same conclusion can easily be
obtained for the singular point b = |bC |, [ = Z = 0. The instability of these points
(solutions) arises when the star moves in the plane (b, [). The equations (5.5) and
(5.6) describe the motion of a star with the "energy" close to YC (including the case
Y > YC ; in this case, the periodic motions of the star around the singular points
b = ±|bC |, [ = Z = 0 are possible).

Let us consider in more detail the motion of a star in the plane (b, [) in the
neighborhood of the point b = −|bC |, [ = Z = 0. With such a motion, Z = F = XZ =

XF = 0; the roots of the characteristic equation are _1,2 and _3,4, see (5.8), and the
singular point itself is a "saddle-center" point (the same type also has the point !1 in
the planar CR3BP (Gidea and Masdemont, 2007), see also (Markeev, 1978, p.26)).

In this case, the general solution of the system (5.6) can be written in the following
form:

Xb = �1 exp(_1C) + �2 exp(−_1C) + �3 cos(=C) + �4 sin(=C),
X[ = �(�1 exp(_1C) − �2 exp(−_1C)) − �(�3 sin(=C) − �4 cos(=C)), (5.9)

where �8 are the integration constants (8 = 1, ..., 4), = =
√−a2, � = (_2

1 −
3V)/(2l_1), � = (=2 + 3V)/(2l=). Values XD and XE can be obtained by time C
differentiation of Xb and X[ from (5.9). Within the framework of our cluster model,
we find _−1

1 ≃ 1.61775 × 107 years, ) = 2c/= ≃ 1.13422 × 108 years.
At Y > YC , �1 = �2 = 0, and small amplitudes �3 and �4, the periodic orbits

of the linearized system in the neighborhood of the singular point are elliptic,
elongated along the axis [ (semiaxis of the orbit along the [ axis is ∼ 2.87117 times
larger than along the b axis). Near the singular point, it is possible to construct the
periodic Liapunov orbits for the initial (non-linearized) system (5.2). The method of
constructing of such orbits is given by Gidea and Masdemont (2007). The frequencies
of the Lyapunov orbits for small amplitudes �3 and �4 are close to =, see an
explanation to formulas (3.5) from the paper of Gidea and Masdemont (2007).



5.3 Calculation of Separatrix 77

5.3 Calculation of Separatrix

According to (5.9), at �1 > 0, �2 = �3 = �4 = 0 and b > −|bC | in the vicinity of the
singular point with coordinates b = −|bC |, [ = Z = 0, we obtain an unstable solution.
A separatrix "emerging" from a singular point corresponds to this solution. The
solution (5.9) can be used to construct the trajectory segments close to the separatrix
of the original system (5.2). At C = 0, according to (5.9), we find

Xb = �1, X[ = ��1 < 0, XD = �1_1 > 0, XE = ��1_1 < 0.

Let �1 = 0.1 pc. Within the framework of our cluster model, |bC | ≃ 10.44467 pc,
and �1 << |bC |. We write the initial conditions for the stellar trajectory given by the
equations (5.2), in the form

b (0) = −|bC | + �1, [(0) = ��1, D(0) = �1_1,

E(0) = ��1_1, Z (0) = F(0) = 0.
(5.10)

Fig. 5.1 shows the segments of two trajectories located between two singular points
b = ±|bC |, [ = Z = 0, obtained by numerical integration of the equations (5.2)
with initial conditions (5.10). Numerical integration was carried out applying the
4th order Runge−Kutta method until the third intersection of the trajectory with [
axis. A further path of the trajectory was obtained by applying the properties of a
symmetry of the equations (5.2) and their solutions to the change of the signs of
C and the phase coordinates of the star (see, for example, formulas (2.6) and (2.7)
from Gidea and Masdemont (2007)). The same way of constructing the homoclinic
orbits was used in the paper of Gidea and Masdemont (2007). The direct numerical
integration of the equations (5.2) to the second singular point b = |bC |, [ = Z = 0
leads to formation of a "homoclinic tangle" (see the term and fig. 2.57 in Contopoulos
(2002, p. 146)) near the second singular point due to the instability of the considered
trajectory. However, a solution of the type (5.9) in the neighborhood of the second
singular point can be obtained analytically, and then numerically, by specifying the
initial conditions near this point and by reverse integration of the equations (5.2). As
a result, we can obtain a separatrix "entering" to the second singular point.

The trajectory segments shown in fig. 5.1 are close to the corresponding separatrix
segments. The larger the value�1 in (5.10), the less accurate are the linearized equa-
tions (5.6). At�1 = 0.1 pc, according to (5.10) and (5.3), we find Y = 1.000000265YC;
in this case, the maximum relative error in the "energy" |ΔY/Y | is ∼ 0.74 × 10−9

when calculating the trajectory. Therefore, the numerically obtained trajectories,
strictly speaking, do not pass through singular points, but very close to them. The
trajectories corresponding to (5.10), at �1 = 0.05 pc and �1 = 0.1 pc differ very
little from each other (the greatest distance between them does not exceed∼ 0.00028
pc), and practically coincide on the plots similar to fig. 5.1. At �1 = 0.05 pc, we find
Y = 1.000000033YC; the maximum value |ΔY/Y |, when calculating the trajectory,
is ∼ 0.79 × 10−9. The closer the trajectory of a star approaches a singular point,
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Fig. 5.1 Separatrix branches near two singular points of the cluster model. Dashed line shows zero-
velocity line in the plane ( b , [) . Arrows indicate the direction of motion along the trajectories

the greater amount of computation is required and, consequently, the accuracy of
numerical integration decreases.

According to fig. 5.1, when moving along the separatrix from one singular point
(b = −|bC |, [ = Z = 0) to another (b = |bC |, [ = Z = 0), the star in the cluster makes
2.5 turns around its center of mass. Moreover, it can pass fairly close (A ∼ 2 pc )
to the center of mass of the cluster. In the real OSC, such distances from the center
can be well achieved on the boundary of the cluster core. A star with an energy of
Y > YC , dissipating from the cluster, moves near such a trajectory.

5.4 Canonical Form of Equations in Variations

Following to Nemytsky and Stepanov (1947, p. 94), as well as Gantmakher (1966)
and Gidea and Masdemont (2007), we transform the system (5.6) to a simpler form.
Let us consider the star motion in the plane (b, [). In this case, XZ = XF = 0. The
system of equations (5.6) can be written in the following form:

¤x = �x,
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where x =

©«

Xb

X[

XD

XE

ª®®®
¬
, � =

©«

0 0 1 0
0 0 0 1

3V 0 0 2l
0 −V −2l 0

ª®®®
¬
. (5.11)

According to Gantmakher (1966, p. 93), we write the adjoint matrix � for the
matrix � in the following form:

� =
©
«
_(_2 + 4l2 + V) −2Vl _2 + V 2_l

−6Vl _(_2 + 4l2 − 3V) −2_l _2 − 3V
3V (_2 + V) −2V_l _(_2 + V) 2_2l

−6V_l −V (_2 − 3V) −2_2l _(_2 − 3V)

ª®®¬
.

Non-zero columns of the matrix �, corresponding to the value _ = _8 , are eigenvec-
tors of the matrix � (Gantmakher, 1966). However, for an every eigenvalues _8 of
the matrix � all columns of the matrix � turn out to be non-zero. Therefore, when
writing 8-th eigenvector of the matrix �, we used the 8-th column of the matrix �,
obtained for _ = _8 . Let us compose the matrix* of such columns:

* =

©
«

2_1Ω1 −2Vl −2Ω2 −2_3l

−6Vl −2_1Ω2 −2_3l −2Ω1

−6VΩ3 2V_1l −2_3Ω2 −2lΩ4

−6V_1l 2VΩ5 2lΩ4 2_3Ω1

ª®®®¬
, (5.12)

where Ω1 = l2 + V + 5 , Ω2 = l2 − V + 5 , Ω3 = l2 − V − 5 , Ω4 = 2l2 − V + 2 5 ,
Ω5 = l2 + V − 5 , 5 = @2/2, _1 =

√
a1, _3 = 8=, see above.

The eigenvectors are determined with accuracy to a constant (non-zero) factor
(Korn and Korn, 1961, p. 382). We multiply all the eigenvectors found by : = 1
(Myr)3. In this case, the dimensions of the corresponding coordinates of the vectors x

and x′, connected with each other by relation x = *x′, coincide, and the determinant
of the matrix* is equal to

|* | = 768V2l2 [V3 − 2(l6 + 5 3) + 3Vl2(l2 − V)] ≃ −0.21874× 10−13(Myr)2
≠ 0.

Therefore, the matrix *−1, reverse to the matrix *, exists. Transformation x = *x′

introduces four eigenvectors of the matrix � as a coordinate basis. We compute
*−1 (multiplication of the columns of the matrix * by : leads to multiplication of
the matrix *−1 by :−1). Substituting x = *x′ to (5.11), multiplying the resulting
equation by*−1 from the left, we find ¤x′ = *−1�*x′ = !x′, or ¤x′ = !′x′, where

! =

©«

_1 0 0 0
0 −_1 0 0
0 0 8= 0
0 0 0 −8=

ª®®®
¬
, !′

=

©«

_1 0 0 0
0 −_1 0 0
0 0 0 =

0 0 −= 0

ª®®®
¬
. (5.13)

The method of constructing the matrix !′ in the presence of complex conjugate
roots of the characteristic equation |� − _� | = 0, is described by Nemytsky and
Stepanov (1947, p. 96). Here, � is the identity matrix. In order to the matrix ! of
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the considered system of equations to be real, it is replaced by an equivalent matrix
!′, having the same eigenvalues as the matrix !.

Equations ¤x′ = !′x′ can be applied both for their integration over C, and, together
with x = *x′, when setting the initial conditions for the systems (5.2) and (5.6) in
the case Z = F = XZ = XF = 0. The solution of equations of the type ¤x′ = !′x′ is
written and analyzed by Gidea and Masdemont (2007) for CR3BP.

Thus, in the phase space, there are four directions along which the matrix �
performs the "stretching" with different coefficients _ 9 , 9 = 1, ..., 4 (Gantmakher,
1966, p. 85). One of them is the direction of unstable motion (corresponding to
_ = _1 > 0), the second is the direction of stable motion (_ = _2 < 0), as well
as "two-dimensional direction" of the motion (Gidea and Masdemont, 2007) with
respect to the center at the point b = −|bC |, [ = 0. The coordinate transformation
x = *x′ (or x′ = *−1x) makes it possible to establish these directions. For the sake
of brevity, the matrix *−1 is not given here (due to the cumbersome form of its
elements).

Let us consider equations (5.5) for the neighborhood of the point located under
CZVS. Let this point be located on some trajectory with energy Y ≤ YC . Let us
consider the motion of a star in the plane (b, [). In this case, Z = F = XZ = XF = 0,
and the matrix � of the system (5.5) takes the form

� =

©
«

0 0 1 0
0 0 0 1
0 1 0 2l
1 2 −2l 0

ª®®®¬
,

where 

0 = −U1 − V(1 − 3b2/A2),
1 = 3Vb[/A2,

2 = −V(1 − 3[2/A2);

b, [ are coordinates of the considered point; A2 = b2 + [2.
The roots of the characteristic equation |� − _� | = 0 are

_1,2 = ±
√
& +  , _3,4 = ±

√
& −  , (5.14)

where & = (0 + 2 − 4l2)/2;  =
√
&2 − 02 + 12. Calculations similar to those

performed in (5.12), lead to the matrix + of transformation x = +x′; the columns of
this matrix are eigenvectors of the matrix �:

+ =

©«

_10 −  1  2  6  3

 5 −_12 +  1  3 _2
3 − 0

_2
10 +  4 −_1 2 _3 6 −_3 3

_1 5 _2
12 +  4 _3 3 _3 (0 − _2

3)

ª®®®
¬
, (5.15)

where  1 = _1_
2
3 − 2l1;  2 = −_11 + 2l2;  3 = −2_3l + 1;  4 =

1(2_1l + 1) − 02;  5 = _11 − 2l0;  6 = _2
3 − 2.
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According to (5.14), for all points under the CZVS, we find: 1) the determinant
of the matrix + is not equal to zero (its modulus in this region increases with
the decreasing A in comparison with the modulus of the determinant of the matrix
*); 2) values _1,2 are real (_1 = −_2 > 0), and values _3,4 = ±8? are imaginary
(_3 = 8? = −_4, ? > 0), as in the case (5.8). Therefore, the variational equations for
the motion in the neighborhood of the considered point can be written in the form

¤x′ = +−1�+x′
= !1x′,

or ¤x′ = !′
1x′, where !1 and !′

1 are matrices of the same type as ! and !′ in (5.13).
_1 and ? increase with decreasing A (due to an increase of V in the formulas for 0,
1, 2, see matrix �). In the considered range of A, the values of _1 and ? change in
several times. For example, if the point under consideration is displaced along b axis
(at [ = 0) from b = −|bC | ≃ −10.44467 pc to b = −3 pc, _1 increases in ∼ 6.60708
times, and ? increases in ∼ 5.24892 times.

General solution of the system ¤x′ = +−1�+x′ can be written as a linear combina-
tion of four particular solutions (including into the fundamental system of solutions)
in which the coefficients of the linear combination are constants. In the expression
for x = +x′, at sufficiently large C, the term ∼ exp(_1C) begins to dominate, and, at
numerical estimates of MLCE, gives the _1 value for the given trajectory (Loskutov
and Mikhailov, 1990, p. 132−133). Thus, the MLCE values increase for the trajec-
tories located at smaller distances from the mass center of the cluster. Numerical
estimates of the MLCE for the trajectories considered by Danilov and Leskov (2005),
as well as in Section 5.5 below, have the same character.

According to (5.15) and x = +x′, four directions of motion can be defined
for each point of the stellar trajectory with energy Y ≤ YC ; the characteristics of
these directions are discussed above in the explanation to (5.13). The directions of
stable and unstable motion with respect to the initial trajectory can be used in the
construction of families of stable and unstable trajectories in a given model of a
star cluster, as in the paper of Gidea and Masdemont (2007). We can use as the
initial trajectory either the separatrix considered in Section 5.3 or any of the periodic
trajectories discussed in Section 5.5 below.

5.5 Construction of Poincaré Sections

Following to Danilov and Chernova (2008), we determine the maximum distance bY
of a star from the origin along the axis b at the star "energy" Y = ;YC , where ; > 1.
Let bY > 0, [ = Z = 0. Using (5.4), denoting (Y = bY/|bC |, we obtain the equation
for (Y:

(3
Y − 3;(Y + 2 = 0.

The smallest positive root (Y ∈ [0, 1] of this equation, according to Korn and Korn
(1961), equals to

(Y =
√
; (cos(i/3) −

√
3 sin(i/3)),
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where i = arctan
√
;3 − 1. At ; = 1, we find i = 0, (Y = 1, that is, bY = |bC |.

Let Z = F = 0, Y/YC > 1. We consider two initial conditions for the system of
equations (5.2):

1)[(0) = E(0) = D(0) = 0, b (0) = −bY;

2)[(0) = D(0) = 0, b (0) = −bY + � ′, � ′ ∈ (0, |bC |), E(0) ≠ 0.

We find the value of E(0) from the Jacobi integral (5.3) :

E(0) = −
√

2(Y + W/|b (0) |) − U1b2(0) < 0.

Here, we use the sign ” − ” in front of the square root, and consider the trajectory
for which the vector of the initial angular momentum of the star relative to the mass
center of the cluster is parallel to the angular momentum vector of the Galaxy. In
this case, the trajectory of the star passes far enough from the center of mass of the
cluster, and the numerical integration of equations (5.2) is simplified.

Let the "energy"of the star motion Y = Y(b, [, D, E) = 2>=BC. We consider the
cross-section of the stellar trajectories by [ axis. In this case, b = 0. Let D > 0 (the
trajectory intersects the [ axis when the star moves from the region b < 0 to the
region b > 0). The values of the phase coordinates [ and E at b = 0 set a point on
the Poincaré map, see fig. 2, as well as Contopoulos (2002, p. 94).

In the case b = D = 0, we find from the Jacobi integral (5.3)

E1,2 = ±
√

2(W/|[ | + Y) . (5.16)

We note that E1 = E2 = 0 at [ = [0, where |[0 | = −W/Y = 2|bC |/(3;) < |[C |, since
; > 1, see notation for YC and |[C | in explanations for the formula (5.3). The equations
(5.16) correspond to two curves in the plane ([, E), symmetric with respect to the
axis [ and mutually symmetric with respect to the E axis. At b = 0, D > 0, from
Jacobi integral we find

|E | =
√

2(W/|[ | + Y) − D2 < |E1,2 |.

The values E corresponding to the values |E | on the curves (5.16) are reached for large
values |[ |. Thus, the envelopes E1,2 = E1,2 ([) of the region of the possible values of
([, E) for the given "energy" Y (or "tangents" , see Gidea and Masdemont (2007)) in
the plane ([, E) are located at greater distances from the axis E, than for any D ≠ 0.
The envelopes considered here intersect the [ axis at the points with coordinates
E = 0, [ = ±|[0 |. In the plane (b, [) the points with coordinates b = 0, [ = ±|[0 | are
located on the ZVS for a star with the "energy" Y.

If b = 0 and D > 0, then with the change of the sign of b at a given step of
integrationΔC we have b (C)b (C +ΔC) < 0 (this condition is used to detect intersection
of the trajectory with [ axis). Let C: = C + B:ΔC, where C: is the moment of the b sign
change. Let ΔC > 0, 0 < B: < 1, and b (C:) = 0. Assuming the dependency b = b (C)
near C = C: as linear, we find the value B: = −b (C)/[b (C + ΔC) − b (C)] > 0. From the
data on [(C), E(C) and [(C +ΔC), E(C +ΔC) we find [(C:) = [(C) + B: [[(C +ΔC) −[(C)],
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Table 5.1 Orbit parameters

N Y/YC �′, pc ) , milliom years �

1 1.003 1.48275279 577.0999 9
2 1.01 0.05662418 323.2832 5
3 1.02 0.04520202 292.3900 5
4 1.05 0.50570390 306.6827 6
5 1.07 0.38881780 282.3036 6
6 1.0927 0 233.0558 6
7 1.5199885 0 221.1408 13

E(C:) = E(C) + B: [E(C + ΔC) − E(C)]. In this case, the functions [(C), E(C) near C = C:
are also considered as linear. The values [(C: ), E(C:) for the constant "energy" Y
were used later in constructing the Poincaré map in the plane ([, E). We considered
seven Y values from the interval Y/YC ∈ [1.003, 1.52). For each of these values of Y,
a periodic orbit (or trajectory very close to periodic) has been found. Data on these
orbits are given in Table 5.1, where the values N , ) , � denote the serial number, the
period and the number of the orbit turns (the revolutions relatively to the mass center
of the cluster during the time )), respectively. The seventh orbit was discovered and
investigated by T.S. Chachina. The parameters of this orbit were further refined by
V.M. Danilov.

Danilov and Chernova (2008) established instability of orbits 5−7 from the Table
5.1. In order to analyze the stability of motions in the vicinity of a periodic orbit,
we used the system of equations (5.5) in the case Z = F = XZ = XF = 0, as well as
multipliers of the monodromymatrix (Yakubovich and Starzhinsky (1972, p. 82) and
Demidovich (1967, p. 183)) for this case of the system (5.5). Numerical integration
of the equations (5.2) and (5.5) was carried out by Danilov and Chernova (2008)
with the use of the 4th order Runge−Kutta method. The average relative error in the
"energy" |ΔY/Y | in calculating of the periodic orbits is ∼ 10−13 (the maximum value
is∼ 10−11, the minimum is∼ 10−15). In order to check the accuracy of the integrating
of the system of equations in variations, we used the integral of this system, obtained
according to Nemytsky and Stepanov (1947, p. 185), in the following form:

DXD + EXE(U1 + W/A3))bXb + (W/A3)[X[ = ℎ = 2>=BC.

In the joint integration of the equations (5.2) and (5.5), the value ℎ is usually preserved
with relative accuracy by 2−3 orders of magnitude lower than Y at identical intervals
of integration time.

When calculating the Poincaré maps, Danilov and Chernova (2008) for each value
of Y8/YC performed the calculation of the trajectories with initial condition 2 during
the time interval 10)8 , where )8 are the periods indicated in Table 5.1 for the energy
Y8 at 8 = 1, ..., 7. The mean relative error in the "energy" for the considered choices
of the trajectories is |ΔY/Y | ∼ 10−10 (maximum ∼ 10−7, minimal ∼ 10−13). When
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the value � ′ ∈ (0, bY) changes with the step Δ� ′ = 0.001bY > 0, the region
corresponding to the initial condition 2 is selected on the Poincaré map in the plane
([, E), see fig. 5.2. We obtained the estimates of the MLCE Λ for all trajectories.
In order to estimate Λ, we applied the procedure described by Lichtenberg and
Lieberman (1983), see formula (5.3.10) there. We used the small values, which
were obtained as the difference of the initial phase coordinates of two trajectories
satisfying the initial condition 2 with close� ′ values differing by X� ′ = 0.0001Δ� ′,
as initial values of Xb, X[, XD, XE in the equations (5.5).

In order to find the periodic orbits at � ′ ≠ 0 and the "energy" Y = Y8 Danilov
and Chernova (2008) calculated the distance 3 between two points on Poincaré map,
which were obtained for each value of� ′ on the first turn of the trajectory during the
time intervals C ∈ [0, )8] and C ∈ (5)8 , 6)8], see Table 5.1. If the trajectory is close to
periodic, 3 is small, what leads to appearance of a local minimum on the dependency
3 = 3 (� ′). The small changes of � ′ within the interval [� ′ −Δ � ′, � ′ +Δ� ′] allow
us to determine the exact values of � ′ and period ) for the detected closed orbit.

5.6 Discussion of The Properties of Stellar Trajectories

For all trajectories with initial conditions 2 at the "energies" Y indicated in Table
5.1, Λ values found by Danilov and Chernova (2008) are positive. Consequently, all
these trajectories are stochastic. All trajectories for each Y were divided into groups
according toΛ. The equal intervalsΔΛ = (Λ<0G−Λ<8=)/=6 were considered, which
contained each of the groups of trajectories, where Λ<0G is the maximum value, and
Λ<8= is the minimum value of Λ for a given "energy" Y, and =6 = 3−5 is the number
of trajectory groups.

Fig. 5.2 shows the fragments of the Poincaré map from the paper of Danilov
and Chernova (2008) for the case Y = 1.02YC , =6 = 3. The dashed line in fig. 5.2a
and 5.2b indicates the envelope of the region of admissible values ([, E), obtained
according to (5.16). In the fig 5.2 (and in fig. 5.3), darker points correspond to the
trajectories with largerΛ. To increase the contrast of the image, the points in fig. 5.2c
and fig. 5.2d are shown darker than the points for the same trajectories in fig. 5.2a and
fig. 5.2b. According to fig. 5.2a, trajectories with large values of Λ are located near
the axis E (at [ ≃ 0), as well as at some distance from the envelope line, indicating
that the motions are stochastic in these regions. In the plane (b, [) trajectories with
the largest Λ are located near the point [ = 0, b = 0 (here, an important role is
played by the sufficiently close encounters of bodies with masses <1 and <2, which
leads to an increase in the role of the nonlinearity of the equations of motion and
to an increased stochasticity of the trajectories). A small number of points for such
trajectories are scattered over the accessible region ([, E). The size of the PS region
available for such trajectories may be large enough, but the area occupied by such
trajectories on the Poincaré map is small. Trajectories with small values of Λ are
located near the envelope line in the region ([, E), . At [ ≃ [0 in this region, the star
moves slowly and is at the system periphery most of the time. Therefore, near the
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point ([, E) = ([0, 0), the close trajectories diverge slowly, which leads to small Λ
for these trajectories. Apparently, motions along [ axis at b = 0 near the envelope
line (5.16), have a "more regular" character at large E. Trajectories with mean Λ

values occupy symmetric regions with respect to the line E = 0.

V V

V V

h hh

h h

(a) (b)

(c) (d)

Fig. 5.2 Fragments (a)−(d) of Poincaré map at the "energy" of a star Y = 1.02YC

Fig. 5.2b shows in higher resolution (in comparison with Fig. 5.2a) the region
([, E) at the system periphery, where the difference in the location of trajectories
with large and small Λ is more noticeable. The region with the average values of
Λ is clearly visible. In fig. 5.2b, the areas of avoidance of trajectories in the region
accessible to the stellar motion in the plane ([, E), where there are no points at all,
are clearly visible. This is due to the use of not very large time intervals of integration
ΔC = 10)8 , see Table 5.1. If we integrate the equations of motion further along C (at
C > 10)8), then all regions that are not occupied by points on the plane ([, E) between
the curve (5.16) and axis E ([ = 0) will be filled. Trajectories with small values of
Λ are located in almost all regions of PS accessible to motion, although there are
regions of avoidance for such trajectories in the plane ([, E) (see above). The regions
([, E) with different stochasticity are closely intermixed in the PS (on the Poincaré
map and in the PS, there is a mutual penetration of regions with different degrees of
stochasticity).

With increasing spatial resolution, a large number of structural elements are
observed in the ([, E) plane: star-shaped structures of the first type, formed by the
intersection at one point of several lines set by chains of points with different � ′

values (fig. 5.2c), as well as structures of the second type − the ribbon-like regions
with a width of the "ribbon" , decreasing to zero at a certain point (fig. 5.2d), etc.
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Table 5.2 Values [, E and �′ for four points in fig. 5.2c

N E, pc/million years [, pc �′, pc
1 0 −3.1025 0.045202021
2 0.015 −3.075 0.063282830
3 0.022 −3.0625 0.0723232343
4 0.03 −3.05 0.081363639

Table 5.2 gives approximate coordinates of four points in fig. 5.2c, taken along
one of the "rays" of the starlike structure, starting from its "center" (point N = 1).
Columns 1, 2, 3, 4 of the Table 5.2 give the numbers of points N , values of [, E, and
corresponding value of � ′. Small changes of � ′ near the value � ′ corresponding
to a point with N = 1 in Table 5.2, allow us to detect a five-turn closed orbit with
a period of ) = 292.2434746 Myr and � ′ = 0.045615881 pc, one of the points of
which on the plane ([, E) is located near the "center" of considered structure of the
1st type. Analysis of the monodromy matrix multipliers for this orbit shows that it is
stable. On the plane ([, E), this orbit is represented by five points (for six deviations
in distance A from the center of the system, the star in the plane (b, [) passes the
interval Δi = 10c through azimuth angle i). If we plot these five points in fig.
5.2b, these points will be surrounded by the invariant "curves" which are ellipses
of different degrees of elongation corresponding to the � ′ value given in Table 5.2.
The values MLCE for the periodic orbits found by Danilov and Chernova (2008)
were obtained from the data on the periods of these orbits and on the multipliers
of the monodromy matrices corresponding to these orbits (see formula (2.22) from
Yakubovich and Starzhinsky (1972, p.87) and Demidovich (1967, p.189))).

In the middle of the horseshoe-like region with small values of Λ in fig. 5.2b
there is a point with coordinates [ ≃ −5.05384 pc, E = 0, which corresponds to
a one-turn unstable elliptical orbit with the period ) = 53.85359851 Myr and
� ′ = 4.604446465 pc, with large semiaxes ∼ 4.6 pc (in b-coordinate) and ∼ 5.1 pc
(in [-coordinate). The value of MLCE for this trajectory equals Λ = 0.001875267

(Myr)−1, which corresponds to Lyapunov time CΛ ≃ 5.3× 108 years. The value of CΛ
for this orbit is ∼ 2.7 times greater than an average OSC lifetime g ≃ 2 × 108 years
(Wielen, 1971). Then, this orbit can be considered as close to stable or practically
stable at time intervals comparable to g. In fig. 5.2d, a point corresponds to this orbit
at which the extended ribbon-like region (with small Λ) contracts to zero width;
the same structure (of the second type) is also observed on the Poincare map for
Y = 1.01YC . The points of the invariant "lines" , corresponding to the same � ′, with
an increasing time C, are moved away from the point ([, E) = (−5.05384pc, 0), which
is formed by the single-turn periodic orbit considered above.

Thus, structures of the 1st and 2nd types, which are most clearly seen in fig. 5.2,
are associated with stable and practically stable periodic orbits.

On the Poincaré maps with Y/YC = 1.01, 1.05, 1.07 the same structural elements
are observed as in the case of "energy" Y/YC = 1.02. On the Poincaré maps with
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Y/YC = 1.0927, 1.5199885 at a sufficiently large resolution, structures of the first type
are also observed, which, in these cases, differ to some extent from those considered
at Y/YC = 1.02. The difference is that the "rays" of these structures are located within
small vertical angles (with a vertex at the center of the "asterisk" − at the intersection
of all lines, ("rays") of the structure), these angles are less than in the case shown in
fig. 5.2c. At Y/YC = 1.0927, 1.5199885, points of invariant curves with a fixed value
� ′, just like on the map with Y/YC = 1.02, traverse the vertex of an "asterisk" along
arcs that, with increasing C , can form ellipse-shaped curves surrounding the vertex
of the "asterisk".

h h

h

V V

V

(a) (b)

(c)

Fig. 5.3 Fragments (a, b, c) of Poincaré map at the "energy" of star Y = 1.5199885YC

Fig. 5.3 shows the fragments of the Poincaré map from the paper of Danilov
and Chernova (2008) with the "energy" Y/YC = 1.5199885. Here, as in fig. 5.2, the
boundaries between regions occupied by trajectories with different values of Λ at
=6 = 5 are clearly visible. The size of the points for the second group of trajectories
(with Λ ∈ (Λ<8= + ΔΛ,Λ<8= + 2ΔΛ]) has been reduced in comparison with the size
of points for the trajectories of the remaining groups. In fig. 5.3, identical points
of the darkest shade correspond to the 4th and 5th groups of trajectories with the
largest values of Λ. Points with small values of Λ are present practically in all
structural elements of fig. 5.3, which, as in the case of fig. 5.2, indicates the mutual
penetration of regions with different degrees of stochasticity in the PS. The points
with the maximum Λ are in the "annular triangular" region, symmetric with respect
to the line E = 0, see fig. 5.3a. Inside this "annular" region, one can see an area
of smaller values of Λ, near the center of which, there is the largest (for this map)
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Table 5.3 Values �′ at 3 (�′) ≃ 0

Y/YC �′, pc
0.04520202 0.1808081 1.419343 2.395707

1.02 3.435354 4.212828 4.601566 4.990303
5.668333 5.695455 6.527172 6.563334
7.223283 7.81995

1.5199885 0.009609614 2.147749 4.540543 4.646249
4.713516

structure of the 1st type, see fig. 5.3b. We note that this map shows more structures
of the 1st type than the map at Y/YC = 1.0927, see fig. 5.3c. One of them, with a
vertex near the point [ = −2.695 pc, E = 0, see fig.5.3b, corresponds to a one-turn
periodic nearly circular orbit in the plane (b, [) with radius A∗ ≃ 2.7 pc. The values
of � ′ = 2.149548799 pc and period ) = 19.97273 Myr correspond to this orbit.
The value MLCE for this orbit is Λ ≃ 0.39272 × 10−4(Myr)−1, it corresponds to
the Lyapunov time CΛ ≃ 2.5 × 1010 years, which exceeds the age of our Galaxy.
Therefore, this orbit can be considered as practically stable. Another 13 structures
of the 1st type have centers on the plane ([, E), corresponding to the points of the
13-wobble unstable periodic orbit. It corresponds to the value � ′

= 4.7135821 pc,
period ) = 222.637 Myr, Λ ≃ 0.04 (Myr)−1, CΛ ≃ 25 million years. The centers of
the eight structures of the first type associated with a given orbit are easily seen in
fig. 5.3c in the range of values [ ∈ [−0.35 pc,−0.15 pc].

In comparison with fig. 5.2, at "energy" Y = 1.003 YC , the whole region accessible
to motion is more evenly and chaotically filled in the plane ([, E). The smaller the
"energy" Y < 0, the more structures of the first types appear on the Poincaré
maps, and the average stochasticity of the trajectories increases (the mean Λ at
Y = 1.003 YC is Λ ≃ (0.1775± 0.1366) (Myr)−1, and at Y = 1.5199885 YC , we find
Λ ≃ (0.3346 ± 0.1053) (Myr)−1). With a decreasing of Y, the maximum possible
number of turns in periodic orbits in the plane (b, [) increases; the radial elongation
of these turns and the degree of instability of multi-turn periodic orbits increase. The
dependency of Λ on Y in the interval Y/YC ∈ [1.003, 1.5199885] is consistent with
the data on the increase of the moduli of eigenvalues of the matrix � with decreasing
A, obtained in Section 5.4.

Applying the functions 3 = 3 (� ′), see above, in the cases Y = 1.02YC and
Y = 1.5199885YC , we have found 14 and 5 periodic orbits (or trajectories very
close to periodic), see Table 5.3. For these orbits, 3 (� ′) ≃ 0. Varying � ′ in the
neighborhood of each value � ′, we can refine � ′ and determine the periods ) of the
found orbit.

In this part of the work, we have considered only "prograde" trajectories, satisfy-
ing the initial conditions 1 and 2 in Section 5.5. The consideration of "retrograde"
trajectories leads to less stochastic motions and the formation of a large number of
stable periodic orbits. Also, it leads to closer and more frequent encounters of bodies
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with masses <1 and <2, which significantly complicates calculation of trajectories.
In this case, the two-point cluster model describes to a lesser extent the situation
in OSC (due to the absence of the point cores in the real OSC). Therefore, "retro-
grade" trajectories of stellar motion in this model were not considered. At the same
time, this cluster model provides an increase in the stochasticity of motions with the
decreasing of "energy" Y and the largest distance of the stellar trajectory from the
center of mass, which agrees with the conclusion about increased stochasticity of
the cluster cores in the OSC models (Danilov and Leskov, 2005).

5.7 Conclusions

1. We have provided the formulas for the coordinates of three singular points of
the system of equations of stellar motion in a two-point model of the OSC with a
circular orbit in the plane of the Galaxy. We have found eigenvalues and eigenvectors
of the equations in variations written both for the neighborhood of the singular point
b = −|bC |, [ = Z = 0, and for neighborhood of the point located under CZVS on a
trajectory with "energy" Y ≤ YC .

2. The singular points with coordinates b = ±|bC |, [ = Z = 0 are points of the
"saddle-center" type; motion in the neighborhood of these points is unstable (as in
the corresponding case of CR3BP). We have written general solution of the system
of equations in variations in the neighborhood of singular point b = −|bC |, [ = Z = 0.
Using this solution, a separatrix is found numerically, which connecting the singular
points b = ±|bC |, [ = Z = 0.

3. At Y ≤ YC , for the trajectories under CZVS, the moduli of the eigenvalues of the
system of equations in variations increase with decreasing the maximum distance
of the trajectory from the mass center of the cluster. It leads to an increase in the
numerical estimates of the MLCE of the trajectories with a decreasing Y in Section
5.6.

4. In the coordinate system associated with the eigenvectors of the considered
systems of the variational equations, the canonical variational equations are written
that can be used both for their numerical integration and for a setting of the initial
conditions for the constructing of the stable (and unstable) trajectories relatively to
the original trajectory in the PS.

5. On the Poincaré maps, a large number of structural elements of two types
are observed: structures of the first type, formed by the intersection at one point of
several lines given by chains of points with different values of� ′, and also structures
of the second type − the ribbon-like regions, with the "ribbon" width decreasing to
zero at a certain point.

6. At� ′ ≠ 0, all the found values of the MLCE of the trajectories are positive, and
the trajectories themselves are stochastic. Zones with different stochasticity are very
closely intermixed in the phase space. The smaller Y, the more structures of the first
type appear on the Poincaré maps, and a stochasticity of the trajectories increases.
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7. A number of periodic orbits have been found in the considered model of
the OSC. The structures of the first and second types that are most noticeable on
the Poincaré map at Y/YC = 1.02, are associated with stable and practically stable
periodic orbits. A large number of structures of the first type on the Poincaré map for
Y/YC = 1.5199885 is due to the existence of multiturn unstable periodic orbits. With
a decreasing of the Y for such orbits, the MLCE value and the maximum possible
number of turns in the plane (b, [) increase; the radial extension of these turns also
increases.
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Chapter 6

Time Scales of Dynamic Evolution Mechanisms
of Open Star Clusters

Abstract In this chapter, we consider the data on the time dependencies of the
dispersions of the star motion velocities in three mutually perpendicular directions
in the halo and the cluster core for a number of the non-stationary OSC models. In
the course of the dynamic evolution of the OSC models, the values of the velocity
dispersions undergo oscillations that do not damp for 5−10 intervals of violent
relaxation time gEA . We discuss the estimates of the synchronization time CB of the
rotation of the examined OSC models with their motion around the center of the
Galaxy. Depending on the parameters of the OSC models, the synchronization times
are CB ≃ (5 − 27)gEA . The mechanisms of a synchronization of the OSC models are
discussed. We note a prominent role of the tidal friction in the decay of such systems
in the field of the Galaxy. We consider the estimates of the formation time for the
spherical distribution of stellar velocities in the cluster models Cf ≃ (6−25)gEA . We
discuss the effect of instability in the motion of the cluster stars on the formation of
the spherical distribution of stellar velocities in the considered OSC models. We note
a tendency toward weakening of the dependency of a coarse-grained phase density
of the cluster on the effect of the small initial perturbations of the phase coordinates
of stars in the cores of the cluster models for time instants which are ∼ 5 times more
distant than the time of a violent relaxation.

6.1 Introduction

Long and Weinberg (1993) and Weinberg (1993) investigated the tidal action of the
Galaxy on the shape of its satellites (dwarf galaxies and globular clusters). They
showed, at the base of numerical experiments with initially oblate satellites of the
Galaxy, that the synchronization of satellite rotation with its orbital motion occurs
in a time approximately equal to five revolutions of the satellite around the center of
the Galaxy in the tidal field, the value of which is below a certain critical value. In
stronger tidal fields, in which the satellite-cluster loses more than half of its stars,

93
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synchronization does not occur, and after the tidal truncation the cluster takes a
spheroidal shape.

Mechanisms of tidal interactions in binary stars (BS) were considered in the
papers of Lecar et al. (1976); Hut (1981); Mardling and Aarseth (2001) (see also
references in these papers). If the distances between two stars and their mutual
orientation change with time slowly enough, then the tides are called equilibrium tide
(or static tide (Surdin, 2002, p. 10)), otherwise the tides are called dynamic. Dynamic
tides occur at resonances between the natural frequencies of stellar oscillations and
the frequency of tide. Equilibrium tides exist in the case of rotation of the BS
component synchronous with its orbital motion. In the presence of damping of the
tidal oscillations, we observe the lags (or leads) of the tidal humps (protrusions on
the surface) of a star relative to a straight line connecting the centers of mass of two
stars (Hut, 1981; Mardling and Aarseth, 2001). The equilibrium tide model (Hut,
1981) with weak tidal friction describes the evolution of the angular moments of
stars and their orbits with the not very large eccentricities. Mardling and Aarseth
(2001) considered a chaotic behavior of the orbits of the BS components for large
eccentricity of orbits and very close encounters of the BS components.

It is of interest to analyze a tidal friction in the OSC models in the case when the
rotation of the cluster is not synchronized with its motion along the orbit. Dissipation
of the energy of a tidal hump in such OSC models can occur both in the interaction
of single cluster stars with the field of the tidal hump (eventually, with the stars
forming the tidal hump) and at resonances between the oscillation frequencies of the
OSC and the frequency of the tide. Due to these mechanisms, during the time CB , the
cluster rotation synchronizes with its orbital motion, and the cluster itself "heats up"
and disrupts, partially or completely.

According to observations in the infrared, X-ray and radio wavelengths, the OSC
are formed in the cores of giant molecular clouds (GMC) (Allen et al., 2007). In
this case, the velocities of the gas in the cloud are inherited by the emerging stars,
which makes it possible to get some idea about the characteristics of the initial
stellar velocity field in the OSC. Chernin and Efremov (1995) and Shchekinov and
Zinchenko (2004) discuss the various mechanisms for the formation of the GMCs and
the torque in these clouds. Chernin and Efremov (1995) presents the estimates of the
angular momenta for the most rapidly rotating and the "ordinary" GMCs (see Table
1 in the paper of Chernin and Efremov (1995)), and also gives the examples of three
clouds, two of which rotate in "retrograde" direction, and one rotates in "prograde"
direction (in these cases, the angular momentum vectors of the cloud and the Galaxy
are antiparallel and parallel, respectively). Shchekinov and Zinchenko (2004) have
shown that the rotational momentun of clouds can be oriented not necessarily along
the direction of the Galaxy rotation.

According to Phillips (1999), the observed orientations of the angular rotation
velocities of 156 molecular clouds (MC) form a distribution with two maxima near
the directions to the northern and southern poles of the Galaxy. At the same time, the
dispersion of this distribution (Phillips, 1999) near the maxima is sufficiently large;
orientations of the MC rotation angular momenta can be random, and an appreciable
part of the MCs has an orientation of rotation along the Galactic plane. Goodman
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et al. (1993) and Pirogov et al. (2003) had studied the rotation in the dense and
massive MC cores by the data of radio observations. Goodman et al. (1993) showed
that in 29 MCs (out of 43 ones), the gas motions are consistent with the model of
homogeneous rotation of the cores; an orientation of the gradient of the gas velocities
projections onto celestial sphere is approximately conserved in the whole range of
the considered densities (they used the radio observations of the molecules #�3,
�18$, �(). Goodman et al. (1993) found the relation between the specific angular
momentum 9 and the size ' (a diameter) of the cloud: 9 ∼ '3/2; they did not note
the correlation between the directions of the axis of rotation and the elongation of
the cloud. Pirogov et al. (2003), according to the radio observations of the molecule
#2�

+ in 35 MCs, determined the sizes of the MC cores of (0.3 − 2.1) pc and their
virial masses of (30 − 3000)"⊙. The typical ratio of the rotational energy of MC
to its gravitational energy, according to Goodman et al. (1993), is V ∼ 0.02, and,
according to Pirogov et al. (2003), V ∼ 4 × 10−4 − 7.1 × 10−2 (that is, a rotation
does not keep the MC in an equilibrium). Pirogov et al. (2003) noted the correlation
between the directions of the axis of rotation and the elongation of the cloud. Data
on the angular momenta of the MC cores can also be found in Section 5.3.1 of the
review of Ballesteros-Paredes (2007).

Danilov and Dorogavtseva (2003) considered the dynamic evolution of the OSC
models moving along the circular orbits in the plane of the Galaxy and not rotating
relatively to the outer galaxies at the initial point of time C = 0. They obtained the
estimates of the local time of a violent relaxation CA from the data on the instability of
the phase density function (PDF) of clusters relatively the small initial perturbations
of the phase coordinates of stars; the estimates of the initial time of a violent
relaxation of the OSC models gEA , as well as the estimates of the relaxation time of
these models from the data on star fluxes in the spaces of a number of the stellar
motion parameters: Y, ;Z , YZ , A and E (energy, angular momentum of the star with
respect to Z axis and the energy of the stellar motion perpendicular to the Galactic
plane per unit of the star mass, the module of the radius vector and the module of
stellar velocity, respectively). According to Danilov and Dorogavtseva (2003), the
time of the "collisional" relaxation gBC for such systems (due to the stellar encounters)
is 1.8−2.6 times larger than gEA . It means that the interactions of stars with the time-
varying regular field dominate in the relaxation of the considered OSC models with
the number of stars # = 500. Estimates of the relaxation time of the OSC models in
the spaces of values Y, ;Z , YZ , A and E satisfy the relations gY > g;Z > gYZ > gE and
gA > gE .

Danilov and Dorogavtseva (2003) discussed the possible reasons for the formation
of such inequalities. During the evolution of the cluster models, the relaxation times in
all the considered spaces increase, which indicates a decrease in the rate of evolution
of the OSC in the spaces of the values Y, ;Z , YZ , A, E (Danilov and Dorogavtseva,
2003). In the course of a violent relaxation, stars with energies Y occupy all regions
accessible to them in the OSC, first in the space of E, and then in the space of A
(in models of Danilov and Dorogavtseva (2003) gA ≃ (1.3 − 2.6)gE). A connection
between the growth rates of the PDF perturbations during the evolution of the OSC
models with the differences in the relaxation rates of the models in the E and A spaces
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is noted. In the OSC models of Danilov and Dorogavtseva (2003) and Danilov
(2002b), the balance of star fluxes in the spaces Y, ;Z , YZ , A is noted; the equilibrium
distributions of stars are present in the spaces Y, ;Z , YZ . The equilibrium PDF, which
corresponds to the balance of the star fluxes in the space Y, determines the structure
of the OSC and the models of such clusters both during the violent relaxation (in
the time intervals C ∈ [0, gEA ]) and during the subsequent, slowly damping density
oscillations.

It is of interest to estimate the time intervals, during which the oscillations of
the dispersion of the velocities decay, and the parameters of the velocity distribution
formed at this time point, and to analyze the evolution of the PDF perturbations due
to the instability of the stellar trajectories to small changes in the initial PCS in the
considered OSC models. Comparison of the decay time of the oscillations of the
velocity dispersions with the relaxation times of the OSC models will allow us to
find the mechanisms that delay the "virialization" of such systems. The dynamics
of the PDF perturbations will make it possible to investigate the effect of the initial
(and current) PDF perturbations on the conclusions about the parameters of the
considered systems. In order to obtain these estimates, it is necessary to calculate
the cluster models at the time intervals C, which are longer than ones considered by
Danilov and Dorogavtseva (2003).

Calculations of the cluster models in the work of Danilov and Dorogavtseva
(2003) were performed by integrating the equations of the stellar motion using the
difference schemes of the 8th and 9th order of accuracy in the time interval C ∈ [0, C0],
where C0/gEA ≃ 2.7 − 3.5. C0 is the time interval of the dynamic evolution of the
OSC model, during which the statistical criterion for the accuracy of calculations
is fulfilled (Danilov, 1997b), see also Section 16.3. In this case, the accuracy of
calculation of the cluster’s PDF can be considered sufficient for the conclusions
about the statistical properties of the PDF. To increase C0, a further increase is
necessary in the order of accuracy of the difference schemes used in the calculations.

The objective of this chapter is to discuss the features of the dynamic evolution of
the OSC models that are non-stationary in the regular field and have different initial
rotation speeds; to estimate the synchronization time of the cluster rotation with its
motion around the Galactic center. Also, the goal of this part of the present work
is to increase the order of accuracy of the integration method used to calculate the
stellar trajectories in the OSC models.

6.2 Description of OSC Models

Following to Danilov and Dorogavtseva (2003); Danilov (2002b); Danilov and Doro-
gavtseva (2008), we consider a cluster containing # = 500 stars and moving in the
Galactic plane in a circular orbit with a radius of 8200 pc around the Galactic center
with an angular velocity l = 2>=BC. At the initial time C = 0, the star cluster is
modeled as a system of two gravitating balls simulating a halo and a core with the
coincident centers of mass. 12 OSC models are considered, the data of which are
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given in Table 6.1. The 1st column of Table 6.1 and Table 6.2 contains the number
of the OSC model. Models 1−6 at C = 0 do not rotate with respect to outer galaxies
and coincide with models 1−6 of Danilov and Dorogavtseva (2003); the parameters
of these models are listed also in Table 16.1 of Section 16.1. Models 1a−6a at C = 0

rotate synchronously with their orbital motion. Rotation around Z axis of �a models
at C = 0 is solid-state with angular velocity l relative to � models (� = 1 − 6). Initial
parameters '1/'2 and #1/#2 (see the 2nd and 3rd columns of Table 6.1) in all
considered OSC models satisfy the relation '1/'2 ≃ 0.39 × (#1/#2)0.35 obtained
from observations (Danilov and Seleznev, 1994), where '1 and '2 are the radii of
the core and the halo of the cluster, #1 and #2 are the numbers of the core stars and
the halo stars of the clusters (the initial value of #1 is given in the 4th column of the
Table 6.1).

Table 6.1 Parameters of the OSC Models

N '1/'2 #1/#2 #1 '2/'C gEA
1 and 1a 0.24 0.25 100 0.9 49.9
2 and 2a 0.24 0.25 100 0.8 41.8
3 and 3a 0.34 0.67 200 0.8 41.8
4 and 4a 0.24 0.25 100 0.7 34.3
5 and 5a 0.45 1.50 300 0.8 41.8
6 and 6a 0.63 4.00 400 0.8 41.8

Let us consider the motion of the cluster stars in the rotating coordinate system
(b, [, Z ), associated with the mass center of the cluster. The axes b, [ and Z are
directed from the mass center of the cluster to the Galactic anticenter, along the
direction of cluster motion in the Galactic plane and perpendicular to the plane
of the Galaxy, respectively. In order to calculate the OSC models, we applied the
equations of stellar motion (5.517)−(5.519) from the paper of Chandrasekhar (1942)
written in the coordinate system (b, [, Z ). The potential of the Galaxy was taken in
the form proposed by Kutuzov and Osipkov (1980). The method for specifying the
initial positions and the velocities of the stars in the OSC models is described by
Danilov and Dorogavtseva (2003). The initial coordinates of the stars in the models
1a−6a and in the corresponding models 1−6 coincide, and the initial velocities of
the stars in the models 1a−6a are specified so that the cluster does not rotate in the
coordinate system (b, [, Z ). We use the following system of units: pc, Myr, "⊙ .
The smoothing of the force functions in the right-hand parts of the equations of the
stellar motion was used (the technique and the smoothing parameter are described
by Danilov (1997a)).

Column 5 of Table 6.1 lists the initial values '2/'C for the cluster models. 'C is
the tidal radius of the cluster stability in the field of the Galaxy, obtained according
to King (1962). Column 6 of Table 6.1 lists the estimates of the initial time of a
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Table 6.2 Estimates of Synchronization Time

N CB,2/gEA CB,ℎ/gEA CB/gEA
1 6.2±0.4 8.9±0.3 7.5±0.2
2 8.0±1.0 9.3±0.5 8.7±0.4
3 5.7: 11.6±0.7 12.6±1.1
4 8.7±1.1 12.7±1.1 10.3±0.7
5 8.3: 14.1: 12.0:
6 9.9: 26.6±4.0 17.8::
N CB,2/gEA CB,ℎ/gEA CB/gEA
1a 3.4±0.1 6.2±0.2 4.6±0.1
2a 5.2±0.3 10.4±0.8 7.4±0.3
3a 4.7±0.5 12.2±2.0 7.4±0.5
4a 6.4±0.8 14.2: 12.0±1.9
5a 6.6: 8.5±1.2 7.6::
6a − − −

violent relaxation gEA (in Myr), obtained by Danilov and Dorogavtseva (2003) for
the models 1−6 and used here as the corresponding time scale for the models 1a−6a.

In Table 6.2, columns 2−4 contain the estimates of a synchronization time of the
cluster (and its subsystems) rotation with the orbital motion of the cluster for models
1−6 and 1a−6a, respecfively, obtained by Danilov and Dorogavtseva (2008): CB,2 −
for the core, CB,ℎ − for the halo of the cluster, CB for the cluster as a whole, obtained
in the units of gEA .

6.3 Basic Calculation Techniques

In the work of Danilov and Dorogavtseva (2008), an integration of the equations
of stellar motion is carried out by the 10th order Runge−Kutta method (Hairer et
al., 1987, p.203) applying the Richardson extrapolation, which provides the 11th
accuracy order for approximation of the desired solution (Hairer et al., 1987, p. 176).
The calculations were made with an accuracy of 15−16 decimal digits. The maximum
relative error in calculating of the "energy" � of the cluster (see (5.522) from
Chandrasekhar (1942)) reached in the time interval C0 in the considered models,
is modulo ∼ (1 − 4) × 10−13. The statistical criterion for the accuracy of the PDF
computation (Danilov, 1997a) was fulfilled during the time intervals C0/gEA in the
range of 3.0− 3.9 in the center to 3.6− 5.1 at the periphery of the considered cluster
models. The use of methods of the 10th and 11th accuracy orders makes it possible
to increase the values C0/gEA in comparison with those obtained by Danilov and
Dorogavtseva (2003), see above.

In order to estimate the values CB,2 , CB,ℎ and CB , given in the Table 6.2, we applied
the time dependencies of the mean values of the velocities 〈Ei〉 for the motion of
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the stars of the cluster core, the cluster halo, and the cluster as a whole around the
axis Z in the plane (b, [). These dependencies 〈Ei〉 = 〈Ei (C)〉 were approximated
by the linear dependencies at the specially chosen sections of the curves close to
the moment of intersection of the C axis by the curve 〈Ei〉 = 〈Ei (C)〉. The time, at
which the straight line approximating the dependence 〈Ei (C)〉 intersects the C axis,
was assumed as the corresponding synchronization time. According to Table 6.2,
the estimates of CB,2 and CB,ℎ , even for the halos of the OSC models, are several
times higher than C0/gEA for these cluster models. We note that, in comparison with
the PDF, the values 〈Ei〉 depend to a lesser extent on the initial and current PDF
perturbations, since they contain averaging in the space of coordinates and velocities
of the stars. In order to analyze the influence of errors of integration of the equations
of a stellar motion on the values 〈Ei〉 (and on the estimates of CB,2 , CB,ℎ , CB), we
perform the statistical comparison of the time dependencies of the values 〈Ei〉10 and
〈Ei〉11 obtained with the use of the numerical methods of 10th and 11th accuracy
orders, respectively, for integrating the equations of a stellar motion. As a measure
of correlation between 〈Ei〉10 and 〈Ei〉11, we used the correlation coefficient :1,2

of the time dependencies 〈Ei (C)〉10 and 〈Ei (C)〉11. The radius of the cluster core
A = '2 at the time C was determined using the radial profiles of the spatial density
of the number of stars as a position of the outer boundary (by A) of the region of the
maximum density gradient modulus.

We assumed the cluster halo radius to be equal to the tidal radius A = 'C when
estimating the values of CB,ℎ and CB. The synchronization times CB,2 , CB,ℎ and CB were
determined from the data on the 〈Ei〉 obtained with the use of the PCS with distances
A from the center of the cluster satisfying to the following inequalities, respectively:
A ≤ '2, '2 < A ≤ 'C and A ≤ 'C . Integration of the equations of motion of stars
was carried out to the time values of C = 2C0, where C0 was the largest value C0,
obtained for the periphery of the cluster model. The maximum relative error of
calculating the "energy" � at the time point C = 2C0 in the considered models, was
∼ (1 − 4) × 10−13 (as in the case of C = C0). Consequently, the greatest values of the
error of � are attained at small values of C < C0 in the early stages of the dynamic
evolution of the cluster models. At :1,2 ∈ [0.65, 0.95], the time interval C∗ (during
which a significant correlation between the dependencies 〈Ei (C)〉10 and 〈Ei (C)〉11

takes place for the considered OSC models) equals to C∗/gEA ≃ 5.8 − 10.1 for the
core, C∗/gEA ≃ 6.9 − 10.1 for the halo, and C∗/gEA ≃ 7.1 − 10.1 for the entire cluster
(here, the largest value of C∗ reaches C∗ = 2C0 ≃ 10.1gEA ).

In order to analyze the time evolution of the velocity distribution of stars in the core
and the halo of clusters over time intervals equal to 2C0, we have calculated the time
dependencies of f2

Eb
, f2

E[
and f2

EZ
for the dispersions of the stellar motion velocities

along the axes b, [ and Z , respectively. Comparison of the time dependencies of
the velocity dispersions obtained using the 10th and 11th accuracy methods leads
to the following time intervals C∗, during which a significant correlation between
these dependencies takes place. When studying the cores of the OSC models from
the data on the values f2

EZ
, we find C∗/gEA ≃ 7.1 − 10.1 at :1,2 ∈ [0.82, 0.97], and,

for dependencies f2
Eb
(C), we find C∗/gEA ≃ 5.7 − 10.1 at :1,2 ∈ [0.66, 0.85]. In the

case of the halo of the OSC models: C∗/gEA ≃ 7.1 − 10.1 at :1,2 ∈ [0.84, 0.93]
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and C∗/gEA ≃ 6.1 − 10.1 at :1,2 ∈ [0.68, 0.85] for dependencies f2
EZ
(C) and f2

Eb
(C),

respectively. Thus, at C ≤ C∗ the values 〈Ei〉, f2
EZ

and f2
Eb

obtained within the
framework of the 11th accuracy order can be used properly for the analysis of the
dynamics of the considered OSC models. Let C∗<8= be the smallest value C∗ for each of
the variables 〈Ei〉, f2

EZ
and f2

Eb
. Then the largest values of :1,2 and C∗<8= are attained

for the dependencies f2
EZ

= f2
EZ
(C). Consequently, the dependencies f2

EZ
= f2

EZ
(C)

for the considered OSC models are obtained most accurately.
In the Table 6.2, for models 3, 4a, 5, 5a, 6, the symbol ":" indicates uncertain

estimates of CB,2 and CB,ℎ , for which the value 〈Ei〉 = 0 was achieved many times
over a sufficiently large time interval or near the time C = CB,2 or C = CB,ℎ , there
was a noticeable difference in 〈Ei〉10 and 〈Ei〉11, as well as their corresponding
synchronization time estimates. The symbol "::" in the Table 6.2 for models 5a and
6 indicates even more uncertain estimates of the synchronization time of the cluster
model CB obtained by the formula CB = (CB,2 + CB,ℎ)/2. In this case, the estimate of
CB from the data on 〈Ei (C)〉11 is either impossible, or contains the extrapolation in C
over a large time interval.

The procedure for calculating of the PDF perturbations k 9 (C), which are the
mean relative differences of the PDF of two OSC model versions with small initial
differences of PCS, is described in detail by Danilov and Dorogavtseva (2003). All
500 stars in one of the compared cluster model versions were divided into groups
of 50 stars in order of increasing A (Danilov and Dorogavtseva, 2003). According to
the data on the velocities of stars from the intervals of distances A, corresponding to
these groups, according to formula (6) from the paper of Danilov and Dorogavtseva
(2003), we obtain the values k 9 (C) ( 9 = 1, ..., 10). Functions k 9 (C), obtained for
different values of 9 , allow us to evaluate the instability of the PDF of the OSC models
to small initial PCS perturbations at different distances from the cluster center.

Changes with time C of the radii of the concentric spheres with the center in the
mass center of the cluster and "enclosing" (bounding relatively to the distance from
the cluster center) a fixed number of cluster stars, allow us to evaluate the influence of
the tidal field of the Galaxy on the groups of stars located at different distances from
the cluster center. The method of the similar calculations of the radii of spheres in
the star cluster models was considered by Spitzer and Thuan (1972); Henon (1973).

6.4 Changes in the Parameters of Stellar Velocity Distribution

with Time. Instability of Phase Density to Small Initial

Perturbations

Synchronization of rotation of the considered OSC models with their orbital motion
in the Galaxy is accompanied by a "heating" and a partial destruction of the clusters.
After the beginning of evolution in models 1−6 during the time intervals of ΔC ≃
(3 − 4)gEA , the values 〈Ei〉 < 0 and change (decrease) only slightly with time due
to an escape from the cluster of a part of the stars with "prograde" trajectories (with
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positive angular momentum of motion ;Z with respect to the Z axis). A significant
role also is played by the transitions of stars with ;Z > 0 from the core to the halo. As
a result of such transitions, the values of 〈Ei〉, obtained for the cluster core, decrease
with increasing of C (at C ≤ (3 − 4)gEA ); for models 1 and 4, see fig. 6.1.
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Fig. 6.1 The time dependencies of 〈Ei 〉 in models 1, 1a, 4, 4a. Solid line, short-dash and long-
dash lines, mark the curves obtained from the data on stars with A ≤ 'C , A < '2 , '2 < A ≤ 'C

respectively

In models 1a−6a during ΔC ≃ (3 − 4)gEA , the loss of stars with ;Z > 0 from the
cluster is more significant. As a result, stars with ;Z < 0 begin to dominate in the
estimates of 〈Ei〉, and the cluster "spins" in the "retrograde" direction (clockwise
in the (b, [) plane). By the moment C ≃ (3 − 4)gEA , the values 〈Ei〉 in these models
also become negative, see fig. 6.1. Then the considered cluster models due to a tidal
friction and the subsequent relaxation of the energy of the tidal perturbations begin
to "spin" in "prograde" direction, which leads to an increase of 〈Ei〉 with time,
and subsequent synchronization of the intrinsic and orbital rotations of clusters.
Short-period changes in the values of 〈Ei〉 with time in the core and the halo occur
in antiphase (the acceleration of the rotation of the core in the coordinate system
(b, [, Z ) is accompanied by the halo deceleration and vice versa). With an increase
of C (at C ≃ 10.1gEA ) the values 〈Ei〉 for the core and the halo approach each other.
It indicates an increase in the angular rotation rate of the core in comparison with
angular velocity of rotation of the halo. However, these velocities are small, and
when the OSC models are synchronized, they tend to zero. The values of CB increase
with the increasing number of stars #1 in the core (see data on models 2, 3, 5, 6 with
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the same value '2/'C = 0.8 in Tables 6.1 and 6.2). It is caused by a lesser influence
of tidal forces on the denser (and more massive) core of the cluster in comparison
with their effect on the extended and rarefied halo of the cluster. For the same reason,
larger estimates of CB were obtained for denser cluster models (see data on models 1
and 4, 1a and 4a in Tables 6.1 and 6.2).

The estimate of the rotation synchronization time for the cluster−satellite of the
Galaxy obtained by Weinberg (1993) (∼ 1.1 × 109 years for the radius of the cluster
orbit considered in the present work) is quite comparable with our largest estimates
of CB ≃ 5.3×108 years and CB ≃ 7.4×108 years for models 3 and 6, respectively. The
differences in the values of CB of (1.5−2 times) in the paper of Weinberg (1993) and
in the present work may well be due to the difference in the parameters of clusters
and models of the force field of the Galaxy assumed by Weinberg (1993) and in the
present work.

It is convenient to study the destructive effect of the tidal field of the Galaxy on
the cluster applying the time dependencies of the average distance of stars 〈A〉 from
the cluster center for stars with A ≤ 'C , see fig. 6.2. Almost in all the analyzed OSC
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Fig. 6.2 Time dependencies of 〈A 〉 in cluster models 2, 2a, 3, 3a, 5, 5a, 6, 6a. The curves are
marked by the numbers corresponding to the numbers of specified models

models (except model 6a), the value of 〈A〉 after the onset of evolution first decreases
with increasing C. It indicates an increase in the density of the cores of the OSC
models (due to the dissipation of stars and the corresponding relaxation processes).
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Then, starting from the moment C 〈A 〉 , the value of 〈A〉 begins to increase rapidly with
increasing C (due to tidal "heating" of the cluster). The tendency of the considered
OSC models to synchronize their rotation with the orbital one (see fig. 6.1) is an
indication of the role of the tidal forces in this expansion. In addition, the rate of a
tidal "heating" of the cluster is largely determined by the cluster size. The equation
for the rate of change in the rotational energy of the cluster model due to the action
of tidal perturbations in the framework of a simple model of the equilibrium tide
can be written in a form analogous to equation (A30) from the paper of Hut (1981)
for the BS components. In this case, according to Hut (1981), the rate of the energy
transfer of rotation to the cluster is proportional to the value of ∼ 〈l〉'8/" , where
〈l〉 is a mean angular velocity of the cluster rotation with respect to Z axis in the
coordinate system (b, [, Z ), ' and " are the radius and mass of the cluster model,
respectively. Therefore, the increase of the size of the cluster within the model of Hut
(1981) at 〈l〉 ≠ 0 makes a decisive contribution to the change in the cluster energy.

In model 6a, the time C 〈A 〉 (when a decay begins) can not be determined, since after
a compression and small expansion, this model again begins to compress. According
to Table 6.3, the values of C 〈A 〉 in the considered models are enclosed in the interval of

C from C
(10)
〈A 〉 ≃ (1.1±0.1)gEA (in model 1a) to C (2)〈A 〉 ≃ (7.7±0.4)gEA (in model 2), which

roughly corresponds to the C values from (54.9 ± 5.0) Myr to (322.2 ± 16.7) Myr.
The values C 〈A 〉 (and their errors) are determined using polynomials of the second
degree approximating the dependency 〈A (C)〉 in a certain vicinity of the time point
at which the cluster begins to extend. The errors of C 〈A 〉 are due to the errors in the
coefficients of the polynomials approximating the dependency 〈A (C)〉; the errors in
〈A〉 and C 〈A 〉 are related to each other by the 〈A (C)〉) relationship. For the subsystem of
stars with A ≤ 'C by the time C = C 〈A 〉 in models 1−6, the angular rotational velocities
〈l〉 relatively to the Z axis in the coordinate system (b, [, Z ) are approximately equal
to each other and on average are 〈l〉 = 〈Ei〉/〈A〉 ≃ −0.0198 ± 0.0022(Myr)−1,
which is by absolute value ∼ (1.4289± 0.1588) times less than the angular velocity
l of the motion of the considered cluster models around the center of the Galaxy.
At the time C = C 〈A 〉 in models 1−6, as a result of the action of tidal friction and
the relaxation of tidal perturbations, approximately the same changes occur in the
value of 〈l〉 towards the direction of synchronization with the frequency of the
orbital motion of the OSC model in comparison with the initial value 〈l(0)〉 = −l.
In models 1a−5a by the moment C = C 〈A 〉 , the values 〈l〉 are in the range from
∼ (−0.021 ± 0.001)(Myr)−1 (in the model 1a) to ∼ (−0.008 ± 0.001)(Myr)−1 (in
the model 5a). The averages values of 〈l〉 on the interval C ∈ [0, C 〈A 〉] are modulo
∼(2−5) times smaller, than in models 1−6 by the moment C = C 〈A 〉 . In the models 1−6
by the time C 〈A 〉 the larger angular rotation speeds 〈l〉 are formed in "retrograde"
direction (in comparison to models 1a−5a). Also, there are large deviations from the
direction toward the Galactic center of straight line of tidal hump (which connects
the mass centers of the humps in the plane (b, [), see fig. 1 from the paper of Hut
(1981)). This deviation indicates a somewhat larger role of tidal effects in models
1−6.

With an increase of the density and a decrease of 〈A〉 in the considered OSC
models, the role of the tidal forces in an evolution decreases, which leads to an
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increase in C 〈A 〉 . For example, for models 1 and 2, we find C (2)〈A 〉 ≃ (2.3 ± 0.3)C (1)〈A 〉 (the
mean radii of these models before a beginning of an expansion satisfy the relation
〈A〉1 ≃ (1.3± 0.1)〈A〉2, and the values 〈l〉 are practically the same). However, when

comparing models 1 and 1a, we find C (1)〈A 〉 ≃ (2.5±0.4)C (10)〈A 〉 at 〈A〉10 ≃ (1.0±0.1)〈A〉1,
〈l〉1 ≃ (1.0 ± 0.1)〈l〉10 before the expansion of the models begins. In model 1a,
at the time C 〈A 〉 , the loss of stars with angular momenta ;Z > 0 is greater than in the
model 1 (due to the instability of such trajectories and a bigger number of stars with
;Z > 0 at C = 0 in model 1a). On average, in time interval C ∈ [0, C 〈A 〉], the value
〈l〉1 ≃ 2〈l〉10. Loss of stars in the cluster model 1a leads to a noticeable weakening
of the force field and acceleration of the decay of model 1a in comparison with model
1. When comparing models 1a and 2a, we find C (20)〈A 〉 ≃ (3.6 ± 0.4)C (10)〈A 〉 at 〈A〉10 ≃
(1.1 ± 0.1)〈A〉20, 〈l〉10 ≃ (1.9 ± 0.2)〈l〉20 before the expansion of the models
begins. In model 1a, the role of tidal forces increases in comparison with model 2a
due to the increase in the angular velocity 〈l〉. It leads to a greater deviation of the
tidal hump line from the direction to the Galactic center. Comparing models 2 and 2a,

we find C (2)〈A 〉 ≃ (1.6 ± 0.1)C (20)〈A 〉 at 〈A〉20 ≃ (1.2 ± 0.1)〈A〉2, 〈l〉2 ≃ (1.8 ± 0.2)〈l〉20.

The difference in the proportions C (1)〈A 〉 ≃ (2.5 ± 0.4)C (10)〈A 〉 and C (2)〈A 〉 ≃ (1.6 ± 0.1)C (20)〈A 〉
is due to the greater density of models 2 and 2a in comparison to models 1 and
1a, which reduces the role of tidal forces in the dynamics of denser OSC models.
Comparison of the parameters C 〈A 〉 , 〈A〉, 〈l〉 of the rest of the OSC models indicates
the effect of the considered above factors in the dynamic evolution of OSC: density
of the model, degree of concentration of stars toward the center of the model, the
preferred loss of stars with ;Z > 0, and a deviation from zero of the mean angular
velocity 〈l〉 in the coordinate system (b, [, Z ).

For all the OSC models considered in sections 6.2−6.4,Danilov and Dorogavtseva
(2008) constructed the time dependencies of the radii A= of the concentric spheres
with the center in the mass center of the cluster, which limit a fixed number of stars
= by distances A ≤ A= (Spitzer and Thuan, 1972; Henon, 1973). The dependencies
A= = A= (C) have a similar character for all models. At small = ∼ 5 − 50, the values
A= depend weakly on time. At large = ∼ 250 − 450, on average with respect to the
oscillation period of the regular field %A , after a small and short decrease, the A=
values increase with time experiencing small oscillations with the period %A , see,
for example, fig. 6.3.

Table 6.3 contains the data on the number = of stars satisfying the condition
A= ≤ 'C by the time C = C0, obtained by Danilov and Dorogavtseva (2008) with the
use of the dependencies A= = A= (C) for the considered OSC models (the errors of the
values = in the Table 6.3 are ±5). According to Table 6.3, models 5, 5a, 6 and 6a are
the most steady to a decay in the field of Galactic forces. By the time C = C0, they
retain 82 − 92 % of the initial number of stars. We note that models 5 and 6 are the
closest ones to a virial equilibrium among models 1−6 considered by Danilov and
Dorogavtseva (2003). Interestingly, in model 6, during the periods of the greatest
compression of the cluster to the plane Z = 0, a toroidal structure is formed; this
structure has an increased density of the number of stars inside the torus (in the
space b, [, Z ), and an equatorial plane close to Z = 0 (Danilov and Leskov, 2005).
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Fig. 6.3 Time dependencies of A= in cluster models 2, 2a, 3, 3a. Numbers indicate the curves
corresponding to the specified number of stars = with A ≤ A=

Perhaps the results noted here indicate the stability of toroidal (or close to toroidal)
systems moving along circular orbits in the plane of the Galaxy. The least dense
cluster models 1a and 1 are the most unstable ones to decay among the considered
models. By the time C = C0, they conserve only 30 − 32 % of the initial number of
stars. According to Danilov and Dorogavtseva (2003), model 1 is the most distant
one from a virial equilibrium among models 1−6.

For all the considered OSC models, for stars of the core (A ≤ '2) and the halo
('2 < A ≤ 'C ) of clusters, on the time interval C ∈ [0, 2C0], we constructed the
time dependencies of the values f2

Eb
, f2

E[
and f2

EZ
which are the stellar velocity

dispersions along the axes b, [ and Z , respectively (for models 2 and 2a, see fig. 6.4).
The values f2

EZ
demonstrate the largest magnitudes and the largest oscillation

amplitudes over time. Therefore, the largest contribution to the non-stationarity of
the cluster models is made by their oscillations along the Z-coordinate. The amplitude
of the oscillations of the values f2

EZ
at C ≤ C 〈A 〉 changes over time like the amplitude

of oscillations of the virial coefficient U = 2�/, , where � and , are total and
potential energy of the stellar subsystem with A ≤ 'C in the cluster model. The
amplitudes of the oscillations of the values f2

EZ
and U decrease with time until the

time point corresponding to either the instant of the establishing of the "equilibrium"
oscillations with almost constant amplitude (for example, in model 6), or the time
point after which the amplitudes off2

EZ
and U oscillations increase again. At C → 2C0,
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Fig. 6.4 Time dependencies of the dispersion of stellar velocities f2
Eb

= f2
1 , f2

E[
= f2

2 and

f2
EZ

= f2
3 in cluster models 2 and 2a. Numbers 1, 2, 3 indicate curves corresponding to the values

f2
1 , f2

2 , and f2
3 . Letters 2 and ℎ indicate the dependencies obtained for the core and halo of the

model, respectively

the virial equilibrium in the OSC models is not achieved. Oscillations of the OSC
models along Z axis do not completely damp and support models in the non-stationary
state on the time interval C ∈ [0, 2C0]. We note that the relaxation time of models
1−6 in the space of specific energies YZ of the stellar motion along Z -coordinate,
according to the data of Danilov and Dorogavtseva (2003) on stellar fluxes in the
space of Y, ;Z , YZ , A, is a smallest one. On average, for models 1−6 of Danilov and
Dorogavtseva (2003), the following proportions take place: gY ≃ (4.2 ± 0.3)gYZ ,
g;Z ≃ (2.9 ± 0.2)gYZ , gA ≃ (1.4 ± 0.1)gYZ . This indicates the efficiency of the
energy transfer to the cluster from the large-scale motions along the Z -coordinate.
The transfer of the energy of a stellar motion along the Z axis to a stellar motion
along b- and [-coordinates leads to expansion of the cluster along the plane (b, [)
and to a partial loss of stars from the cluster during the motion of stars along this
plane. The main reasons for a maintaining the non-stationarity and oscillations of
the considered cluster models along the Z axis on the time interval C ∈ [0, 2C0] are:

• the large initial degree of deviation of the cluster from an equilibrium in the stellar
motions along Z axis (at C = 0, the models are spherically symmetric);

• the constant loss of stars from the cluster (which becomes more significant after
the beginning of cluster expansion at C ≥ C 〈A 〉);
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• the proximity of the OSC models to gravitational instability noted earlier by
Danilov and Dorogavtseva (2003) and Danilov (2002b).

In the latter case, the small and small-scale density oscillations in the cluster are
easily amplified to the level of the large-scale ones, which is visible on the plots of
dependencies of U and f2

EZ
on time C.

As a rule, in the course of calculations, the relationsf2
EZ
> f2

E[
> f2

Eb
are fulfilled,

see, for example, fig. 6.4. As a result of the action of the relaxation mechanisms
(violent relaxation, stellar encounters) in the models of the OSC, the values of f2

EZ

(averaged by the oscillation period) decrease with time until the moment C = Cf ,
when the dispersions f2

Eb
, f2

E[
and f2

EZ
approximately equalize with each other. It

does not happen in all models in the considered time intervals. At least, on the time
intervals C ∈ [0, 2C0], in the halo of models 4, 5a and 6a, the values of f2

EZ
are

only slightly approaching to f2
Eb

, f2
E[

, which indicates the elongation of the velocity
ellipsoid along the Z axis in these clusters at C → 2C0. In the halo of models 4, 5a
and 6a, the values fEZ /fEb oscillate near the values of 1.283 ± 0.039, 1.261 ± 0.054
and 1.262 ± 0.048, respectively, and the values fEZ /fE[− near the values of 1.137
± 0.041, 1.179 ± 0.040 and 1.149 ± 0.044, respectively.

In this work, the estimate of Cf for the cores and the halos of the OSC models
was obtained according to the data on dependencies of f2

Eb
and f2

EZ
on time C. These

dependencies were approximated by linear functions of C at specially chosen time
intervals contained in the intervals C ∈ [0, C∗], during which a significant correlation
takes place between the dependencies on time of the velocity dispersions obtained
from the integration of the stellar motion equations of the 10th and 11th accuracy
order. Solution of the system of linear regression dependencies f2

Eb
(C) and f2

EZ
(C),

obtained from the 11th-accuracy-order calculations, determines the value C = Cf .
The errors in the coefficients of regressions f2

Eb
(C) and f2

EZ
(C) set an error of the

estimate of Cf . The value Cf can be considered as an approximate estimate of the
transition time of the system to almost spherical distribution of stellar velocities. The
estimates of Cf for the core (Cf,2) and halo (Cf,ℎ) of the considered OSC models in
the units of a violent relaxation time gEA are given in the Table 6.3. According to the
Table 6.3, the time Cf is 6.1−24.9 times higher than the value gEA , which indicates
a very slow spherization of the velocity distribution in the considered models.

Comparison of the values of Cf in models 1, 2, 4 (as well as in models 1a, 2a,
4a) shows that Cf,2 and Cf,ℎ grow with the increasing density of the cluster model.
In these models, on average, Cf,2 < Cf,ℎ , although in statistical sense the difference
between Cf,2 and Cf,ℎ is small. Comparison of the values Cf in models 2, 3, 5, 6
(as well as in models 2a, 3a, 5a, 6a) shows that Cf,2 and Cf,ℎ grow with increasing
number of stars #1 in the cluster core. Thus, in models 1 and 1a with the lowest initial
density and the lowest number of stars in the core, the estimates of Cf are the smallest
ones. According to Danilov and Dorogavtseva (2003), the estimates of the relaxation
time gY in the cluster models 1−6 decrease with the increasing cluster density and
number of stars in the model core. Consequently, the process of spherization of the
velocity distribution is mainly not due to the action of relaxation processes, but to the
proximity of the OSC models to a gravitational instability and the development of
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Table 6.3 Estimates of the values C〈A〉 , =, Cf,2 , Cf,ℎ

N C〈A〉/gEA = Cf,2/gEA Cf,ℎ/gEA
1 2.8±0.3 160 7.6±1.0 8.9±1.1
2 7.7±0.4 265 8.3±1.1 10.2±0.9
3 2.9±0.1 375 11.8±1.8 9.0±1.1
4 4.2±0.4 380 17.8±2.9 >20.0
5 1.9±0.2 410 14.4±0.8 13.7±0.6
6 5.2±0.4 460 21.5±1.1 24.9±1.3
N C〈A〉/gEA = Cf,2/gEA Cf,ℎ/gEA
1a 1.1±0.1 150 9.9±2.2 6.1±0.6
2a 4.7±0.3 235 9.1±2.2 8.7±0.6
3a 4.0±0.2 320 14.0±4.0 9.7±1.2
4a 5.8±0.4 315 14.6±2.4 16.0±1.7
5a 5.4±0.5 420 21.7±1.1 13.5±0.5
6a − 415 19.4±0.9 22.8±1.1

some types of instabilities in the motion of stars in the cluster models. For example,
according to Ogorodnikov (1958, p. 398), in the stellar subsystem participating
in a development of the dynamic instability, a rotation ("quasi-precession" ) of the
ellipsoid of velocities of these stars in the plane (E b , E[) leads to the fact that general
distribution of stellar velocities of the system in this plane becomes circular.

A similar effect is also observed in our models, see, for example, the decrease
with time of the differences between the values f2

E[
and f2

Eb
in fig. 6.4. Usually for

the considered OSC models, a relation CB ≤ Cf is fulfilled, see Tables 6.2 and 6.3.
Perhaps the non-synchronous rotation of OSC relatively its orbital motion prevents
the formation of a spherical distribution of stellar velocities in the cluster models.
According to Tables 6.1−6.3, the values CB and Cf are several times larger than an
average OSC lifetime ∼ 2 × 108 years (Wielen, 1971). This is an argument in favor
of the fact that the process of synchronization of the rotational and orbital OSC
motions, as well as the process of formation of the spherical distribution of stellar
velocities in most of the observed OSC have not yet finished.

Let us note that the mean values f2
Eb

, f2
E[

, and f2
EZ

(by the oscillation period)
mostly decrease over time, which is caused by tidal "heating" of the cluster and its
expansion. Such changes with time of the mean f2

Eb
, f2

E[
, and f2

EZ
are more visible

in models 1−4 and 1a−4a with a higher degree of non-stationarity in a regular field.
The considered tides in the models in our work are dynamic. Therefore, the role of
resonances between the frequency of the tide and oscillation frequencies of models
1−4 and 1a−4a can be significant in the energy dissipation of the tidal humps of
these models. For the degree of non-stationarity of the models 1−4, see Table 1
from the paper of Danilov and Dorogavtseva (2003). For the analysis of resonances
between the periods of stellar motion and the period of oscillations of a regular field
%A in models 1−6 see Danilov and Leskov (2005). In models 5, 6, and 5a, 6a, the
stellar encounters may play a more important role in the dissipation of the energy
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Fig. 6.5 The time dependencies of k8 (C) in the cluster models 2, 2a, 4 and 4a. Digits 3, 4 and 5
indicate the curves corresponding to 8 = 3, 4, and 5

of tidal perturbations. As a result of the action of these mechanisms in time CB , the
rotation of the cluster is synchronized with its orbital motion, and the cluster itself
"heats up" and partially disrupts.

Let us note that in the halo of models 2a, 3 and 3a, the mean values f2
Eb

, f2
E[

(averaged over the oscillation period) in the interval C ∈ [C0, 2C0] grow insignificantly
with increasing C, which indicates the possibility of transferring of the part of the
kinetic energy of the stellar motions along Z axis to the stellar motions in the plane
(b, [) at time intervals ΔC ∼ C0.

For all the considered cluster models, we have constructed the time dependencies
of k8 at the time interval C ∈ [0, C0]. Analysis of the dependencies k8 = k8 (C)
confirms the conclusion of Danilov and Dorogavtseva (2003) about the decrease in
the values of k8 with time in the cores of the OSC models (with the larger number of
models and for longer periods of time). The value C0 grows with the increase of 8 (in
the regions of the cluster that are further from its center). Therefore, a decrease in
the values k8 (over time C) can be traced to the longest extent in time at the periphery
of the cores of the cluster models, where the density of the number of stars and
the frequency of stellar encounters are still large enough (according to Danilov and
Dorogavtseva (2003)) that lead to a decrease in k8 over time C.

According to fig. 6.5, in the cluster models 2a and 4a, which do not rotate at C = 0

relatively Z axis in the coordinate system (b, [, Z ), the valuesk8 only slightly decrease
with time after reaching the highest values. This is due to greater non-stationarity
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and greater loss of stars in models 2a and 4a in comparison with models 2 and 4 (see
fig. 6.5 and Table 6.3). The tendency to a weakening of the dependency of the cluster
PDF on the influence of the small initial PCS perturbations with increasing C at the
considered time intervals is more noticeable in the cluster models 1−6, that do not
rotate relatively the external galaxies at C = 0, contain a larger number of stars with
angular momenta ;Z < 0, and are more resistant to decay in the field of the Galaxy
in comparison with models 1a−6a.

6.5 Conclusions

1. We have considered the results of calculations of the dynamic evolution of 12
models of non-stationary OSC on time intervals ΔC = 2C0 ≃ (7.2 − 10.1)gEA . In
the course of the dynamic evolution of the OSC models, dispersions of the stellar
velocities in three mutually perpendicular directions undergo oscillations that do not
damp for more than (5 − 10)gEA . The main reasons for maintaining non-stationarity
and oscillations of the considered cluster models along Z axis are large initial de-
viation of the cluster from equilibrium in stellar motions along Z axis, the constant
loss of stars from the cluster, and the proximity of the OSC models to a gravitational
instability mentioned earlier by Danilov and Dorogavtseva (2003); Danilov (2002b).

2. We have given estimates of the synchronization time CB of the rotation of the
OSC models with their motion around the center of the Galaxy. Depending on the
parameters of the OSC models, the synchronization times are CB ≃ (5 − 27)gEA . For
the cores of the considered OSC models, CB values are 1.4−2.7 times less than for the
halo. The tides in the considered OSC models are dynamic. Therefore, an important
role in dissipation of the energy of tidal perturbations in such OSC models should
be played by resonances between the oscillation frequencies of the OSC and the
frequency of the tide. In models 5, 5a, 6, 6a, which are closer to a virial equilibrium,
the stellar encounters can play an appreciable role in the energy dissipation of the
tidal perturbations. As a result of these mechanisms, during the time CB , the cluster
rotation is synchronized with its orbital motion, and the cluster itself "heats up"
and partially disrupts. During the time C0 ≃ (3.6 − 5.1)gEA , in the OSC models at
distances A ≤ 'C from the cluster center, between 30 and 92 % of the cluster stars
are conserved.

3. We have performed the estimates of Cf , the time of the formation of a spherical
distribution in the OSC models. The values Cf 6.1−24.9 times exceed the value gEA ,
which indicates a very slow spherization of the velocity distribution in the considered
models. Cf increase with the increase of the density of the model and the number of
stars in the core of the cluster model. We have noticed the effect of instability in the
cluster star motion on the process of spherization of the stellar velocity distribution
in the considered OSC models. Usually, for these cluster models the relation CB ≤ Cf
is fulfilled. Perhaps, the non-synchronous rotation of the OSC relatively to its orbital
motion prevents the formation of a spherical distribution of stellar velocities in the
cluster models. The values CB and Cf are several times higher than the mean OSC
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lifetime, which indicates that the process of synchronization of the rotational and
orbital OSC motions, as well as the formation of the spherical distribution of stellar
velocities in most of the observed OSC have not yet finished.

4. We have confirmed the conclusion of Danilov and Dorogavtseva (2003) (for
a larger number of cluster models and at larger periods of time) about the presence
in the cores of the OSC models of a tendency to decrease k8 and to weaken the
dependency of a coarse-grained PDF on the influence of the small initial PCS
perturbations for the time points that are ∼ 5 times further than the violent relaxation
time.

5. We have noted that it is possible to monitor statistically the calculation accuracy
of the characteristics of the OSC models 〈Ei〉 andf2

8 , 8 =1,2,3, averaged in the space
of PCS, as well as the accuracy of CB , Cf obtained from the data on 〈Ei〉 and f2

8 at
C ∈ [C0, C∗], C∗ > C0. Comparison of the dependencies 〈Ei (C)〉 (or f2

8 (C)), obtained
using the 10th and 11th accuracy orders at the time intervals C ∈ [0, C∗], reveals a
significant correlation between them (:1,2 ∈ [0.65, 0.98]). In the considered models,
C∗/gEA ≃ (5.8 − 10.1) for the core, and C∗/gEA ≃ (6.1 − 10.1) for the halo of the
cluster.
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Chapter 7

Analysis of Density Oscillations in Models
of Open Star Clusters

Abstract In the numerical dynamic OSC models of Danilov and Dorogavtseva
(2003); Danilov (1999); Danilov and Dorogavtseva (2008), the large-scale oscillfa-
tions of a density and of a regular field are spontaneously and rapidly developing.
We studied these oscillations and, on a basis of that, established and investigated the
instability of solutions for phase density function (PDF) to small initial perturbations
of the phase coordinates of stars (PCS) (Danilov and Dorogavtseva, 2003; Danilov,
1999). Danilov and Dorogavtseva (2008) used the possibility of the gravitational
instability development in the considered OSC models to explain some of the results
obtained numerically (oscillations of the values of the virial coefficient and disper-
sion of the cluster stars’ velocities that do not decay during large time intervals;
decrease of the time of a spherization of the stellar velocity distribution in the least
dense OSC models with the greatest degree of non-stationarity in a regular field).
We note that, at present, the theoretical description of the gravitational instability
in such complex, inhomogeneous in a density and non-isolated objects as OSC is
absent.

7.1 Introduction

In the papers Danilov (2005, 2006) we considered the theoretical models of a stellar
motion on the periphery of OSC. Danilov (2005) used the model of the potential
of a nonisolated homogeneous gravitating ellipsoid in order to approximate the
average (by the oscillation period) regular field of a potential at the periphery of
the numerical dynamic OSC models. We could completely integrate the equations
of a stellar motion in the joint field of such an ellipsoid and the Galaxy, written
according to Chandrasekhar (1942), and also obtained three integrals of motion.
An analysis of these integrals made it possible to construct a two-integral PDF and
a three-integral general stellar velocity distribution in the considered model of a
homogeneous ellipsoid.

115
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An amplitudes of the regular potential oscillations near the center and at the
periphery of the numerical models of a non-stationary OSC (Danilov and Dorogavt-
seva, 2003), according to Danilov (2005), are at least 6 % of the regular potential
averaged over its oscillation period %A . The mean value of the potential (averaged
over %A ) near the centers of the OSC models (Danilov and Dorogavtseva, 2003) is
2.6−3.3 times greater than at the periphery (near the critical surface of zero velocities
of stellar motion (Danilov, 2005)). Therefore, the amplitudes of the potential oscilla-
tions in the cores of the cluster models are the greatest in absolute value. The stellar
motions in the cores (Danilov and Dorogavtseva, 2003) of the OSC models have the
greatest degree of stochasticity (Danilov and Leskov, 2005). Properties of the stellar
trajectories and the cluster potential noted here complicate the analysis of the stellar
motions and the perturbations of the PDF in the OSC cores. Theoretical description
of the phase density oscillations in the cores of a non-stationary non-isolated OSC
is currently possible only, if one actively apply the results of a numerical modeling
of the dynamics for such clusters.

The points of a great interest are: 1) the gross-dynamic analysis of the density
oscillation frequencies in the non-isolated ellipsoidal OSC models (the results of
such study can be applied to simplify the analysis of the phase-density oscillations in
such systems); 2) the use of the model of a potential of a non-isolated homogeneous
gravitating ellipsoid to construct an equilibrium three-integral PDF and describe the
dynamics of the OSC central regions; 3) application of the Boltzmann equation for
the analysis of the phase density oscillations in the OSC cores.

The objective of this chapter is to discuss the oscillations of a density and a phase
density in the non-isolated ellipsoidal OSC models.

7.2 Oscillations of a Homogeneous Triaxial Gravitating Ellipsoid

Following to Danilov (2005), we consider the cluster moving in the Galactic plane
along the circular orbit around the Galactic center with an angular velocity l =

2>=BC. The equations of a stellar motion are written in the rotating coordinate system
b, [, Z (Chandrasekhar, 1942). Following to Chandrasekhar (1942), we expanded the
regular potential of the Galaxy in a series up to quadratic terms in the coordinates
b, [, Z . According to Danilov (2005) and Chandrasekhar (1942), the equations of a
stellar motion in the joint force field of the Galaxy and the cluster have the following
form:

¥b = −V2
1b + 2l ¤[, ¥[ = −V2

2[ − 2l ¤b, ¥Z = −V2
3Z , (7.1)

where ¤b = 3b

3C
, ¥b = 3 ¤b

3C
, the values ¤[, ¤Z , ¥[, ¥Z are defined similarly;

V2
; = 2(*0 +*1)/02

; , ; = 1, 2, 3,

01 = 0, 02 = 1, 03 = 2;
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−V2
1b =

m*

mb
− U1b , −V2

2[ =
m*

m[
, −V2

3Z =
m*

mZ
− U3Z ;

U1 and U3 are constants characterizing the force field of the Galaxy in the vicinity
of the circular cluster orbits (their numerical values are defined by Danilov (2005)
applying the model of a Galactic potential of Kutuzov and Osipkov (1980)).

In equations (7.1), a potential* of the cluster is used in the form

* = *0 − (*0 +*1):2 + (, :2
= ( b

0
)2 + ( [

1
)2 + ( Z

2
)2, ( =

U1b
2 + U3Z

2

2
. (7.2)

Constant values *0 and *1 were obtained by Danilov (2005) for six OSC models
by an approximating of the cluster potential at its periphery by the potential of
some homogeneous ellipsoid (for the sake of brevity, we will henceforth call it
�-ellipsoid); potential of this ellipsoid is set by the formula (7.2); 0, 1, 2 are the
semiaxes of �-ellipsoid, dimensions of which coincide with the dimensions of a
critical surface of zero velocities of the cluster (Danilov, 2005).

We use a gross-dynamic description of the evolution of a gravitating ellipsoid in
order to study its oscillations near the corresponding to �-ellipsoid state of a virial
equilibrium (Danilov, 2005). In this case, the integral characteristics of a gravitating
ellipsoid as a whole are usually considered (Kuzmin, 1965).

Danilov (2008) obtained the equations for the total kinetic energies ); of the
cluster star motions along the axes b, [, Z in the force field of the Galaxy and �-
ellipsoid applying the equations (7.1). The same equations are applied to obtain the
angular momentum !3 of the �-ellipsoid rotation around Z axis,

¤); = −
V2
;

2
¤�; , ¤!3 = −l( ¤�1 + ¤�2), (7.3)

as well as the equations for the diagonal elements of the inertia tensor of �-ellipsoid
�; , ; = 1, 2, 3. The equation for !3 is easily integrated:

!3 = −l(�1 + �2) + !3(0) , where !3 (0) = 2>=BC.

Let !3(0) = 0. According to Danilov (2006), a general three-integral velocity dis-
tribution of stars in the model of �-ellipsoid is triaxial and ellipsoidal. Taking into
account an expression for !3, as well as the symmetry of the star distribution in the
model of the �-ellipsoid in the space of coordinates and velocities, we reduce the
equations for �; values to the following form:

¥�1 = 4)1 − 2V2
1�1 − 2l2(�1 + �2);

¥�2 = 4)2 − 2V2
2�2 − 2l2(�1 + �2);

¥�3 = 4)3 − 2V2
3�3.

(7.4)

The first three equations from (7.3) together with the equations (7.4) form a closed
system for the values ); , �; , ; = 1, 2, 3. We apply these equations in order to esti-
mate the oscillation frequencies of gravitating ellipsoid near the equilibrium state
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Table 7.1 Parameters of homogeneous ellipsoids

N :ℎ *0/* ′
0

1 0.37988 0.99617
2 0.38026 0.98740
3 0.37836 0.99429
4 0.38416 1.00431
5 0.38275 0.98633
6 0.38453 1.01201

corresponding to �-ellipsoid (for the sake of brevity, we shall refer to these oscil-
lations as �-ellipsoid oscillations). The V2

;
values depend nonlinearly on �; . The

potential * ′
0 in the center of an isolated homogeneous ellipsoid with density d and

semiaxes 0, 1, 2 is related to the potential energy , ′ of this ellipsoid as follows:
, ′ = − 2

5"*
′
0, where " is the ellipsoid mass (Subbotin, 1949, p. 40−41). For six

numerical dynamic non-isolated OSC models considered by Danilov (2005), the
values :ℎ = −,0/("*0) for �-ellipsoid and *0/* ′

0 have been defined by Danilov
(2008) and are listed in Table 7.1. Here,,0 and*0 are the potential energy and the
potential at the center of �-ellipsoid.

According to Table 7.1, :ℎ in the considered �-ellipsoid models is close to 0.4,
and the value of *0/* ′

0 differs little from unity. Differences in the potentials *0

and * ′
0 are 1.5−4.7 times smaller than the approximation errors for the *0 value

(Danilov, 2005). Therefore, for an approximate evaluation of the variations XV2
;

of
the V2

;
values, we will further apply the relations*0 ≃ * ′

0 and,0 = −:ℎ*0" .
Following to Danilov (2005), for the value −,0 we write

:ℎ*0" =
"

2
{*0 − 0.1[6(*0 +*1) − U10

2 − U32
2]}.

From this relation, we find

*0 +*1 = [ℎ*0 + 0.5(U10
2 + U32

2)]/3,

where ℎ = 5(1− 2:ℎ). Let us to use* ′
0 as*0 in the expression for*0 +*1. Varying

*0 +*1, we find

X(*0 +*1) = −5�ℎ

8

3∑
;=1

�;X�; +
5

6"
(U1X�1 + U3X�3), (7.5)

where

�; =

∫ ∞

0

3B

(02
;
+ B)Δ(B)

;

Δ(B) =
√
(02

1 + B) (0
2
2 + B) (0

2
3 + B)
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(Danilov, 2006); 02
;
= 5�;/"; ; = 1, 2, 3; � is the gravitational constant.

XV2
; = [2X(*0 +*1) − V2

; X0
2
; ]/0

2
; .

The formula (7.5) allows to define the values XV2
;

according to the data on�-ellipsoid
parameters. Let �; = �0,; + X�;, ); = )0,; + X); , where �0,; , )0,; are constant values;
; = 1, 2, 3. Let |X�; | << �0,; , |X); | << )0,; . Varying first three equations from (7.3),
equations (7.4), considering the expressions obtained for XV2

;
, we write linearized

equations for the values X�;, X);:

¥X�1 = 4X)1 − X&, ¥X�2 = 4X)2 − X&;

¥X�3 = 4X)3 + 2g1X�1 + 2g2X�2 − 2&3X�3, ¤X); = − V
2
;

2
¤X�;,

(7.6)

where
X& = 2(&1X�1 +&2X�2 +&3X�3);

&1 = l2−g1 < 0; &2 = l2−g2 < 0; &3 = −�ℎ"�3

4
+U3/3 > 0; ; = 1, 2, 3;

g1 =
�ℎ"�1

4
− U1/3 > 0; g2 =

�ℎ"�2

4
> 0.

The signs of the values &8 and g9 are given here considering the data on the �-
ellipsoid parameters in the cluster model 1 of Danilov (2005).

Characteristic equation of the system (7.6) has the form

`3 (`6 + 2!`4 + 4#`2 + 8%) = 0, (7.7)

where ` is an eigenvalue of the matrix of system (7.6);

! =

3∑
8=1

(V2
8 +&8);

# = &1 (V2
2 + V

2
3) +&2(V2

1 + V
2
3) + &3(2l2 + V2

1 + V
2
2) + V

2
1V

2
2 + V

2
3 (V

2
1 + V

2
2);

% = V2
1V

2
2V

2
3 +&1V

2
2V

2
3 +&2V

2
1V

2
3 +&3 [V2

1V
2
2 + l2(V2

1 + V2
2)] .

The first three roots of the equation (7.7) equal to zero (`1,2,3 = 0). We denote
_ = `2. Equating the expression in the parentheses in (7.7) to zero, we obtain a
bicubic equation for _:

_3 + 2!_2 + 4#_ + 8% = 0.

With a help of a standard substitution _ = j − 2!/3 (Korn and Korn, 1968, p. 44)
this equation can be reduced to a simpler (incomplete) form:

j3 + ?j + @ = 0,

where
? = −(2!)3/3 + 4#; @ = 2(2!/3)3 − 8!#/3 + 8%.
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In the case of �-ellipsoid of the OSC model 1 (Danilov, 2005), we find

(?/3)3 + (@/2)2 < 0, ? < 0, @ > 0.

According to Korn and Korn (1968), there are three different real roots of the equation
j3 + ?j + @ = 0:

j1 = 2
√
−?/3 cos(U/3), j2,3 = −2

√
−?/3 cos(U/3 ± c/3),

cos(U) = −@/(2
√
(−?/3)3).

The obtained values j; in our case correspond to _; < 0, ; = 1, 2, 3. Therefore, the
roots `4, ..., `9 of the equation (7.7) are imaginary, and can be written in the form
`4,5 = ±8l1, `6,7 = ±8l2, `8,9 = ±8l3, where 8 =

√
−1. In the case of �-ellipsoid of

the cluster model 1 (Danilov, 2005), the periods %; corresponding to the frequencies
l; are: %1 ≃ 38.08723 Myr, %2 ≃ 52.86999 Myr, %3 ≃ 84.46301 Myr. The %3 value
is in a good agreement with the largest periods of the halo stars motion in the cluster
model 1 (Danilov, 2005) (see fig. 8a,b in the paper of Danilov and Leskov (2005)).

Thus, oscillations of the considered triaxial homogeneous ellipsoid are stable,
which agrees with the conclusion of Ossipkov (2001) on the stability of oscillations
of biaxial gravitating ellipsoid in the joint force field of this ellipsoid and the Galaxy.

Let us consider a simpler case of �-ellipsoid oscillations under the condition
that the relations between the ellipsoid semiaxes preserve constant. In this case, the
equations (7.3) and (7.4) lead to the following equations for the moment of inertia
� =

∑3
;=1 �; of the ellipsoid and of total kinetic energy ) =

∑3
;=1 ); of star motion in

this ellipsoid:

¥� = 4) − 2(V2 + 2l2W2)�, ¤) = − V
2

2
¤�, (7.8)

where

V2
=

3∑
;=1

V2
; /@; ; @; =

3∑
9=1

02
9/02

; ; �; = �/@; ; W2
= @−1

1 + @−1
2 .

Let � = �0 + X� , ) = )0 + X) , |X� | << �0, |X) | << )0; �0 and )0 are constant
values. After a linearization of equations (7.8) we find

¥X� = 4X) − 2 X�, ¤X) = − V
2

2
¤X�, (7.9)

where
 = V2 + 2l2W2 + �/4;

� = (−3�ℎ"�1−4V2
1+4U1)/@1−(3�ℎ"�2+4V2

2)/@2+(−3�ℎ"�3−4V2
3+4U3)/@3.

The characteristic equation of the system (7.9) has the form

`3 + 2`( + V2) = 0. (7.10)
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The roots of this equation are

`1 = 0, `2,3 = ±
√
−2( + V2) = ±8lℎ ,

where l2
ℎ
= 2( + V2) > 0; lℎ is the oscillation frequency of �-ellipsoid at the

constant values of @ 9 ; 9 = 1, 2, 3. In the case of �-ellipsoid of the OSC model 1
(Danilov, 2005), the frequency lℎ of the ellipsoid homologous oscillations corre-
sponds to the oscillation period of %ℎ ≃ 68.33937 Myr. The value %ℎ is slightly
different (1.16873 times) from the mean value of %0 =

1
3

∑3
;=1 %; ≃ 58.47341 Myr,

where %; are the periods obtained using the equation (7.7). As in the case of (7.7),
the considered oscillations of �-ellipsoid are stable.

7.3 Nonhomological Oscillations of N-Ellipsoid

Following to Danilov (2008), we consider non-homological oscillations of the �-
ellipsoid. In this case, the distributions of a density along the distance from the center
in the ellipsoid at different time points can not be considered as similar. Suppose that
the perturbation Xd of ellipsoid density d does not lead to a change of a symmetry
in the matter distribution in the ellipsoid; d = d0 + Xd, |Xd | << d0, d0 = 2>=BC. Let

Xd =

∞∑
==0

1=:
2= , (7.11)

where the value of :2 was defined in (7.2). The condition of a constancy of the
ellipsoid mass leads to the following restriction in 1=:

∞∑
==0

1=

2= + 3
= 0. (7.12)

We carried out the calculation of the integrals, corresponding to (7.12), over the
ellipsoid volume in the coordinate system :, \, q, where : ∈ [0, 1]; \ ∈ [0, c];
q ∈ [0, 2c]. These coordinates are connected with b, [, Z by the following relations:
b = 0: sin(\) cos(q), [ = 1: sin(\) sin(q), Z = 2: cos(\). The volume elements in
the considered coordinate systems are connected by a relation

3+ = 3b3[3Z = 012:23: sin(\)3\3q,

where + is the volume of the �-ellipsoid in the coordinate system b, [, Z . The
condition (7.12) means that

∫
+
Xd3+ = 0 (in this case, the value of Xd averaged

by volume + equals to zero, i.e. 〈Xd〉 = 0). Since the mass of the �-ellipsoid
" = + 〈d〉 = +d0 = 2>=BC, then X" = d0X+ = 0. Consequently, X+ = 0 and
+ = 2>=BC. Let the largest = be =< = 1. Then, from the a condition " = 2>=BC in
(7.12), we find 11(C) = −510(C)/3.
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Following Danilov (2005) and Duboshin (1975, p. 149), we write the equations
of a stellar motion in the joint field of inhomogeneous ellipsoid and the Galaxy:

¥b = −V2
1b + 2l ¤[ − _010bf1,

¥[ = −V2
2[ − 2l ¤b − _010[f2,

¥Z = −V2
3Z − _010Zf3,

(7.13)

where

_0 = 2c�012, f; = �; −
5

3

3∑
9=1

G2
9 �; 9 ;

G1 = b; G2 = [; G3 = Z ; �; 9 =

∫ ∞

0

3B

(02
;
+ B) (02

9
+ B)Δ(B)

.

Let @; = 2>=BC, ; = 1, 2, 3. Calculations similar to those performed in (7.8) lead
to the following equations for the moment of inertia � and the kinetic energy ) :

¥� = 4) − 2(V2 + 2l2W2 + _0106
2)� + 50

21_010B
2
1��

2/(�2"),

¤) = − V
2+_0106

2

2
¤�,

(7.14)

where

62
=

3∑
;=1

�;/@;; � = 1 − 410/(21d0); � = 1 − 810/(27d0);

B21 = 3

3∑
;=1

�;;/@2
; + 2(�12/(@1@2) + �13/(@1@3) + �23/(@2@3)).

Here, the moment of inertia of the inhomogeneous ellipsoid is written in the form
� = �0 + X� = �0�, where �0 = 2>=BC corresponds to � at 10 = 0 and Xd = 0.
Therefore, ¤� = ¤X� and the � oscillation frequencyl=ℎ equals to the 10(C) oscillation
frequency.

We linearize the equations (7.14) by setting |X� | << �0, considering �0 = �/� in
the first equation (7.14) and expressing 10 and � through � and �0:

¥X� = 4X) − 2 1X�, ¤X) = − V
2

2
¤X�, (7.15)

where
 1 = V2 + 2l2W2 + _0d0 (25B21�0/" − 2162)/4.

The characteristic equation of the system (7.15) has the form

`3 + 2`( 1 + V2) = 0. (7.16)

The roots of this equation are
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`1 = 0, `2,3 = ±
√
−2( 1 + V2) = ±8l=ℎ ,

where
l2
=ℎ = 2( 1 + V2) > 0.

In the case of the �-ellipsoid of the cluster model 1 (Danilov, 2005), the period
of the non-homological oscillations corresponding to the frequency l=ℎ equals
%=ℎ ≃ 59.24792 Myr. Therefore, %=ℎ < %ℎ (%=ℎ ≃ %ℎ/1.15345), and l=ℎ > lℎ.
Thus, the non-homological oscillations of the �-ellipsoid considered here are also
stable. The value l=ℎ = 0 is a critical one for the stability of such oscillations.
Therefore, the oscillations of the type (7.11) have a larger "reserve" of stability than
the homological oscillations considered in section 7.2.

7.4 Three-Integral Equilibrium Function of Phase Density

In order to describe the stellar motions in the cluster core, we can apply the three-
integral phase density function (PDF) in the form considered by Danilov (2006):

Ψ = Ψ(T ), where T = �1 + ^2�2 + f2�3;

where �; are the integrals of the motion (; = 1, 2, 3); ^2 and f2 are the constant
values. To calculate the function Ψ = Ψ(T ), we need to approximate the potential
in the center (and near the center) of the numerical dynamic cluster model (averaged
over the oscillation period of a regular field) by the potential of a dense homogeneous
ellipsoid (for brevity, we will call it �-ellipsoid). Such approximation can be per-
formed using the technique described by Danilov (2005) in constructing of the model
of the �-ellipsoid. In this case, the sizes of semi-axes of the �- and �-ellipsoids
coincide.

According to Danilov (2006, 2008) the function Ψ(T ) can be written in the form

Ψ(T ) = &(T<0G − T), T =
( ¤b − ¤b0)2

02
)

+ ( ¤[ − ¤[0)2

12
)

+ ^2 ¤Z2 + k(b, [, Z ), (7.17)

where T<0G , 02
)

and 12
)

are constant values; ¤b0 and ¤[0 are linear functions of [ and b
respecrively (formulas for the values 02

)
, 12
)

, ¤b0, and ¤[0 are given in the explanations
for the formulas (18), (19) in the paper of Danilov (2006));

k(b, [, Z ) = 0−2
& b

2 + 1−2
& [

2 + 2−2
& Z

2.

Formulas for the constant coefficients 02
&

, 12
&

, 22
&

can easily be obtained by using
formula (35) from the paper of Danilov (2006).

As a result of an approximating of the potential * (averaged by the oscillation
period of the regular field) near the center (at : ∈ [0, 0.1]) of the cluster model
1 (Danilov, 2005) by the formula (7.2), the following constants were obtained by
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Danilov (2008):*0 ≃ 0.65059 ± 0.032908 (pc/Myr)2, *1 ≃ −0.21736 ± 0.023245

(pc/Myr)2. The eigenfrequencies of the stellar motion in the joint field of�-ellipsoid
and the Galaxy, according to formulas (7) from the paper of Danilov (2005), are: a1 ≃
0.07891 (Myr)−1, a2 ≃ 0.15093 (Myr)−1, V3 ≃ 0.17821 (Myr)−1; it is, respectively,
∼ 1.76884, 1.39888, 1.57304 times larger than the values a1, a2, V3 obtained for the
stellar motion at the periphery of the �-ellipsoid of the cluster model 1 by Danilov
(2005); d0 ≃ 0.90429 "⊙/pc3 and " ≃ 1439.48916 "⊙ are the density and the
mass of �-ellipsoid, respectively.

In order to estimate f2 and ^2, Danilov (2008) considers a sample of 368 stellar
trajectories in the cluster model 1 (Danilov and Dorogavtseva, 2003; Danilov, 2005).
According to Danilov and Leskov (2005), these trajectories correspond to the large
positive values of MLCE which exceed the mean value of MLCE of stellar trajectories
in this cluster model. According to the estimates made by Danilov and Leskov (2005),
these trajectories have the most complex Fourier spectra. During the oscillation
period %A of the regular field of the cluster model 1 (Danilov, 2005), the stars moving
along the considered trajectories pass one time (or more times) near the cluster center
(: ≤ 0.1) and contribute to the formation of the stellar velocity distribution in this
area (averaged by the period %A ). We obtain for these trajectories the mean values
(over the period %A ) of the dispersions of the residual stellar velocities along the axes
b, [, Z , respectively: f2

¤b ≃ 0.09336 ± 0.00707 (pc/Myr)2, f2
¤[ ≃ 0.12404 ± 0.00968

(pc/Myr)2, f2
¤Z ≃ 0.15378 ± 0.03106 (pc/Myr)2, which, according to formulas from

the paper of Danilov (2006) for f2 and ^2, leads to the following values: f2 ≃
0.06127 (Myr)−1 and ^2 ≃ 0.71484. Since ^2 < 1 < a2, then T<0G = 2nC a

2 (see the
explanation to formula (36) from Danilov (2006)), where a2 is defined by Danilov
(2006), and nC = *0 +*1 is the critical value of the stellar motion energy in the joint
field of the homogeneous ellipsoid and the Galaxy.

We define the function & = &(b, [, Z ). We use the fact that the value T<0G − T
is the integral of motion. We introduce the variables D and i, so that ¤b − ¤b0 =

0) D cos(i), ¤[ − ¤[0 = 1) D sin(i), where D ≥ 0 and i ∈ [0, 2c]. Substituting D and
i in the formula for T , we find

T = D2 + ^2 ¤Z2 + k(b, [, Z ). (7.18)

In case T = 0 and ¤Z2 = 0, the maximum value of D2 for the star at the point
(b, [, Z ) is D2 = −k. If T = T<0G ≠ 0 and ¤Z2 = 0, then the maximum value of
D2 is T<0G − k. Consequently, D2 ∈ [−k, T<0G − k]. In the considered �-ellipsoid
model, k ≥ 0. Therefore, D2 ∈ [0,T<0G − k], and the maximum value of D2 for the
star at point (b, [, Z ) is D2

< = T<0G − k. According to (7.18), D2
< = D2 + ^2 ¤Z2. For

a given value D2
≠ 0, the maximum value of ¤Z2

= ¤Z2
< for the star at point (b, [, Z )

is ¤Z2
< = (D2

< − D2)/^2. We calculate the density d at point (b, [, Z ). In order to
do that, we integrate the PDF Ψ(T ) over all possible values of stellar velocities.
While integrating the PDF, we pass to the variables D (), i, ¤Z , take into account that
3 ¤b3 ¤[ = 0) 1) D3D3i and find
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d = 4c&0) 1)

∫ D<

0
D3D

∫ ¤Z<

0
(D2
< − D2 − ^2 ¤Z2)3 ¤Z =

8c0) 1)&D
5
<

15^
. (7.19)

Since the value d = d0, see above, then, according to (7.19) and (7.17), we find &
and Ψ(T ) = 50 (b, [, Z , D, ¤Z ):

& =
15d^

8c0) 1) (T<0G − k)5/2 ,

50(b, [, Z , D, ¤Z) =
15d^(T<0G − k − D2 − ^2 ¤Z2)

8c0) 1) (T<0G − k)5/2 . (7.20)

Comparing the values & = &(b, [, Z ) and &0 = &(0, 0, 0), we find &/&0 =

1/(1 − k/T<0G)5/2. The value of & → ∞ at k/T<0G → 1. The value & = ∞
is achieved on the surface of the ellipsoid with the semiaxes: 0& ≃ 1.029630,
1& ≃ 1.186821, 2& ≃ 1.359772 (see the formula for k in the explanation for
(7.17)). Thus, the semiaxis values of �-ellipsoid can be increased in comparison
with the values 0, 1, 2. This conclusion agrees with the analogous conclusion
obtained by Danilov (2006) at the qualitative level for the �-ellipsoid during the
discussion of the general three-integral velocity distribution of stars in the model
of this ellipsoid. The shape of the surface of such an ellipsoid differs slightly from
the shape of the envelope surface tangent to the trajectories in the model of non-
isolated homogeneous ellipsoid. The shape of the surface tangent to the stellar
trajectories must be determined by the values of all three integrals of motion �; , and
the dimensions of the zero-velocity surface of the cluster (and the formula (7.2) for
the potential*) are obtained by Danilov (2005) using only the Jacobi integral. As a
result, in the paper of Danilov (2006), the three-integral PDF at the periphery of a
non-isolated homogeneous ellipsoid has not been constructed.

The PDF (7.20) in Danilov (2008) was used to describe the regions with approxi-
mately constant density in the cores of the numerical dynamic OSC models (Danilov
and Dorogavtseva, 2003; Danilov, 2005). These regions correspond to the central
regions of the �-ellipsoids of the models of Danilov and Dorogavtseva (2003);
Danilov (2005), where : ≤ (0.1− 0.2). We note, that for the �-ellipsoid of model 1
of Danilov (2005) at : ≤ 0.3 the value of & varies little with the distance from the
center and can be approximately considered to be constant and equal to &0, since
as b increases from 0 to 0.30 at [ = Z = 0, the value of &/&0 changes from 1 to
&/&0 ≃ 1.11728, and as Z increases from 0 to 0.32 at b = [ = 0, the value of &/&0

changes from 1 to &/&0 ≃ 1.06436.

7.5 The Boltzmann Equation

Following to Danilov (2008), we consider the evolution of non-isolated gravitating
ellipsoid at sufficiently short intervals of time ΔC, which are small in comparison
with the time of collisional relaxation of the core of the cluster model 1 of Danilov
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(2005). In this case, we can neglect the effects of collisional relaxation in describing
the oscillations of the ellipsoid. We write the Boltzmann equation for the PDF 5 of
an inhomogeneous gravitating ellipsoid with a potential Ω moving along a circular
orbit in the Galactic plane in a rotating coordinate system b, [, Z in the following
form:

m 5

mC
+(vm 5

mr
)+( mΩ

mb
+2l ¤[−U1b)

m 5

m ¤b
+( mΩ
m[

−2l ¤b) m 5
m ¤[ +(

mΩ

mZ
−U3Z )

m 5

m ¤Z
= 0, (7.21)

where r = (b, [, Z ); v = ( ¤b, ¤[, ¤Z). Let 5 = 50 + X 5 , Ω = * + XΩ, where |X 5 | << 50;
|XΩ| << *. Taking into account the adopted restrictions on functions X 5 and XΩ,
we linearize equation (7.21):

mX 5

mC
+(vmX 5

mr
)+(−V2

1b+2l ¤[) mX 5
m ¤b

−(V2
2[+2l ¤b) mX 5

m ¤[ +(−V2
3Z )

mX 5

m ¤Z
= −( mXΩ

mr

m 50

mv
).

(7.22)
According to Frank-Kamenetsky (1968, p. 249), equation (7.22) can be written in
the following form:

3X 5

3C
= −( mXΩ

mr

m 50

mv
) = −Λ, (7.23)

where 3
3C

is a derivative over the unperturbed stellar trajectory in the joint force field
of the Galaxy and �-ellipsoid. Assuming =<0G = 1, as in (7.13), we write

mXΩ

mr
= −_010e, where e = (bf1, [f2, Zf3).

Function 50 is defined in Section 7.4. Therefore, function Λ in the right-hand side of
equation (7.23) is known. Equation (7.23) is convenient to solve by the method of
integration over the unperturbed trajectory (Frank-Kamenetsky, 1968). Integrating
(7.23) over C, we find

X 5 (r, v, C) = −
∫ C

−∞
Λ(r(C′), v(C′))3C′, (7.24)

where r(C′), v(C′) are radius vector and velocity vector of a star moving along
unperturbed trajectory at the time point C′, provided that the star at time C is at
the point with the phase coordinates r(C), v(C). Let Λ → 0 at C′ → −∞, which
is necessary for convergence of the integral at the right-hand side of (7.24) (Frank-
Kamenetsky, 1968). To study the natural oscillations of an inhomogeneous ellipsoid,
we write X 5 = 51(r, v) exp(−8_C). According to (7.23), in this case we find Λ =

Λ1 (r, v) exp(−8_C). Assuming C = 0 in (7.24), we find

51(r, v) = −
∫ 0

−∞
Λ1 (r(C′), v(C′)) exp(−8_C′)3C′. (7.25)
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At _ = _1 + 8_2 and _2 > 0, the integral in (7.25) converges. At _2 ≤ 0, function
51 (r, v) must be considered as an analytic continuation of function (7.25) from the
domain _2 > 0 (Krall and Trivelpiece, 1973, p. 317).

Integrating function 51(r, v) over stellar velocities (at the region �v), we find the
density perturbation (an amplitude of the density oscillation) d1 at time C = 0:

d1 (r) =
∫
�v

51(r, v)33E = 10(1 − 5

3
:2)

(here 10 = 10(0) and the condition " = 2>=BC is applied). Considering (7.20), we
write

m 50

m ¤b
= −2( ¤b − ¤b0)&/02

) ,
m 50

m ¤[ = −2( ¤[ − ¤[0)&/12
) ,

m 50

m ¤Z
= −2^2 ¤Z&.

We substitute mXΩ
mr

and m 50
mv

in (7.25). Integrating this equation over stellar velocities,
reducing both sides of the equation by 10 (10 ≠ 0), we write

1 − 5

3
:2

= −2_0

∫
�v

33E

∫ 0

−∞
3C′F (r′, v′)&′ exp(−8_C′), (7.26)

where the primes of the values under the integral sign over C′ mean that these values
are considered at the time point C′;

F (r, v) = 41 ( ¤b − ¤b0)/02
) + 42( ¤[ − ¤[0)/12

) + 43^
2 ¤Z ;

4 9 are coordinates of the vector e, 9 = 1, 2, 3.
At : = 0 (and, consequently, at b = [ = Z = 0), the roots _; of equation (7.26)

describe the density oscillations at the center of the ellipsoid model. The expression
on the right side of (7.26) contains the stellar coordinates only at the time point
C′ = 0 (since the integrand vanishes here at C′ = −∞). Equation (7.26) at different
points (b, [, Z ) at : ≠ 0 (at different distances from the cluster center) must have
different coefficients and roots _; . In order to study the oscillations of the cluster
core, we average the equation (7.26) by volume +2 of the central part of �-ellipsoid
(in the range of values : ≤ 0.1), which approximately corresponds to the core of
the cluster model 1 of Danilov and Dorogavtseva (2003). To do this, it suffices to
integrate equation (7.26) by volume +2. An integral of the function on the left-hand
side of (7.26) has the form∫

+2

(1 − 5

3
:2)33A = 4c0120.13(1 − 0.12)/3 = (0.99/1000)+,

where + =
4
3c012 is the volume of an ellipsoid. Therefore, the equation giving an

approximate description of the density oscillations in the core of model 1 of Danilov
(2005) can be written in the following form:



128 7 Analysis of Density Oscillations in Models of Open Star Clusters

1 = −2000_0

0.99+

∫
+2

33A

∫
�v

33E

∫ 0

−∞
3C′F (r′, v′)&′ exp(−8_C′). (7.27)

Calculation of integrals on the right-hand side of equations (7.26) and (7.27) is a
complex task and can not be performed analytically. To simplify the calculations, we
consider a particular case of equation (7.26) at the point b = [ = Z = 0 at 11 = 0 (the
homological oscillations of ellipsoid). In this case, f9 = � 9 , 9 = 1, 2, 3. Let& ≃ &0,
which is valid for points near the center of the ellipsoid, see section 7.4. Taking into
account the accepted restrictions, equation (7.26) takes the following form:

1 = −2_0&0

∫
�v

33E

∫ 0

−∞
3C′{ �1

02
)

b ( ¤b − ¤b0) +
�2

12
)

[( ¤[ − ¤[0) + �3^
2Z ¤Z}′ exp(−8_C′).

(7.28)
According to (4) from the paper of Danilov (2006), a general solution of equations
of motion for the unperturbed stellar trajectory is written in the following form:

b = �1
exp(8q1) + exp(−8q1)

2
+ �2

exp(8q2) + exp(−8q2)
28

,

[ = �1�
exp(8q1) − exp(−8q1)

28
+ �2�

exp(8q2) − exp(−8q2)
28

,

Z = �3
exp(8q3) + exp(−8q3)

2
, (7.29)

where �; are the constants of an integration (; = 1, 2, 3), qe = ae C + q0, e , e =

1, 2; q3 = V3C + q0,3, q0, 9 are initial phases ( 9 = 1, 2, 3). Constant values � and
� are defined by Danilov (2006). Following to Danilov (2006), we write ¤b0 = @G[,
¤[0 = @Hb, where @G = @2f

202
)
/2, @H = −@1f

212
)
/2, and the constant values @1 and

@2 are defined in Danilov (2006). After substitution (7.29) in ¤b0, ¤[0 and in (7.28),
we reduce the expression in curly brackets in (7.28) to the following form:

{..} =
10∑
;=1

6; exp(8(m; , u)),

where (m;, u) is a scalar product of vectors m; and u, u = (q1, q2, q3), m1 = (1, 1, 0),
m2 = (−1,−1, 0), m3 = (1,−1, 0), m4 = (−1, 1, 0), m5 = (2, 0, 0), m6 = (−2, 0, 0),
m7 = (0, 2, 0), m8 = (0,−2, 0), m9 = (0, 0, 2), m10 = (0, 0,−2); 6; are the constant
imaginary values (l = 1, ..., 10). Calculating the integral over C′ in equation (7.28),
we find

∫ 0

−∞

10∑
;=1

6; exp(8((m; , u) − _)C′)3C′ = −8
10∑
;=1

6; exp(8(m; , u0))/((m; ,w) − _),

where u0 = u(C = 0), w = (a1, a2, V3). Passing in the formula for

exp(8(m; , u0)) = cos((m; , u0)) + 8 sin((m;, u0))
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to the functons cos(u0), sin(u0), using for cos(u0), sin(u0) the expressions (5)
from the paper of Danilov (2006) at C = 0 and cos(q0,3) = Z (0)/�3, sin(q0,3) =

− ¤Z (0)/(�3V3), see (4) from the paper of Danilov (2006), for the integral

∫ 0

−∞

10∑
;=1

6; exp(8((m; , u) − _)C′)3C′

we obtain the expression in the form of the second degree polynomial with respect
to PCS at C = 0 (here, sin(u0) gets the values sin(q0,1), sin(q0,2); sin(q0,3); cos(u0)
is defined similarly).

Carrying out the integrations of the obtained polynomial with respect to stellar
velocities in (7.28) at C = 0, applying, as in (7.19), variables D, i, ¤Z (0), separating
the real part of the integration result, using it in equation (7.28), and substituting
b (0) = [(0) = Z (0) = 0 into the final equation, we obtain an algebraic equation of
the fifth degree with respect to j = _2:

5∑
9=0

? 9 j
9
= 0, (7.30)

where the constant values ? 9 can be presented as

? 9 = �0, 9 +
3∑
:=1

�:, 9�
2
: ,

where �:, 9 are the constant values, and : = 0, ..., 3; 9 = 0, ..., 5. A general form
of formulas for the coefficients ?8 is not given here due to very cumbersome form of
these formulas.

7.6 Instability of Phase Density Oscillations in the Cores of OSC

Models. Estimates of Parameters and Consequences of Such

Oscillations

The constants � 9 ( 9 = 1, 2, 3) are directly proportional to the amplitudes of the un-
perturbed stellar motion in b, [, Z -coordinates and have the same order of magnitude
as these amplitudes, see (7.29). The values�2

9 are directly proportional to the energy

n of a stellar motion. The larger the values �2
9 considered, the greater the stellar

energy and the distance from the center of ellipsoid reached by the star as it moves
(hereinafter, for brevity, we denote �1,2,3 = � 9 ( 9 = 1, 2, 3)).

Let us consider two cases:�1,2,3 = 0 and�1,2,3 = 1 pc. The first case corresponds
to the position of an unperturbed star in the cluster center, and the second case for the
cluster model 1 of Danilov (2005) approximately provides the maximum removal
of this star to the boundary of the cluster core (|b |/0 ≃ 0.1, |Z |/2 ≃ 0.2) as this
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Table 7.2 The values of the coefficients ?: and roots j: = _2
:

�1,2,3 = 0 �1,2,3 = 1 pc
?0 (Myr)−10 0.4180460326×10−7 0.4245915893×10−7

?1 (Myr)−8 −0.1176728365×10−4 −0.1195862196×10−4

?2 (Myr)−6 0.8285419864×10−3 0.8423261216×10−3

?3 (Myr)−4 −0.2340173146×10−1 −0.2364231243×10−1

?4 (Myr)−2 0.2654871362 0.2663156562
?5 −1 −1

_2
1 (Myr)−2 0.5183374833×10−2 0.5183417921×10−2

_2
2,3 (Myr)−2 0.2759885969×10−1 0.2791520605×10−1

±80.717579758 × 10−2 ±80.626130831 × 10−2

_2
4 (Myr)−2 0.7807410158×10−1 0.7965084085×10−1

_2
5 (Myr)−2 0.1270319404 0.1256509853

star moves. The values of the coefficients ?: and roots j: = _2
:

(: = 1, ..., 5) of
equation (7.30) at �1,2,3 = 0 and �1,2,3 = 1 pc are given in Table 7.2. According
to Table 7.2 in the considered cases, the values _2

2,3 are complex, which indicates
an instability of the phase density oscillations at the cluster center of the model 1

of Danilov (2005) (since
√
_2

2,3 = ±(W1 ± 8W2), where W1 = 0.1675042251 (Myr)−1,

W2 = 0.2141975098× 10−1 (Myr)−1 at �1,2,3 = 0 and W1 = 0.1681130474 (Myr)−1,
W2 = 0.1862231519× 10−1 (Myr)−1 at �1,2,3 = 1 pc). This instability is the cause of
a development of the large-scale density oscillations in the numerical dynamic OSC
models (Danilov and Dorogavtseva, 2003). The value W2 is the growth increment of
the phase density perturbation, and the value C_ = 1/W2 is a characteristic time of a
perturbation growth. When �1,2,3 = 0 the value C_ = C_,0 ≃ 46.68588 Myr, and at
�1,2,3 = 1 pc, we find C_ = C_,1 ≃ 53.69902 Myr; C_,1 > C_,0.

Instability of the solutions for the PDF of the numerical dynamic OSC models to
small initial perturbations is known, and was studied in detail while calculating the
relative perturbations Ψ; (C) of the PDF in the papers of Danilov and Dorogavtseva
(2003) and Danilov (1999) (; = 1, ..., 10; larger values of ; correspond to greater
distances from the cluster center). The time CΨ of the PDF instability development
near the center of the cluster model 1 of Danilov and Dorogavtseva (2003) can be
estimated as a value reverse to the rate of an increase of the relative PDF pertur-
bations: CΨ ≃ (49.0 ± 2.4) Myr, which completely agrees with the estimates of the
values of C_ considered here (an estimate of the CΨ value is obtained from the data
of the paper of Danilov and Dorogavtseva (2003) for small values Ψ1(C) ≤ 0.3,
at C/gEA ∈ [0, 0.22], since in equations (7.22)−(7.28) the small perturbations are
considered in the linear approximation |X 5 |/ 50). According to the results of section
7.4, a consideration of the non-homology of the density oscillations should lead to
an increase of the estimates C_ as a result of a partial suppression of the instability
considered here. Since C_,1 > C_,0, then stars with higher energies reduce the rate of
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the instability development both near the center of the ellipsoid model considered,
and in the OSC cores.

Halo stars passing near the system center with the large velocities and energies can
also contribute to the suppression of the instability considered, which should lead to
an increase in the estimates of C_. The same effect of stars with high energies and
velocities of motion on instability also occurs in the case of gravitational instability
of the infinite homogeneous gravitating systems (King, 2002, p.103). The reason for
development of the instability considered in our work are small stellar velocities,
which is due to the low density of OSCs and their models (Danilov and Dorogavtseva,
2003).

We note that the exponential instability of stellar trajectories in the cores of the
OSC models also contributes to the increase rate of Ψ1 (C) with time. Therefore, only
part of the C−1

Ψ
value is due to the gravitational instability in the cluster. However,

contribution of the exponential instability of stellar trajectories to the estimate CΨ at
Ψ1(C) ≤ 0.3 and C/gEA ∈ [0, 0.22] is small. According to Danilov and Dorogavtseva
(2003), the radius A1 of a sphere containing 50 stars closest to the cluster center, from
the data on the velocities of which the function Ψ1 (C) is obtained, equals to A1 ≃
(1.62−1.72) pc for the cluster model 1. Dimensions of the exponential divergence
of stellar trajectories in the time intervals ΔC ≤ 0.22gEA usually do not exceed the
dimensions of a sphere with the radius A1. Therefore, the exponential instability of the
stellar trajectories does not have a sufficient time to change significantly the values
of the coarse-grained PDF used in the estimates of the function Ψ1 (C). However,
the contribution of the stochastic trajectories to Ψ1(C) at large Ψ1 (C) and C becomes
significant.

At C/gEA ≥ 0.5 − 0.6, Ψ1(C) ≃ 2>=BC, and in the OSC models of Danilov and
Dorogavtseva (2003), the large-scale oscillations of a density and a regular field
occur. One of the reasons for this persistence of the values of Ψ; (C) is discussed in
detail by Danilov (1999). It is related to the fact that in the compared versions a and
b of the OSC models (with small differences in initial PCS), used in the calculation
of Ψ1(C), by the time point C/gEA ≃ 0.5 − 0.6 under conditions of the exponential
instability of trajectories, the stars already occupy, with a density unequal to zero,
all the regions of phase space available for motion, and the PDF in the versions a

and b of the OSC models begin vary with time slowly and approximately in the
same way. The second important reason for approximate constancy of the values of
function Ψ1(C) at C/gEA ≥ 0.5 − 0.6 is the balance of the rates of a development
and a damping of the PDF perturbations; this balance is achieved in the system as a
result of combined effect of the gravitational instability and a violent relaxation (see
below).

The rate of a growth of the relative PDF perturbations, according to Danilov
and Dorogavtseva (2003); Danilov (1999), decreases with distance from the cluster
center. Therefore, the estimates of CΨ and C_ must increase for points (b, [, Z ), located
at greater distances from the system center.

Let us note that X 5 ∼ exp(∓8(W1 ± 8W2)C) at j = j2,3. Therefore, a development of
the instability in the system leads rather quickly to the dominance of the oscillation
amplitudes with frequency W1. In the case �1,2,3 = 1 pc the period %W = 2c/W1 ≃
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37.37476 Myr, which completely agrees with the estimate of oscillation period of
a regular field %A ≃ 31.0 Myr for the cluster model 1, obtained from the Fourier
analysis of the time dependency of this model’s virial coefficient (see Table 2 in the
paper of Danilov and Leskov (2005)). The taking into account of the non-homology
of the density oscillations in the gravitating ellipsoid model, according to section
7.3, should lead to an increase in the oscillation frequency W1 and a decrease of
%W . In addition, halo stars passing near the system center and having high velocities
and energies can also contribute to a decrease of %W (since %W (�1,2,3 = 1 pc)
< %W (�1,2,3 = 0), where %W (�1,2,3 = 0) is %W obtained at �1,2,3 = 0; the value of
%W (�1,2,3 = 1 pc is defined similarly).

Thus, the oscillations of the values of the virial coefficients and the moments of
inertia of the OSC models (Danilov and Dorogavtseva, 2003) with practically con-
stant period and amplitude are the result of the gravitational instability development
in these models.

According to Table 2 from the paper of Danilov and Dorogavtseva (2003), the
estimates of violent relaxation time C (1)A ,2 of the cluster core obtained from the data

on functions Ψ1 (C), are C (1)A ,2 ≃ 0.5gEA for the cluster models 1−5, and C (1)A ,2 ≃ (0.6-

0.7)gEA for the cluster model 6 (the values C (1)A ,2 agree well with the initial relaxation
time gE of the cluster model, obtained by Danilov and Dorogavtseva (2003) from the
data on stellar fluxes in the space of the moduli of stellar velocity; for the calculation
of function Ψ1(C), we also used the data on stellar velocities). Initial ratios of the
radii of the core and halo, as well as of the numbers of stars in the core and halo,
are the same in the cluster models 1, 2, 4 (Danilov and Dorogavtseva, 2003), and
the density of these models increases from the first to the fourth model (see Table 1

in the paper of Danilov and Dorogavtseva (2003)). Estimates of s = CΨ/C (1)A ,2 from
the data on functions Ψ1(C) in the range of values Ψ1 (C) ≤ 0.3 for models 1, 2,
4, are s ≃ 1.96 ± 0.10, 2.50 ± 0.08, 2.72 ± 0.30, respectively. Thus, the time of
the gravitational instability development near the cluster centers expressed in the
units of a violent relaxation time of the cores at C/gEA ∈ [0, 0.22] increases with
the increasing of the cluster density. This leads to a decrease in the rate and degree
of the gravitational instability development near cluster centers with an increasing
of the cluster density. For larger values Ψ1 (C) and at the highest rate of increase
of the PDF relative perturbations (at C/gEA ∈ [0.22, 0.5]), the values s for models
1, 2, 4 decrease in o times, where o ∼ 3.8 − 4.6, which leads to the development
of the density and regular-field oscillations in these cluster models. Probably, at
C/gEA ≥ 0.5, in the cores of models 1, 2, 4 the rates of growth and damping of
the phase density perturbations are equalized, which leads to the establishment of
the oscillations of the virial coefficient values with almost constant amplitudes and
periods observable in these models.

According to Table 1 from the paper of Danilov and Dorogavtseva (2003), in the
cluster models 2, 3, 5, 6, the number of stars in the core and the size of the core
increase from model 2 to model 6 with the identical initial radii of the halo.s values
for models 2, 3, 5, 6 are s ≃ 2.50 ± 0.08, 1.70 ± 0.07, 1.82 ± 0.14, 1.31 ± 0.06,
respectively. Consequently, with the increasing size and mass of the cores of the
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cluster models at C/gEA ∈ [0, 0.22], the rates of a development and a damping of the
phase density perturbations in the cluster cores approach each other. For the larger
values of Ψ1 (C) and the fastest rate of increase of the relative PDF perturbations
(at C/gEA ∈ [0.22, 0.5]), the values s decrease in o times, where o ∼ 4.6 ± 0.4,
2.5 ± 0.1, 3.7 ± 0.3, 1.7 ± 0.1 for models 2, 3, 5, 6, respectively. It leads to the
development of the density and regular field oscillations in these cluster models. We
note that o values in the considered models are only partially due to the action of the
gravitational instability caused by the influence of the exponential instability of the
stellar trajectories on the Ψ1 (C) curves at C/gEA close to 0.5. Therefore, the estimates
of o given here can only be considered as upper (overstated) estimates of o when
discussing the effect of the gravitational instability development in the cores of the
OSC models at C/gEA ∈ [0.22, 0.5].

Apparently, the approximate equality of the rates of a development and damping
of the phase density perturbations as a result of the combined action of a gravitational
instability and a violent relaxation in the cores of the OSC models (and in star cluster
models of Danilov and Dorogavtseva (2003) as a whole) leads to the establishment of
the large-scale density and regular-field oscillations, which continue in these models
for fairly long periods of time.

According to Danilov and Dorogavtseva (2008), the cluster models with smaller
density and larger amplitude of the regular field oscillations get destroyed (with
an expanding in the Galaxy field) in shorter time than the models of the denser
clusters. The reasons for the accelerated decay of the OSCs with a lower density in
the Galactic field is the tidal "heating" of such clusters by the Galactic force field
(Danilov and Dorogavtseva, 2008), as well as a dynamic instability (Ogorodnikov,
1958, p.389) and the development of the gravitational instability in such systems.
According to Danilov (1982), the large-scale oscillations of the cluster density in
the Galactic field can lead to an impulsive and significant loss of mass of the cluster
(see fig. 2 and Table 2 from the paper of Danilov (1982)). In this case, the stars
with higher velocities and energies leave the cluster earlier than other stars. It leads
to a compression and a subsequent stabilization of the remaining gravitationally
related part of the cluster (the loss of the high-energy stars by cluster can be one of
the reasons for a decrease of the amplitude of oscillations of a density and regular
cluster field).

Considering (7.25), as well as the constraints adopted to simplify computations
in (7.28), the expression for 51(r, v) at the point b = [ = Z = 0 at �1,2,3 = 1 pc can
be written in the following form:

51(0, v) = 31 ¤b2 + 32 ¤[2 + 33 ¤b ¤[ + 34, (7.31)

where constant values 3; are:

31 = 0.2808910230+ 80.7086888676× 10−1,

32 = 0.4708932329− 80.7443246439× 10−1,

33 = 0.2883002901 + 80.4348075779,
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34 = −0.7266762684× 10−2 + 80.5009804792× 10−2;

the dimensions of 31,2,3 values equal to "⊙(Myr)5/pc8, the dimension of 34 value
equals to "⊙ (Myr)3/pc6. The general formulas for 3; values is not given here
due to a very cumbersome form of these formulas. Assuming the value 51(0, v)
in (7.31) equal to a small positive constant, isolating the real part of 51(0, v), we
obtain the equation of an ellipse in the space of the values ( ¤b, ¤[) with the center
at point ¤b = ¤[ = 0, with a ratio of the large semiaxis 0E to the small one 1E ,
which equals 0E/1E ≃ 1.64279. The main axis of this ellipse is inclined to the
axis ¤b at the angle i ≃ −0.49405 rad (see formulas for 0E , 1E and i in Korn
and Korn (1968, p. 66)). Thus, a distribution of the perturbations of the stellar
velocities in the center of the considered cluster model is biaxial, having an elliptic
symmetry and elongated along the main axis of the ellipse (7.31). At �1,2,3=0 and
C = 0, we similarly find 0E/1E ≃ 1.58968 and i ≃ −0.49084 rad. Consequently,
a distribution of the perturbations of the stellar motion velocities with the higher
energies has a larger elongation along the main axis of the velocity ellipse. Using
the real part of X 5 = 51 (0, v) × exp(−8(±W1 + 8W2)C) at C = 2 Myr and �1,2,3=1 pc,
we find 0E/1E ≃ 2.04887, i ≃ −0.63226 rad (regardless of the sign facing the value
W1). Thus, regardless of the sign of W1 value, the ellipse of the velocity perturbation
distribution rotates with an angular velocity W1 in the direction opposite to the cluster
motion in the Galaxy. In this case, the velocity perturbation ellipse extends along its
main axis. A similar result was described in the book of Ogorodnikov (1958) when
discussing a dynamic instability of the Local system and studying the evolution of
the velocity perturbation distribution of stars leaving the system (see the description
of the quasi-tide and quasi-precession of the ellipsoid of velocities of stars of the
Local system on p. 397 in the book of Ogorodnikov (1958)). However, in the book
of Ogorodnikov (1958), the angular velocity of a rotation of the ellipse of the stellar
velocity perturbations is ∼ 2.97106 times less than in the case of stars with energies
sufficient only to reach the boundary of the cluster core. According to Ogorodnikov
(1958), a combined influence of the quasi-tide and quasi-precession on the joint
distribution of the perturbed and undisturbed stellar velocities leads to the formation
of circular symmetry of the general stellar velocity distribution in the vicinity of the
Local system. Such an equalization of the stellar velocity dispersions along b and
[ axis in the course of an evolution was also noted in the numerical dynamic OSC
models (Danilov and Dorogavtseva, 2008).

7.7 Conclusions

1. In this chapter, we have discussed the estimates of the frequencies of the ho-
mological and non-homological density oscillations in the unisolated ellipsoidal
models of open star clusters. The considered oscillations of the inertia momentum
and of the diagonal elements of the inertia tensor are stable. The frequencies of the
non-homological oscillations are greater than the frequencies in the case of the ho-
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mologous oscillations of ellipsoids. The non-homological oscillations have a larger
"margin" of stability than the homological oscillations.

2. For the central regions of the numerical dynamic OSC models, we have written
a Boltzmann equation for the phase density function 5 . We have constructed equi-
librium three-integral phase density function 50, which is employed to derive the
linearized equation for small perturbation of the function 5 . Applying the method
of integration over an unperturbed trajectory, we have written down the equations
for the small perturbation of the function 5 and the frequencies of the natural os-
cillations of an inhomogeneous ellipsoid. We have noted the instability of the phase
density natural oscillations in the center of a homogeneous ellipsoid (�-ellipsoid),
parameters of which (the dispersion of stellar velocities along the coordinate axes;
the density and potential near the center of ellipsoid) are close to the mean (with
respect to the regular field oscillations) values of these parameters in the cores of the
numerical dynamic model 1 (Danilov and Dorogavtseva, 2003) of the non-stationary
cluster.

3. Development of the instability of the phase density oscillations at the center
of the model of a �-ellipsoid of the cluster is caused by complex frequencies _ =

±(W1 ± 8W2) of the phase density natural oscillations and leads to the dominance
of the oscillations with the frequency W1, corresponding to the increment of growth
W2 of this instability. The estimates of W1 agree quite well with the estimates of
an oscillation frequency of the virial coefficient and the regular field (Danilov and
Leskov, 2005) in model 1 of Danilov and Dorogavtseva (2003). Estimates of the
time of the phase density instability development at the center of the �-ellipsoid
model agree quite well with time CΨ for the development of the PDF instability to
small initial perturbations near the center of the numerical dynamic cluster model
1 (Danilov and Dorogavtseva, 2003). In the process of the instability development,
the ellipse of the stellar velocity perturbations distribution rotates with an angular
velocity W1 in the direction opposite to the direction of the cluster motion in the
Galaxy. In this case, the velocity perturbation ellipse extends along its main axis.
The reason for the development of the instability of the phase-density oscillations
is low stellar velocity, which is due to a low density of the OSCs and their models
(Danilov and Dorogavtseva, 2003).

4. We have performed the analysis of the development and damping of the phase
density oscillations in the cores of the numerical dynamic OSC models (Danilov
and Dorogavtseva, 2003). Probably, the approximate equality in the rates of a devel-
opment and damping of the phase density perturbations as a result of the combined
effect of the gravitational instability and a violent relaxation in the cores of the OSC
models (and in OSC models as a whole (Danilov and Dorogavtseva, 2003)) leads to
the large-scale density and regular-field oscillations continuing in these models for
sufficiently large time intervals.
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Chapter 8

On Phase Density Oscillations at the Centers
of Six Open Star Clusters

Abstract In this chapter, we consider the instability of the natural oscillations of a
phase density in the centers of six open star clusters. We determine the boundaries of
the instability region of such oscillations in the space of the mean mass density of the
cluster core. For the central parts of these clusters and for several numerical dynamic
models of the open star clusters, we obtain estimates of a number of the dynamic
parameters (potentials; dispersions of the stellar velocities; the mass density; periods
of the phase density oscillations; instability development time of such oscillations,
etc.). We derive an equation for estimating the dynamic mass of a cluster, taking
into account the influence of the external field of the Galaxy on the cluster and of a
non-stationary nature of the cluster. The influence of these effects leads to a decrease
of the dynamic mass of the cluster in comparison with the virial mass for an isolated
cluster. Astrophysical applications of the results are discussed.

8.1 Introduction

In the numerical dynamic OSC models (Danilov and Dorogavtseva, 2003; Danilov,
1999; Danilov and Dorogavtseva, 2008), the large-scale oscillations of a density
and of regular field are spontaneously and rapidly developed. The possibility of an
instability development in the OSC models is used by Danilov and Dorogavtseva
(2008) to explain the variations in the values of the virial coefficient and dispersion
of the cluster star velocities that do not decay during the large time intervals, as well
as to explain small times of the spherization of the distribution of stellar velocities in
the least dense OSC models with the greatest degree of a non-stationarity in a regular
field. The theoretical description of an instability of the phase density oscillations in
the central parts of the numerical dynamic OSC models was carried out by Danilov
(2008) using the Boltzmann equation. It is of interest to use the formulas obtained
by Danilov (2008) (equation (31) and the coefficients ? 9 of this equation) to study
the observed OSC. We note that an appropriate processing of the observational data
on a spatial structure of the OSCs makes it possible to use the formulas and results
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of Danilov (2008) without a preliminary construction of the numerical dynamic
models of these OSCs. At the same time, a detailed discussion of the characteristics
of the numerical dynamic OSC models (Danilov and Dorogavtseva, 2008) and their
comparison with the observational data on the open star clusters makes it easier to
analyze the structural and dynamic parameters of the observed OSCs.

The following points are of particular interest: 1) to use the formulas obtained by
Danilov (2008) for analyzing the instability of the phase density oscillations in the
cores of the observed OSCs; 2) to determine the boundaries of this instability and
discuss the parameters of the density distributions in the OSCs, which are resistant to
such oscillations; 3) to estimate the dynamic characteristics of the analyzed OSCs; 4)
to compare the dynamic characteristics of the considered OSCs and the OSC models
(Danilov and Dorogavtseva, 2008).

The objectives of this chapter are: 1) to study the density and phase density
oscillations in the central parts of six observed OSCs; 2) to estimate the structural
and dynamic characteristics of the considered star clusters.

8.2 Structural Parameters of Six OSC

Following to Danilov (2010), let us consider well-studied clusters of different ages:
NGC 188, NGC 1912, NGC 6705, NGC 6819, NGC 7654, IC 1848. Danilov and
Seleznev (1994) determined the structural and dynamic parameters of these clusters
most accurately. We selected the clusters with the number of stars #2 > 300 from the
catalogue of Danilov and Seleznev (1994). Such sampling allows us to reduce the role
of stellar encounters in the dynamic evolution of the clusters (the coefficients ? 9 of the
equation (31) from Danilov (2008) were obtained in the collisionless approximation).
According to the estimates of Henon (1964) and Danilov (1980) in the clusters with
#2 > 250 the collisional relaxation time gBC due to the single stars encounters is
longer than the time of violent relaxation gEA due to the interaction of stars with a
regular force field of a non-stationary cluster. To calculate the distributions of the
apparent density of the number of stars in the selected clusters, Danilov (2010) used
the data on the numbers of the stars # (A) obtained by star counts performed by
Danilov and Seleznev (1994). Here, # (A) is the number of stars within a circle of
radius A in the projection onto the tangent plane. Comparison of the numbers # (A)
in the cluster region and in several nearby non-overlapping regions of the star field
allows us to estimate the errors of the apparent density values. Calculation of the
apparent density of the number of stars � (A) on the interval A ∈ [A ′, A ′ + ΔA) by
Danilov (2010) was carried out using two methods. One of them is described in the
book of Kholopov (1981, p. 307), where � (A) is defined as the ratio of the number of
stars within the annular zone (in the projection onto the tangent plane) to the area of
this zone, and ΔA is the width of the annular zone. Unlike to Kholopov (1981), � (A)
here was assigned to the middle of the interval A ∈ [A ′, A ′ + ΔA), and the "interval
error" (Danilov, 2010) was eliminated by introducing the correction in � (A) using
the technique described by Vasilevsky (1985, p. 24). � (A) at the boundary of the
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annular zone was calculated from the formula

� (A) = 1

2cA

3# (A)
3A

.

Danilov (2010) smoothed the functions� (A) and# (A) before performing a numerical
differentiation with the use of the symmetric nonrecursive five-point digital filters,
see, for example, in Hamming (1977, p. 54−55).

The parameters :, A2 , AC of the King’s distribution of the apparent density � (A)
(see formula (8.38) in Kholopov (1981)) for the considered clusters are given in
the catalogue of Danilov and Seleznev (1994) (here, : is the value associated with
the apparent density in the center of the cluster, A2 is the radius of cluster core, AC
is the cluster radius). However, this distribution only approximately reproduces an
apparent density in the OSC. Usually, in the OSC the number of stars

#2,� = 2c

∫ AC

0
A ′� (A ′)3A ′

is noticeably less than the number of stars #2 , obtained in star counts of Danilov and
Seleznev (1994). For example, in the old clusters NGC 188 and NGC 6819, the value
#2,� obtained from the King distribution is, respectively, ∼1.35 and ∼1.52 times
smaller than the values of #2 , obtained by Danilov and Seleznev (1994) for these
clusters. In the young OSCs this ratio can reach∼2.0−2.5. The halos of the OSCs are
usually much more populated by stars than it follows from the King’s distribution.
In this connection, the following modified King’s distribution was used to describe
the OSCs by Danilov (2010):

� (A) = :<

(
1(

1 + (A/A2,<)2
)1/W − 1

(1 + (AC/A2,<)2)1/W

)W
. (8.1)

Such a distribution is a particular case of the apparent density distribution proposed
by Veltmann (1965) and written down by Kholopov (1981) in the form of formula
(8.40). The expression (8.1) becomes a usual King distribution at W = 2, :< = :,
A2,< = A2 . We note that at W < 0, the formula (8.1) loses its meaning and ceases
to describe the distribution of the apparent density in the stellar clusters (since in
this case it is necessary to raise a negative number to the power of W). In the case
0 < W < 2, the formula (8.1) allows us to match #2 values obtained in star counts
and #2,� values.

The distributions of the apparent density � (A) obtained by Danilov (2010) for
six open clusters were approximated by distributions of the form (8.1) applying
the Marquardt method (Marquardt, 1963). In this case, the observed radius AC of
the cluster was not varied, but was taken equal to that obtained by Danilov and
Seleznev (1994) (see Table A.2.1 there; in all estimates, scale of distances to the
clusters was used corresponding to P.N. Kholopov’s ZAMS). After a finding of
the distribution parameters :<, A2,<, W, their mean values were refined using the
condition#2 = #2,� . For this, W was varied near the average W found within the error
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Table 8.1 Structural Parameters of Six OSC

№ OSC :< A2,< W d (0) f#2,�

#2,�
(%) @4

1 2 3 4 5 6 7 8
1 NGC 188 17.69 1.69 1.44 7.2 1.00

±1.18 ±0.14 ±1.06 ±1.1 9.5
(±1.18) (±0.14) (±0.32) (3.5)

2 NGC 1912 22.61 1.47 0.16 12.3 0.29
±0.62 ±0.05 ±0.24 ±0.8 1.0

(±0.18) (±0.01) (±0.15) (0.4)
3 NGC 6705 56.13 1.11 0.15 71.2 0.13

±2.38 ±0.06 ±0.27 ±4.8 1.5
(±0.31) (±0.01) (±0.14) (0.3)

4 NGC 6819 35.89 1.40 0.15 23.9 0.14
±1.11 ±0.05 ±0.87 ±1.2 1.7

(±0.16) (±0.01) (±0.14) (0.3)
5 NGC 7654 26.60 1.31 0.98 37.7 1.00

±3.88 ±0.20 ±0.57 ±8.0 6.5
(±0.39) (±0.20) (±0.59) (6.6)

6 IC 1848 11.88 1.63 0.15 17.4 0.05
±1.02 ±0.24 ±1.57 ±2.6 4.6

(±0.05) (±0.01) (±0.14) (0.3)

(the standard deviation) of this value. Generally, this was enough to match the values
#2,� and #2 from the catalog of Danilov and Seleznev (1994) with the difference
Δ# = #2,� − #2 not exceeding ±0.01. In those cases, when the changes in W were
insufficient for such matching of #2 and #2,� , a similar refinement of the average
values of :<, A2,< was carried out. Since the changes in the parameters :<, A2,<,
W with this refinement have a non-random character, the errors of these parameters
are equal to those obtained for the initial approximation of the apparent-density
distributions by the function (8.1).

The results of calculations of Danilov (2010) are given in the columns 3−5 of the
Table 8.1. The first and second columns of Table 8.1 show the number (in an order)
and the name of the cluster, respectively.

According to the Table 8.1, the errors fW in the determination of the values
W = W ± fW in the considered clusters are the largest. We note that the use of
conditions #2 = #2,� and W > 0 imposes restrictions on the errors fW , f:< ,
fA2,< of the values W, :<, A2,<. The range of admissible values of these parameters
can be determined as follows. Following to Danilov (2010), we variate the relation
#2 = #2,� by setting X#2 = 0 and using the function � (A) from (8.1). We obtain

X#2 = �1X:< + �2XA2,< + �3XW = 0 or (I, Xn) = 0, (8.2)

where
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�1 =

∫ AC

0
A ′
m� (A ′)
m:<

3A ′, �2 =

∫ AC

0
A ′
m� (A ′)
mA2,<

3A ′, �3 =

∫ AC

0
A ′
m� (A ′)
mW

3A ′,

I = (�1, �2, �3), Xn = n − 〈n〉, n = (:<, A2,<, W), 〈n〉 = (:<, A2,<, W).

The equation (8.2) is the euqation of the plane in the space of parameters (:<, A2,<, W)
(on the plane defined by this equation, the value of #2 = 2>=BC). Solving the equation
(8.2) together with the equations of planes :< = :< ± f:< and A2,< = A2,< ± fA2,< ,
we find the following four values of W:

W (1,2,3,4)
= W −

(±f:< )�1 + (±fA2,<)�2
�3

.

The mean values of W (8) coincide with W, and the largest deviations of W (8) from W

make it possible to judge the size of the range of admissible values for W. In most of
the cases considered, the conditions W (8) > 0 can not be achieved without decreasing
the sizes of the range of admissible values in the spaces :< and A2,< in @4 times. The
admissible deviations of :<, A2,<, 60<<0 from their mean values, corresponding
to the conditions #2 = #2,� and W > 0, for the considered clusters are given in
columns 3−5 of Table 8.1 in brackets. @4 values are listed in column 8 of Table 8.1.
In column 7 of this table, the relative errors of #2,� are listed, caused by the errors
of :<, A2,<, W, as well as by the admissible deviations of these values from the mean
(in parentheses).

Fig. 8.1 The distribution of an apparent density of the number of stars by the distance A from
the centers of clusters NGC 6819, NGC 7654. Dashed lines correspond to the modified King
distribution; the dash-and-dot lines indicate the curves for the usual King distribution
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For all the OSCs considered, the relative errors (and the permissible deviations
from #2) of the values #2,� are small. In addition, in all cases (with the exception
of NGC 188), the values of W significantly differ from 2. Therefore, the apparent
density distributions in the considered clusters differ noticeably from the usual King
distribution (8.38) from Kholopov (1981). The function � (A) from (8.1) and the
value :< = :<, A2,< = A2,<, W = W allow us to approximate better the distribution
of the apparent density near the center and at the periphery of the considered OSC
than the usual King distribution (8.38) from Kholopov (1981). For example, fig.
8.1 shows the apparent density distributions in NGC 6819 and NGC 7654 (shown
as points with error bars), as well as functions (8.1) (dashed line) with parameters
:< = :<, A2,< = A2,<, W = W from Table 8.1 and the distribution (8.38) from
Kholopov (1981) (the dash-and-dot line) with parameters : = 45.16 ± 0.92 pc−2;
A2 = 1.70 ± 0.07 pc for NGC 6819 and : = 43.26 ± 1.41 pc−2; A2 = 1.84 ± 0.14 pc
for NGC 7654 (these values are obtained by an approximating of the distributions of
an apparent density in the clusters by the function (8.38) from Kholopov (1981)); a
small difference between these values and those indicated by Danilov and Seleznev
(1994) is due to the fact that parameters : and A2 are obtained by Danilov and
Seleznev (1994) by an approximating of the observational data on numbers of stars
# (A) by the corresponding function (3) from Danilov and Seleznev (1994)).

For a transition from the apparent density distribution of the number of stars � (A ′)
to the spatial density distribution 5 (A) we used (Danilov, 2010) the assumption of
the spherical symmetry of the distribution of stars (and mass) in the cluster, as well
as a solution of the Abel integral equation (see (8.5) in Kholopov (1981)) for the
function 5 (A) written in the form (8.7), (8.8) from Kholopov (1981). Performing the
calculations given by (8.7) and (8.8) from Kholopov (1981), taking into account the
distribution (8.1), we find

5 (A) = 2:<�

cA2
2,<

, � =

∫ I<

0

3I

D2 [1 − (D/D0)1/W]1−W , (8.3)

where

I< =

√
A2
C − A2, D = 1 + (A2 + I2)/A2

2,<, D0 = 1 + A2
C /A2

2,<.

At W < 1, an integral � becomes improper, and the integrand in � becomes unbounded.
In this case, for I → I<, the value D → D0, which complicates the numerical
integration in (8.3). If A → AC and W < 0.5, the contribution to the integral � of the
regions of I close to I< becomes significant. In such cases, it is convenient to use
the following semi-analytic estimate of the integral � . We introduce a small value
Y > 0. Then we divide the region of integration over I in (8.3) into two regions:
I ∈ [0, (1 − Y)I<] and I ∈ [(1 − Y)I<, I<].

In the first interval the integration is easily performed numerically (we denote
this part of the integral as �1−Y). In the second interval we note that the values of
the function D vary very little near the value D0 (at I → I<, the value of D → D0).
Therefore, the value D2 (the factor in front of the square bracket in the denominator
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of integrand) can be replaced in some approximation by D2
0. Expanding the function

6(I) = 1 − (D/D0)1/W in a Taylor series in powers of I − I< and limiting to the first
term of the expansion, we find

6(I) ≃ −2I<(I − I<)
W(A2

2,< + A2
C )
.

Substituting the function 6(I) in the integral � at the interval I ∈ [(1 − Y)I<, I<],
we find

�Y =

∫ I<

(1−Y)I<

3I

D2
06(I)1−W =

1

D2
0I

1−2W
<

(
Y

W

)W (
A2
2,< + A2

C

2

)1−W

. (8.4)

Let us denote �B = �1−Y + �Y ≃ � . Choosing the value Y to be sufficiently small, it
is easy to obtain a good estimate for the integral � . For example, in the case of cluster
NGC 6819 at Y = 10−5, the relative error n = | (�B − �)/� | is (0.17 − 0.69) × 10−8 at
A = 0 − 3 pc. If A → AC , the value n increases by 1−2 orders of magnitude. To check
the accuracy of the obtained values of 5 (A), we also used the condition

#2 = 4c

∫ AC

0
A2 5 (A)3A.

We performed the calculations of the spatial density distributions of the number
of stars 5 (A) in the clusters with W ≤ 0.155 taking into account the analytical
estimate (8.4) at Y = 10−5, 10−6 (Danilov, 2010). The values of n in these cases are
∼ 10−8−10−7 at A = 0−3 pc. Maximum errors in the values of #2 were achieved for
clusters NGC 6819, NGC 6705, IC 1848: 2.7, 2.8, 5.1 %, respectively. To reduce
the relative errors of the #2 values to (1− 2) %, the values Y = Y(A) decreasing with
increasing of A were used (Danilov, 2010). For clusters NGC 188 and NGC 7654, it
became possible to obtain the functions 5 (A) by the Simpson method over the entire
range of values A ∈ [0, AC ] with the relative error ∼ 10−8 − 10−7, which corresponds
to relative errors in #2 equal to 0.026 and 0.005 %, respectively.

In column 6 of Table 8.1, the values of the spatial mass density d(0) = < 5 (0)
in the centers of the considered clusters are listed; here, < is an average mass of the
star in the cluster, obtained by Danilov and Seleznev (1994). According to Table 8.1,
among the considered clusters, the largest density d(0) is reached in NGC 6705, and
the smallest one in NGC 188. The errors in d(0) are due to the errors in the values
:<, A2,<, W, and have been obtained by varying the expression (8.3) in :<, A2,<, W
for A = 0. The greatest contribution to the error of d(0) for cluster NGC 188 is made
by the error of W, while for the remaining clusters − by the error in A2,<. The most
complicated for an integrating with respect to I for W < 1 is the integrand in the

expression for
md(0)
mW

. In this case, the integral over I becomes improper, and the

integrand is unbounded (at I → I<, its values tend to −∞):
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md(0)
mW

=
2<:<

cA2
2,<D

2
0W
�,

� =

∫ I<

0

[W6 ln(6) − (1 − W) (1 − 6) ln(1 − 6)]3I
62−W (1 − 6)2W

, (8.5)

where 6 = 1 − (D/D0)1/W , see above. To calculate the integral in(8.5), as in the case
(8.3), we divide the region of integration over I into two: I ∈ [0, (1 − Y)I<] and
I ∈ [(1 − Y)I<, I<]. In the first interval over I, the integration is easily carried out
numerically (we denote this part of integral � as �1−Y). In the second interval, we
use the change of variables I = A2,<

√
D0(1 − 6)W − 1 for the transition to integration

over 6. At I = I<, we find 6 = 0, and at I = (1 − Y)I< we find

6 = 6Y = 1 − (1 + (1 − Y)2I2</A2
2,<)/D0)1/W .

Swapping the limits of integration, for the part of integral � corresponding to the
interval I ∈ [(1 − Y)I<, I<] we obtain

�Y =
A2,<D0W

2

∫ 6Y

0

[W6 ln(6) − (1 − W) (1 − 6) ln(1 − 6)]36
62−W (1 − 6)1+W

√
D0(1 − 6)W − 1

. (8.6)

Expanding the function ln(1 − 6) in Taylor series in powers of 6 and restricting by
the first term of the expansion, we find ln(1 − 6) ≃ −6. In the interval of values
6 ∈ [0, 6Y], for sufficiently small Y > 0, such an approximation for the function
ln(1− 6) is quite acceptable. We substitute ln(1− 6) ≃ −6 in (8.6). We note that the
values of the function 1−6 at 6 ∈ [0, 6Y] vary little near 1. Therefore, the value 1−6
in (8.6) can be replaced in some approximation by 1. After these transformations,
we find

�Y ≃
A2,<D0W

2
√
D0 − 1

∫ 6Y

0

[W6 ln(6) + (1 − W)6]36
62−W =

A2,<D0W

2
√
D0 − 1

6
W
Y (ln(6Y) − 1). (8.7)

The first term in the integrand in (8.7) can be easily integrated by parts, and the
remainder of this function is integrated as a power function. In calculating the
integrals �Y in the paper Danilov (2010) we used the values Y = 10−7, which allows
to get the estimates �Y with a relative error n ∼ 10−8−10−7. With the same accuracy,
it is not difficult to obtain the estimates of the value � = �1−Y + �Y .

The relative errors of the d(0) quantities for the considered here OSC are within
the interval fd(0)/d(0) ∼ 0.05−0.21. We note that here we do not take into account
the relative errors in the values<, which, according to Danilov and Seleznev (1994),
are assumed to be on average equal to f</< ≃ 0.25. Considering the errors f</<,
the values fd(0)/d(0) will be enclosed in the interval ∼ 0.30 − 0.46.
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8.3 Structural and Dynamic Parameters of Six OSC Models

For further analysis of the structural and dynamic characteristics of the OSC con-
sidered in this part of the work, it is necessary to clarify certain parameters of the
numerical dynamic OSC models 1 − 6 (Danilov and Dorogavtseva, 2003, 2008). In
these papers, the cluster models consisting of 500 stars, moving along circular orbit
of radius '� = 8200 pc in the plane of the Galaxy around its center, are considered.
In the papers Danilov and Dorogavtseva (2003, 2008), the cluster models 1−6 are
numbered in descending order depending on the degree of model’s non-stationarity
in a regular field, see Table 1 from Danilov and Dorogavtseva (2003). The initial
parameters of the OSC models are listed in Table 1 from Danilov and Dorogavtseva
(2003, 2008). The gravitational potential in the core and the periphery of the OSC
models was averaged over the period of the oscillations %A of a regular field (Danilov,
2008, 2005, 2006) on the interval of the relative time values C/gEA ∈ [1.3, o], where
o = 1.9− 2.0; gEA is the initial time of a violent relaxation obtained according to the
formula gEA ≃ 2.6C2A (Aarseth, 1974); C2A is the average initial time of the cluster’
intersection by a star (the crossing time). At time C/gEA = 1.3, the equilibrium regime
of the density and regular field oscillations is already established in models 1−6.

In columns 1 and 2 of Table 8.2 for the considered OSC models, we indicate
the model number (according to the numbering of these models by Danilov and
Dorogavtseva (2003, 2008)) and the value of the potential

* (0) =
#C∑
8=1

�<8/A8

in the center of the cluster model (averaged over the period %A ); here, � is the
gravitational constant, A8 is the distance of the 8-th star from the mass center of the
cluster, #C is the number of stars in the cluster model with A8 < 'C , 'C is tidal radius
of the cluster (King, 2002, p. 198),<8 is the mass of the 8-th star (for the OSC models
1−6 (Danilov and Dorogavtseva, 2003, 2008), the star masses were assumed to be
equal to one mass of the Sun <8 = <⊙; in the papers of Danilov and Dorogavtseva
(2003, 2008) and in this study, we used the following system of units: 1<⊙ , 1 pc,
1 Myr). Column 3 of Table 8.2 contains the value of the mean mass density of the
cluster core d2 averaged over the period %A (obtained by #B stars closest to the
center of mass of the cluster model and located within the cluster core; the radius
of the cluster core corresponds to the distance from the center, in which the spatial
density attains the values characteristic for the cluster halo; the moduli of the spatial
density gradients in the halo are minimal). The value #B is given in the 4th column
of the Table 8.2. Column 5 of Table 8.2 gives the value of the mean mass density at
the center of the cluster d(0) averaged over the period %A (obtained by five cluster
stars closest to the center). Column 6 of Table 8.2 gives the mass density d4 of a
homogeneous ellipsoid with semiaxes 0, 1, 2 which approximately correspond to
the distance of zero-velocity surface of the numerical cluster model from its center
along the coordinate axes b, [, Z (Danilov and Dorogavtseva, 2003; Danilov, 2008).
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Table 8.2 Structural and dynamic parameters of six OSC models

№ * (0) d2 #B d (0) d4 YC f2
E f2

E8A

1 2 3 4 5 6 7 8 9
1 0.62 0.93 125 11.4 0.90 0.43 0.27 0.20

±0.03 ±0.16 ±4.1 ±0.09 ±0.04 ±0.03 ±0.01
2 0.70 0.93 150 16.5 0.88 0.42 0.28 0.23

±0.03 ±0.11 ±10.6 ±0.09 ±0.04 ±0.02 ±0.01
3 0.75 0.95 240 7.1 0.96 0.46 0.30 0.25

±0.02 ±0.07 ±3.0 ±0.096 ±0.04 ±0.02 ±0.01
4 0.84 1.03 180 12.4 0.99 0.47 0.33 0.26

±0.05 ±0.07 ±6.9 ±0.10 ±0.04 ±0.02 ±0.01
5 0.79 1.08 300 4.9 1.08 0.51 0.331 0.284

±0.02 ±0.06 ±1.8 ±0.11 ±0.05 ±0.006 ±0.004
6 0.69 0.84 300 2.2 0.87 0.42 0.35 0.27

±0.03 ±0.13 ±0.8 ±0.09 ±0.04 ±0.02 ±0.01

Potential of this ellipsoid *4 near the center of mass of each cluster model is given
by the equation (2) from Danilov (2008):

*4 = *0− (*0+*1)A2
4 +(, A2

4 =

(
b

0

)2

+
( [
1

)2
+
(
Z

2

)2

, ( =
U1b

2 + U3Z
2

2
, (8.8)

where U1 and U3 are the constants characterizing a Galactic force field in the neigh-
borhood of the cluster circular orbit (their numerical values are defined in Danilov
and Dorogavtseva (2003, 2008) using the Galaxy potential model of Kutuzov and
Osipkov (1980); U1 < 0 and U3 > 0). The constants *0 and *1 for model 1 are
obtained by Danilov (2008). These constants for models 2−6 are obtained in the
present work by means of approximation (by the method of Marquardt (1963)) of
the potential of a numerical cluster model near its center, averaged over the period
%A , by a potential of the form (8.8). In the 7th column of Table 8.2, the values of
YC = *0 +*1 is given. According to Danilov (2005), the values d4 and YC are related
by the ratio

d4 =
2YC (0−2 + 1−2 + 2−2) − U1 − U3

4c�
, (8.9)

obtained by Danilov (2005) using the Poisson equation for a homogeneous ellipsoid
with the potential (8.8).

In a derivation of relation (8.9), Danilov (2005) used equations (5.517)−(5.519)
from Chandrasekhar (1942), describing stellar motion in the joint force field of the
Galaxy and a homogeneous gravitating ellipsoid with potential 8.9). According to
Danilov (2010), the equations (5.517)−(5.519) from Chandrasekhar (1942), written
for the motion of a star in the force field of the Galaxy and the open star cluster,
yield the following (virial) relation for the mean square of a residual velocity of the
motion of a star in the cluster:



8.3 Structural and Dynamic Parameters of Six OSC Models 147

f2
E8A =

1

"2

[
−, +

#C∑
8=1

<8

(
U1b

2
8 + U3Z

2
8

)]
, (8.10)

where "2 = <#C and , are the mass and the potential cluster energy. In (8.10),
the angular momentum of a rotation of the cluster relatively to Z axis in the rotating
coordinate system (b, [, Z ) (Chandrasekhar, 1942) is assumed to be zero,

, = −�
2

#C∑
8=1

#C∑
9=1

<8< 9

A8 9
, (8 ≠ 9),

A8, 9 is the distance between the 8-th and 9-th cluster stars (Chandrasekhar, 1942).
According to Bagin (1969), for the isolated spherical stellar systems in the case of
local virial equilibrium at a distance of A from the center of the system, the mean

square of the residual stellar velocities is E2(A) = * (A)/2, where* (A) is the system
potential at a distance A from its center. We note that for a star cluster moving along
a planar circular orbit in the field of forces of the Galaxy, the relation

E2(r) = * (r)
2

+ U1b
2 + U3Z

2 (8.11)

after multiplying both parts of (8.11) by the mass element 3"2 = d(r)3+ and
integrating over an entire mass of the cluster, allow us to obtain the relation (8.10);
here, d(r) and 3+ are the mass density at the point r = (b, [, Z ) and the element of
the cluster volume respectively. At r → 0 = (0, 0, 0), the relation (8.11) passes into

E2(0) = * (0)/2. Relation (8.11) is the condition for local virial equilibrium of the
star cluster at the point r.

Column 8 of Table 8.2 gives the value of the average (with respect to %A period)
dispersion of the stellar velocities f2

E in the cluster model obtained by #E stars
closest to the center of mass of the cluster model. For f2

E estimates, we used the
value #E = 300. With an increase of #E (at #E ≤ 300) in the considered models,
f2
E increases (or remains approximately constant) within errors of the values of f2

E

specified in column 8, and then decreases (at #E > 300) within the limits of the
indicated errors. Such variation of f2

E with an increase of #E is associated with the
tidal "heating" of the cluster and a subsequent dissipation (rather slow) of the tidal
perturbations in the cluster.

Column 9 of Table 8.2 gives f2
E8A value from (8.10) averaged over the period %A .

In all cases, except model 6, the value of f2
E is approximately equal to the half-sum

of f2
E8A and E2(0) also averaged over the period %A . For model 6 on average over

%A , we can write f2
E ≃ E2(0) (within the errors of f2

E and E2(0) averaged over %A ).
Since the OSCs with the same "halo-core" parameters of the structure, like those
of model 6 are quite rare (Danilov and Seleznev, 1994; Danilov and Dorogavtseva,
2008), then the most common for the OSCs is the following relation

f2
E ≃

(f2
E8A + E2(0))

2
. (8.12)
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From the Table 8.2, it is clear that for the considered OSC models, the values
d4 and d2 , taking into account the errors of these values, do not differ statistically
(d4 ≃ d2). We note that the values*0 and* (0) also agree well with each other, but
in all OSC models the average value of *0 is somewhat less than the average value
of* (0) (usually the difference between the average values of *0 and* (0) remains
within the sum of the errors of these values).

Relations (8.12), d4 ≃ d2 and *0 . * (0) between the parameters of the models
allow us to estimate the dynamic characteristics of the observed OSCs and analyze
the dynamic state of such star clusters considering the data on the structure, size and
mass of the OSC.

8.4 Dynamic Parameters of Six OSC and Two OSC Models

The spatial densities of the number of stars 5 (A) in the considered OSC for ∼ 200

values of A from the interval A ∈ (0, AC ) with a given stepΔAwere obtained in this work
using formulas (8.3), (8.4). Then, using the random number generator, the spatial
positions of 6#2 stars in the spherical coordinate system (A, \, i) were generated for
each star cluster. The function 5 (A) was used to calculate the distribution density

?0 (A) = 4c

∫ A

0
5 (A ′)A ′23A ′/#2

for the probabilities of a star to fall into the interval A ∈ (0, AC ); ?0 (0) = 0, ?0 (AC ) = 1.
A discrete random value A with a given density ?0 (A) was distributed in the interval
A ∈ (0, AC ) according to the procedure described by Sobol (1985, p. 26). The values of
\ and i were distributed in the intervals \ ∈ (0, c) and i ∈ (0, 2c) with the densities

?1 (\) = 1
2

sin(\) and ?2 (i) = 1
2c

, respectively (densities ?1 (\) and ?2 (i) ensure
the uniform stellar distribution by the angles \ and i for each fixed value of A). As
a result, we obtain a sets of values ((A8 , \8 , i8), 8 = 1, ..., 6#2. Each of the six sets
of coordinates of #2 stars simulates a given cluster of stars. When estimating the
dynamic parameters of the OSC, the mean values of these parameters and standard
deviations from the mean over the six sets of coordinates of #2 stars were calculated.

The results of the estimations of the dynamic parameters of the six analyzed
OSCs and two OSC models are given in Table 8.3. Models 1 and 6 of Danilov
and Dorogavtseva (2003) also characterize the structure and the dynamic state of
a number of the observed OSCs with corresponding parameters of the "halo-core"
structure (Danilov and Seleznev, 1994). Moreover, models 1 and 6 have the largest
and the least degree of non-stationarity in a regular field, which makes it easier to
analyze the results obtained for the six OSCs considered in our study.

In columns 1 and 2 of Table 8.3, the number and a name of the object are listed.
Columns 3 and 4 of Table 8.3 give the estimates of the time of a violent (gEA )
and a collisional (gBC ) relaxation (in Myr). The gEA is obtained according to the
formula gEA ≃ 2.6C2A (Aarseth, 1974). C2A = 2'/fE , where ' is the mean cluster
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Table 8.3 Dynamic parameters of six OSC and two OSC models

№ Name gEA g1
BC * (0) fE8A

√
E2 (0) YC d4 %W (1) C_ (1)

of the object
1 2 3 4 5 6 7 8 9 10 11
1 NGC 188 38.7 31.2 0.85 0.56 0.65 0.47 0.68 43.9 72.6

±4.0 ±3.9 ±0.03 ±0.08 ±0.10 ±0.03 ±0.05 ±1.5 ±3.6
2 NGC 1912 17.8 19.5 1.91 0.80 0.98 1.53 1.57 29.0 49.9

±0.7 ±2.4 ±0.07 ±0.07 ±0.10 ±0.09 ±0.10 ±1.0 ±0.7
3 NGC 6705 9.3 12.0 4.22 1.15 1.45 3.81 4.10 17.9 33.2

±1.0 ±1.5 ±0.03 ±0.06 ±0.04 ±0.26 ±0.29 ±0.7 ±0.3
4 NGC 6819 22.3 36.0 2.33 0.88 1.08 1.97 1.90 26.5 42.7

±2.3 ±4.5 ±0.06 ±0.06 ±0.08 ±0.07 ±0.07 ±0.5 ±0.4
5 NGC 7654 14.1 12.4 2.69 0.93 1.16 2.34 2.34 23.5 45.2

±1.2 ±1.5 ±0.14 ±0.09 ±0.11 ±0.18 ±0.18 ±1.0 ±0.3
6 IC 1848 24.6 21.4 2.02 0.81 1.01 1.64 1.31 31.9 51.4

±1.6 ±2.7 ±0.07 ±0.07 ±0.10 ±0.08 ±0.07 ±0.8 ±0.7
7 Model 1 46.8 121.9 0.45 0.56 37.4 53.7

±2.8 ±12.2 ±0.10 ±0.12 ±1.8 ±2.9
8 Model 6 38.2 72.6 0.52 0.59 38.1 56.3

±2.0 ±7.2 ±0.10 ±0.11 ±1.8 ±3.3

№ Name
W1 (1)
l d<0G,0 d<8=,0 d<0G,1 d<8=,1 d4/dC

of the object
1 2 12 13 14 15 16 17
1 NGC 188 5.7 683.37 0.33 4.28 0.35 8.1

±0.2 ±0.05 ±0.05 ±0.05 ±0.05 ±0.6
2 NGC 1912 8.9 632.53 0.30 5.36 0.31 20.0

±0.3 ±0.20 ±0.10 ±0.10 ±0.09 ±1.3
3 NGC 6705 9.9 1348.96 0.65 11.14 0.68 26.2

±0.4 ±0.30 ±0.29 ±0.29 ±0.29 ±1.8
4 NGC 6819 8.0 950.26 0.46 8.31 0.47 16.8

±0.1 ±0.10 ±0.07 ±0.07 ±0.07 ±0.6
5 NGC 7654 10.6 691.09 0.33 61.80 0.34 27.6

±0.4 ±0.18 ±0.18 ±0.18 ±0.18 ±2.1
6 IC 1848 8.4 538.95 0.27 5.95 0.29 17.8

±0.2 ±0.14 ±0.07 ±0.07 ±0.07 ±0.9
7 Model 1 5.9 865.05 0.37 36.71 0.40 8.6

±0.3 ±0.14 ±0.09 ±0.10 ±0.09 ±0.9
8 Model 6 5.8 864.97 0.38 4.44 0.40 8.3

±0.3 ±0.18 ±0.09 ±0.09 ±0.09 ±0.9

Note — 1 - Danilov and Seleznev (1994); Danilov and Dorogavtseva (2003).



150 8 On Phase Density Oscillations at the Centers of Six Open Star Clusters

radius. For six OSCs, the values fE were obtained according to (8.12), and for two
OSC models, the values fE were used in accordance with Table 8.2. The values
of gBC for the OSCs are given according to Danilov and Seleznev (1994), and for
the OSC models - according to Danilov and Dorogavtseva (2003). The errors of
gEA and gBC are due to the the errors of fE and parameters of OSCs (Danilov and

Seleznev, 1994). Columns 5−9 of Table 8.3 give the values * (0), fE8A ,
√
E2(0),

YC = *0 +*1 and d4 (averaged for six sets of coordinates of #2 stars of the OSCs)
obtained with the use of formulas for* (0), as well as (8.10) and (8.11). The method
of an approximation of the potential* (r) of the cluster model by the potential*4 of
a homogeneous ellipsoid (8.8) was described by Danilov (2008) and Danilov (2005).
The values * (0), YC , d4 for models 1 and 6 are given in Table 8.2, therefore in

the Table 8.3 they are not listed. The values fE8A and

√
E2(0) for these models are

obtained using the data from Table 8.2.
According to Table 8.3, the values of gEA are noticeably smaller than gBC only in

NGC 6819 and in models 1 and 6 (in this case, a violent relaxation acts more effi-
ciently in the system). In the other clusters, the values gEA and gBC are not statistically
different (in these clusters, the effects of the violent and the collisional relaxations
are comparable).

The valuesfE8A for the considered objects are in the range 0.45−1.15 pc/Myr, and

the values of

√
E2(0) are in the interval 0.55 − 1.45 pc/Myr (see Table 8.3). Among

the OSCs from Table 8.3, the largest values of * (0), fE8A ,
√
E2(0) are achieved in

NGC 6705, and the smallest ones in NGC 188. For clusters NGC 6705 and NGC
188, we find fE ≃ 1.31 ± 0.04 pc/Myr and fE ≃ 0.61 ± 0.06 pc/Myr, respectively.
According to the data on the mean-square-root radial residual stellar velocities
in the clusters NGC 6705 (Mathieu, 1985) and NGC 188 (Geller et al., 2008),
assuming a spherical symmetry in the velocity distribution of the cluster stars, we find
fE ≃

√
3×(1.21±0.35) ≃ 2.10±0.61 km/s andfE ≃

√
3×(0.41±0.04) ≃ 0.71±0.07

km/s, respectively (1 km/s ≃ 1 pc/Myr). According to de Grĳs et al. (2008), the fE
value, obtained with a taking into account of the data on the proper motions and
the radial velocities of stars in NGC 6705 is fE ≃ 2.0 ± 0.8 km/s. The estimates
of fE given here for NGC 6705 are either completely consistent, or do not differ
statistically. Estimates of fE for NGC 188 obtained from the data on the radial
velocities of stars and with taking into account of the relation (8.12) do not differ
statistically. We note that the dynamic masses of NGC 6705 and NGC 188 obtained
by Geller et al. (2008); de Grĳs et al. (2008) for the case of an isolated virialized
cluster are (5717± 4956)<⊙ and (2300± 460)<⊙ , respectively. In our estimates of
fE , we used the masses "2 = (2250 ± 660)<⊙ and "2 = (690 ± 180)<⊙ of NGC
6705 and NGC 188, respectively, obtained by Danilov and Seleznev (1994) with the
help of star counts and the estimates of an average mass of a cluster star.

Thus, the taking into account the effect of the external field of the Galaxy and
of a non-stationary nature of the OSCs on the estimates of dynamic cluster masses,
makes it possible to reduce noticeably these estimates of cluster masses and to bring
together the observational and theoretical estimates of fE . The difference in the
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values of "2 (in 2.5−3.3 times) between the "2 values obtained for NGC 6705 and
NGC 188 by Danilov and Seleznev (1994) and by Geller et al. (2008) and de Grĳs
et al. (2008) can be partially explained by a difference in the data on the cluster sizes
used in these studies. The equation for estimating the dynamic mass of the OSC
is easily obtained as follows. Following to Danilov (2010), substituting (8.10) and
(8.11) at r = 0 into (8.12), assuming #C = #2 , we obtain

f2
E ≃

1

2

{
1

"2

[
−, +

#2∑
8=1

<8

(
U1b

2
8 + U3Z

2
8

)]
+ * (0)

2

}
. (8.13)

In this case, the relation (8.10) can be considered as Lagrange-Jacobi equation
(averaged over the period %A of the oscillations of a regular cluster field), with the

value of 3
2�2
3C2

(averaged over the period %A ) equal to zero, where �2 is the momentum

of inertia of the cluster. The values , and * (0) in (8.13) depend on the mass "2 ,
the size of the cluster, and the mass distribution in the cluster.

Danilov (2008) used the three-integral phase density function (PDF) in the form
Ψ = Ψ(T ), in order to describe stellar motions in the cluster core, where T is a
linear combination of three integrals of stellar motion in the joint field of forces of the
Galaxy and a homogeneous ellipsoid with potential *4 from (8.8); the coefficients
of this linear combination are 1, ^2, and f2. The value T is also an integral of a
motion. The expression for the function Ψ(T ) is given in the form of formula (21)
by Danilov (2008). We estimate the values of ^2 and f2 for OSCs from Table 8.3.
Let f2

¤b , f2
¤[ and f2

¤Z be the dispersions of the stellar velocities in the OSC cores along

axes b, [, and Z , respectively. Let the distribution of the stellar velocities in the cores
of the considered OSCs be spherically symmetric. Then, F = f2

¤[/f2
¤b = 12

)
/02
)
= 1,

and f2 = 0, since f2 ∼ (F − 1), see formulas (18) and their explanations in Danilov
(2006); the values 12

)
and 02

)
are constant and are defined in Danilov (2006). In our

case, 12
)
= 02

)
= 1. According to (35) from Danilov (2006), there are two relations

for ^2: ^2 = (f2
¤b/f

2
¤Z )0

−2
)

and ^2 = (f2
¤[/f2

¤Z )1
−2
)

. In the case of a spherical symmetry

of the stellar velocity distribution,we find ^2
= 1 andT<0G = 2YC , see the explanation

to formula (36) from Danilov (2006); T<0G = 2>=BC is the largest value of T ; T<0G
is included in the expression (21) for the function Ψ(T ) from Danilov (2008).

The values ^2 and f2 for OSC model 1 are given by Danilov (2008). Taking into
account the values off2

¤b ≃ 0.112±0.016,f2
¤[ ≃ 0.143±0.016 andf2

¤Z ≃ 0.166±0.027

(averaged over the regular field oscillation period %A ) for the core stars of model
6, we find f2 ≃ 0.052 ± 0.039 Myr−1, ^2 ≃ 0.776 ± 0.182 (we used data on the
velocities of 100 stars closest to the center of the cluster model 6). As in the paper
of Danilov (2008), the average values of ^2 and f2 should be used for estimating
the parameters of the equilibrium PDF (the errors of these values are due to the
non-stationarity of the OSC models 1−6 and the oscillations of the values of f2

¤b , f2
¤[ ,

and f2
¤Z during the period %A ). Since ^2 < 1 < a2 (see the explanation to formula

(36) from Danilov (2006)), then T<0G = 2YCa
2, where the value a2 was defined by
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Danilov (2006). The obtained values f2, ^2 and the relations for T<0G , as well as the
values d4 and YC from Tables 8.2 and 8.3 were used further in order to analyze the
stability of the phase-density oscillations in the examined OSCs and OSC models.

When studying the natural oscillations of a non-isolated homogeneous gravitating
ellipsoid, whose potential and density are equal to the corresponding parameters of
the core of the numerical dynamic cluster model, the following form of the PDF 5∗
perturbations was considered by Danilov (2008): X 5∗(r, v, C) = 51 (r, v) exp(−8_C).
The 51 (r, v) is the initial amplitude of the phase density oscillations, and _ is
determined from the fifth degree algebraic equation with respect to j = _2:

5∑
9=0

? 9 j
9
= 0. (8.14)

The constants ? 9 can be represented in the form

? 9 = �0, 9 +
3∑
:=1

�:, 9�
2
: ,

where �0, 9 , �:, 9 , �: are constant values and : = 1, ..., 3; 9 = 0, ..., 5; the �:
values are directly proportional to the amplitudes of unperturbed stellar motion in
b-, [-, Z -coordinates, and have the same order of magnitude as these amplitudes.
Here, r, v are phase coordinates of the star. Equation (8.14) was obtained by Danilov
(2008) using the Boltzmann equation for the PDF of gravitating ellipsoid.

Danilov (2010) obtained the solutions of the equation (8.14) for six OSCs and
two OSC models considered here for a number of the YC values (including the YC
values indicated in Tables 8.3 and 8.2) at �: = 0 and �: = 1 pc (: = 1, 2, 3). The
case �: = 0 corresponds to the position of an unperturbed star in the cluster center,
and the case �: = 1 pc approximately ensures the maximum distance of this star
from the center by the distance ∼ 1 pc to the boundary of the cluster core as this
star moves. Both at �: = 0 and at �: = 1 pc for all the considered objects at the YC
values indicated in Tables 8.2 and 8.3, the phase density oscillations at the centers
of these systems are unstable (among the solutions of the equation (8.14), there is a
pair of complex conjugate roots). The corresponding solutions for X 5∗ have the form
X 5∗ = 51(r, v) exp(±8(W1 ± 8W2)C). Therefore, the development of an instability in the
system leads rather quickly to the dominance of the amplitudes of the oscillations
with the frequency W1. In the case �: = 1 pc, the period %W (1) = 2c/W1(1) and the
instability development time C_(1) = 1/W2(1) in Myr are given in columns 10 and
11 of Table 8.3. W(1)/l are given in column 12 of Table 8.3; here, l is the angular
velocity of the OSC (or the OSC model) motion around the Galactic center (l is
determined with an assumption of the plane circular orbits of the OSCs using the
Galaxy potential model of Kutuzov and Osipkov (1980) and the data of Danilov and
Seleznev (1994) on the distances of the OSCs '� to the center of the Galaxy).

Let us determine the boundaries of the instability region in the considered objects
(the OSCs and the OSC models). Increasing (or decreasing) the value of YC while
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preserving the number of stars and the mass of the object, according to (8.9), we
obtain the ellipsoids with a greater (or lesser) density d4 which is approximately
equal to the mean core density of the object d2 (see above). Calculating the roots
of the equation (8.14) for the new values YC and d4 (and with the previous values
Of all other parameters included in the equations for the coefficients of the equation
(8.14)) we can establish the boundary of the instability region of the object. In the
columns 13 and 14 of Table 8.3 for the case �: = 0, we indicate the maximum and
minimum values of d4 (d<0G,0 and d<8=,0), at which the phase density oscillations in
the center of masses of the object become stable. In columns 15 and 16 of Table 8.3,
we give the same by a sense values of d4 (d<0G,1 and d<8=,1) for the case �: = 1.
Densities in columns 9, 13−16 of Table 8.3 are given in <⊙/pc3. The values of the
densities in columns 13−16 of Table 8.3 were obtained for the mean values of YC
from column 8 of Table 8.3 corresponding to each object. Errors of the values in
columns 13−16 of Table 8.3 are caused both by the errors of YC , and by the errors in
the finding of the boundary of the unstable oscillations region at an average value of
YC from column 8 of Table 8.3. In column 17 of Table 8.3, we give the values d4/dC ,
where d4 is the value of the ellipsoid density taken from column 9 of Table 8.3, and
dC is the tidal density of the cluster dC = 3"2/(4c'3

C ) = −3U1/(4c�), U1 < 0 (see
above, and also at the p. 201 of the book of King (2002)).

8.5 Analysis of Dependencies Between the Parameters

of Unstable Oscillations of Phase Density in the Centers

of the Considered OSCs and Cluster Models

For the considered objects, the ratios d<0G,0/d4 from Table 8.3 are in the range from
∼ 332.3 (for NGC 6705) to ∼ 1004.0 (for NGC 188); the ratio d4/d<8=,0 are in the
interval from ∼ 2.1 (for NGC 188) to ∼ 7.1 (for NGC 7654); the ratios d<0G,1/d4
are contained in the interval from ∼ 2.7 (for NGC 6705) to ∼ 40.6 (for model 1);
ratio d4/d<8=,1 is in the interval from ∼ 2.0 (for NGC 188) to ∼ 6.8 (for NGC 7654).
Thus, the considered objects are deep inside the region of instability of the regarded
oscillations, and have a large "instability reserve" relatively to to the core density
d2 ≃ d4 (and energy YC ).

We note that the condition "2 = 2>=BC with an increase of YC and d4 leads to
a decrease in the size (and mass) of the core. In this case, for the stars capable to
reach the boundary of the core during their motion, the values �: ≠ 0 should tend
to zero, and the boundary of the region of the unstable oscillations of the phase
density should approach to the boundary obtained for the case �: = 0. The "halo-
core" structure of the clusters with the stable oscillations of the phase density should
resemble more the structure of globular clusters. However, at such large densities
of clusters’ cores, we can no longer use the collisionless approximation used by
Danilov (2008) when deriving the equation (8.14). It’s worth mentioning that such
high densities are not observed in the OSCs (except the cases of protoclusters in the
cores of giant molecular clouds (see Surdin (2001, p.148) and Elmegreen (2008)).
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Thus, the oscillations in the OSC cores considered above are unstable up to the
largest possible values of the average cluster density (in the OSCs, the collisionless
approximation is quite applicable for the time intervals shorter than the collisional
relaxation time).

Taking into account the influence of the less bright stars with stellar magnitudes
� > 16< exceeding the limiting magnitude of the stars considered by Danilov and
Seleznev (1994) can not significantly change the position of the OSC within the
region of the unstable oscillations of a phase density. Indeed, the taking into account
such stars can lead to an increase in the mass and the central density of the cluster only
in 2−3 times (see above the estimates of the virial masses and the masses"2 obtained
by Danilov and Seleznev (1994) using star counts for clusters NGC 6705 and NGC
188). Usually, the total masses of OSCs do not differ significantly from the dynamic
masses (de Grĳs et al., 2008; Miller and Scalo, 1979). The total masses of the clusters
NGC 1912, NGC 6705, NGC 7654, IC 1848 with ages C < 108 years (Danilov and
Seleznev, 1994), obtained by Danilov (2010) using the initial mass function of Miller
and Scalo (1979) for the stars with the masses < ≥ 0.1<⊙, taking into account the
data on minimum and maximum masses used by Danilov and Seleznev (1994) for an
estimating of "2, are respectively ∼2.1, 2.6, 2.7, 2.6 times higher than the estimates
of "2 in the catalog ofDanilov and Seleznev (1994). The average mass density of
the cluster equal to dC , does not change, see above. In addition, the stars of small
masses (and luminosities) are usually located at the cluster periphery. Therefore,
consideration of such stars can lead only to an insignificant increase in d(0) and,
consequently, does not change our conclusions about the instability of the phase
density oscillations in the cores of the considered OSCs.

The condition "2 = 2>=BC, as YC and d4 decrease, leads to an increase of the
size (and mass) of the core, as well as to a decrease in d2 and d(0). We note that
the OSC models 5 and 6 with the most extended massive cores and the smallest
d(0) values (see Table 8.2) have the least degree of non-stationarity (Danilov and
Dorogavtseva, 2003). These models decay more slowly than models 1−4, and the
time of a transition of models 5, 6 to the spherical velocity distribution is the greatest
among models 1−6, see Table 8.3 (Danilov and Dorogavtseva, 2008). According
to Danilov and Dorogavtseva (2008), this is due to a decrease in the role of the
gravitational and dynamic instabilities in the dynamics of such systems. In model 6,
during the periods of greatest compression to the Galactic plane Z = 0, a toroidal
structure with an increased density of number of stars inside the torus (in the space
(b, [, Z )) is formed with the equatorial plane close to Z = 0 (Danilov and Leskov,
2005). According to Danilov and Dorogavtseva (2008), the results noted here for
models 5 and 6 can be considered as arguments in a favor of the stability of the toroidal
(or close to toroidal) systems moving along the circular orbits in the Galactic plane.

Among 103 OSCs from the sample of Danilov and Seleznev (1994), one can find
only five clusters with the parameters of the "halo-core" structure '1/'2 ≥ 0.6,
#1/#2 > 2.5, close to the structural parameters of models 5 and 6 (see Table A.3
from Danilov and Seleznev (1994); here '1, #1 are the radius of the core and the
number of stars in the cluster core, and '2, #2 are the halo radius and the number of
stars in the halo of the cluster). If we add stars of the intermediate density zone in
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the cluster (Danilov and Seleznev, 1994) to the stars of the cluster core, and assume
the radius of the intermediate zone to be the radius of the core, we get 8 clusters
with parameters '1/'2 ≥ 0.6, #1/#2 > 2.5 in the sample of Danilov and Seleznev
(1994). The clusters chosen using these two methods of estimating the structural
parameters of the OSCs do not coincide. Therefore, the total number of selected
clusters with the extended massive cores is 13 (among the 103 OSCs of the sample
of Danilov and Seleznev (1994)). According to Table A.2.2 (column 7) of Danilov
and Seleznev (1994), these 13 OSCs have the least degrees of a non-stationarity
(the amplitudes XU = 〈XU〉Cℎ of the virial coefficients U are XU = 0.10 ± 0.02

and XU = 0.08 ± 0.03 for the first and the second way of evaluating the structural
parameters, respectively; in the first case, we used the data on XU for 4 clusters, and
in the second case for 7 clusters, since the data on XU for two of 13 selected clusters
are absent in the catalog of Danilov and Seleznev (1994); here, U = 2�/, , � is the
total energy of the cluster).

A small number of clusters, in the centers of which the phase density oscillations
can be stable, most likely does not reflect the real prevalence of such clusters.
Danilov and Seleznev (1994) considered the clusters with a quite high probability
of existence (Danilov et al., 1985). Danilov and Seleznev (1994) and Danilov et al.
(1985) noted the influence of large-scale fluctuations in a field-star density in the
vicinity of clusters on the possibility of determining the size of clusters. According
to Danilov et al. (1985), the distribution of field stars in the vicinity of the OSCs does
not follow the Poisson’s law, and angular dimensions of such large-scale field-star
density fluctuations are comparable with the angular dimensions of the considered
OSCs. If at least some of the over-densities of this type are objects that are resistant
to the oscillations of the phase density, then the number of such objects in the Galaxy
can be quite large.

In fig. 8.2a and 8.2b in the coordinates of (ln(d/d4),ln(d4/dC ) and (ln(d/d4),
d(0)/d4), respectively, the dots indicate the positions of the objects considered in
our study inside the region of the unstable oscillations of a phase density at the
centers of these objects. Here, d is the density of an ellipsoid with the potential*4
obtained by varying the energy YC . Solid lines in fig. 8.2 indicate the upper and lower
boundaries of the region of the unstable phase density oscillations at �8 = 0, and
the dashed lines indicate the boundary of this region at �8 = 1 pc. Here and in all
the other figures, the points corresponding to OSCs NGC 188, NGC 6819, IC 1848,
NGC 1912, NGC 6705, NGC 7654 are labeled with letters 0, 1, 2, 3, 4, 5 . Numbers
1 and 6 indicate the points corresponding to models 1 and 6. The lower boundaries
of the instability region (the solid line and the dashed line at �8 = 0 and �8 = 1

pc, respectively) in these coordinates almost coincide. The upper boundary of this
region (as well as the lower one) should be located between corresponding solid and
dashed lines (closer to the solid line). According to fig. 8.2a with an increase of the
average mass density of the cluster core (d2 ≃ d4) approaches the upper boundary
of the instability region considered here (and moves away from the lower boundary).
Consequently, for clusters with dense cores and large values of the star concentration
to the center (AC/A2), the degree of non-stationarity should decrease at increasing of
d2/dC .
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Fig. 8.2 The boundaries of the region of the unstable phase density oscillations in the centers of
the considered OSCs and OSC models. Positions of these eight objects inside the instability region

Indeed, according to Table. A.2.2 from Danilov and Seleznev (1994), the values
XU = 〈XU〉Cℎ for clusters NGC 1912, NGC 6705, NGC 7654 (denoted here by the
letters 3, 4, 5 ) are minimal: XU ≃ 0.037, 0.028, 0.044, respectively. For cluster NGC
188 (letter 0 in fig. 8.2), XU values is not defined in Danilov and Seleznev (1994),
but should be as high as possible, since for this cluster AC > 'C (probably, this cluster
is observed at the stage of an impulsive loss of a significant part of the halo stars in
the field of the Galaxy). The degree of non-stationarity of model 1 is also maximal
(see, for example, Table 1 from Danilov and Leskov (2005)). According to Table
A.2.2 from Danilov and Seleznev (1994), for cluster NGC 6819 (letter 1 in fig. 8.2)
the value of XU ≃ 0.062. In fig. 8.2a models 1, 6 and NGC 188 are located side
by side, although model 6 has an extended massive core and a minimal degree of
non-stationarity (see Table 1 from Danilov and Leskov (2005)). For the clusters with
the extended massive cores, an important role is played by the proximity of their
position to the upper dashed boundary of instability region in fig. 8.2a.

In fig. 8.2b the positions of models 1 and 6 along the axis d(0)/d4 differ signifi-
cantly. If we consider only clusters and model 1, then, according to fig. 8.2b, with the
increase in the mass density at the center of the object (and of the d(0)/d4 value),
positions of the considered objects approach to the upper boundary of an instability
region, which also indicates a decrease in the degree of a non-stationarity of such
systems.

On the example of NGC 6705 in fig. 8.3a and 8.3b, for the values of �: = 0

and �: = 1, respectively, we show the dependencies of the values C_(1) (solid line)
and %W (1) (dashed line) on density d for the d values corresponding to the unstable
oscillations of a phase density. The vertical arrows indicate the "observed" value of
d4 (d4 ≃ d2), see 9th column of Table 8.3. When d changes from the "observed"
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Fig. 8.3 The dependencies of C_, %W , %1 and %2 on the density d for cluster NGC 6705

values d4 to the values d on the boundary of an instability region, the value C_(1)
increases indefinitely (in this case, the rate of an instability development in the phase
density oscillations decreases to zero). The period of dominant (natural) oscillations
%W (1) decreases with an increase of d. Outside the region of instability, according
to (8.14), five periods of the stable phase density oscillations are obtained. Among
them, the maximum (%1) and the minimum (%2) periods are indicated in fig. 8.3 by
dashed and solid lines, respectively. According to fig. 8.3, the values of %1 and %2

decrease with an increase of d.
Positions of the objects in fig. 8.4 form the dependencies of %W (1) and gEA on

C_(1) for the considered objects. According to fig. 8.4, the values of %W (1) and gEA
decrease with a decrease of C_(1) and gEA ∼ %W (1). The same dependency of gEA
on the oscillation period %A of the regular field of a stellar system was obtained by
Lynden-Bell (1967) (see formula (10) from Lynden-Bell (1967)) with a description
of the violent relaxation of the system. The smallest values of C_(1), %W (1) and gEA
are obtained for cluster NGC 6705. Therefore, in the central region of this cluster, the
speed of an action of the collective processes (a violent relaxation, the oscillations in
a density and a phase density, as well as an instability of these oscillations) should be
the greatest, which is due to the largest values of d(0), d4 and d(0)/d4, see Tables
8.1, 8.3 and fig. 8.2b. However, among the clusters considered in our study, the
degree of non-stationarity in NGC 6705 is the smallest one (Danilov and Seleznev,
1994), which is most likely due to the greatest closeness of the position of this
cluster to the upper dashed boundary of the instability region in fig. 8.2. Apparently,
in NGC 6705 (and in model 6), the role of high-energy stars in the suppression of
the phase-density oscillations is the greatest, see fig. 8.2a, and also Danilov (2008).
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The positions of the objects in fig. 8.5 form the dependencies of W1 (1)/l, %W (1),
C_(1) on d4/dC . The value of W1(1)/l increases, and the values of %W (1) and C_(1)
decrease with an increase of d4/dC . Such dependencies are quite typical for non-
stationary stellar systems. According to Lynden-Bell (1967), in such systems, the
relation %A ∼ 1/

√
〈d〉 is fulfilled (see formula (9) from Lynden-Bell (1967)), where

〈d〉 is the density of the system averaged over the period %A . Thus, as in the case
of fig. 8.4, the speed of action of the considered above collective processes in the
OSCs and the OSC models increases with an increase of d4/dC and an increase of
the density of the cores of the considered objects.

According to Table 8.3, the values W1(1)/lwithin the indicated limits of the errors
can be quite represented as integers or rational numbers. Therefore, the resonances
between the frequencies of the natural density oscillations of the considered objects
and the frequency of the tide can play an important role in the dissipation of the
energy of tidal perturbations of the OSCs and the OSC models by the force field of
the Galaxy (see also Danilov and Dorogavtseva (2008)).

8.6 Conclusions

1. In this part of the study, we have considered the estimates of the parameters of the
modified King distribution of the apparent density of star number for six OSCs. As
an approximation to the construction of the spatial distributions 5 (A) of the density
of star number in these OSC, we have used the assumption on a spherical symmetry
of the star distribution in the clusters. We have performed the analytic estimates (8.4)
and (8.7) of improper integrals �Y and �Y arising in a calculation of the function
5 (A) and its errors at A = 0.

2. In order to determine the structural and dynamic parameters of OSCs (see Table
8.3), the Monte Carlo method have been applied for setting the spatial positions of
the stars corresponding to the distribution 5 (A) of stars in these OSCs.

3. Structural and dynamic parameters for six OSC models have been listed (see
Table 8.2). We have presented relations d4 ≃ d2 and (8.12) between parameters of
the models, which allow us to analyze the dynamic state and to estimate the dynamic
characteristics of OSCs. An equation (8.13) have been derived which makes it
possible to estimate the dynamic masses of OSCs taking into account the influence
on the cluster of the Galactic force field and the non-stationarity of the OSC. It has
been shown that taking these effects into account allows to significantly reduce the
estimates of the dynamic masses of OSCs in comparison with the estimates obtained
in the framework of models of the isolated virialized clusters.

4. We have discussed the natural oscillations of a phase density in the centers of
the examined OSCs and two OSC models. Instability of such oscillations in these
objects is noted. We have considered the boundaries of the instability region of such
oscillations in the space of the mean mass density of the cluster core (see Table 8.3).
Possible candidates for the role of objects, central parts of which are resistant to the
phase density oscillations, are OSCs with a small central density and the massive
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extended cores, as well as some objects (over-densities) with the dimensions and the
densities characteristic of the large-scale field-star density fluctuations in the vicinity
of the observed OSCs.

5. We have noted the dependencies between the parameters of the central regions
of six OSCs and two OSC models. Such dependencies are characteristic for non-
stationary stellar systems in the stage of a violent relaxation. The role of the high-
energy stars in a suppressing the the phase density oscillations in the central regions
of NGC 6705 and model 6 is noted, as well as the possible role of resonances between
the frequency of the phase density oscillations and the frequency of a tide in the
dissipation of an energy of the tidal perturbations of the OSCs and the OSC models
in the force field of the Galaxy.
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Chapter 9

On the Dynamics of Open Star Clusters

Abstract In this chapter, we consider a stellar kinematics in the models of open
star clusters. The central regions of these models are quite "cold" . This leads to a
gravitational instability in the cores of clusters and their models. In the cluster models,
a temporary virialisation is noted, when a significant part of cluster oscillations
energy temporarily passes into a kinetic energy of the peculiar stellar motions. The
duration of this stage can reach∼ 108 years. The reasons for the temporary virilization
of clusters are discussed. An instability of the natural oscillations of a phase density
in the centers of six clusters and six cluster models is investigated. The motion of
clusters and their models to a state of a stable equilibrium is possible both with
decreasing and increasing density of the cluster core. The structure of the instability
regions of the phase density fluctuations in the centers of six clusters is studied. The
resonance curves are constructed for the amplitudes of the steady-state fluctuations
of a phase density at the center of NGC 6705. An analysis of the structure of the
instability regions in clusters indicates the significant rates of an oscillation energy
loss in clusters under the action of the relaxation effects. With an increase of the
cluster’s distance from the center of the Galaxy, the instability increments and the
widths of the instability regions decrease.

9.1 Introduction

Heggie and Ramamani (1995) used the Jacobi integral in order to generalize the
King models (King, 1966) for the case of a non-isolated star cluster moving in a
circular orbit around the center of the Galaxy. The distribution of the velocities of the
cluster stars in this case is spherically symmetric, and the cluster is tidally truncated
and compressed to the Galactic plane. The models of King (1966) and Heggie and
Ramamani (1995) are commonlyused in discussing the structure of globular clusters.
In the numerical dynamic OSC models of Danilov and Dorogavtseva (2008), a slow
evolution is observed toward a formation of the spherical distribution of the stellar
velocities. However, OSC models of Danilov and Dorogavtseva (2008) do not reach
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this state and, as a rule, they are destroyed before a stationary state and the velocity
and density distributions noted in the model of Heggie and Ramamani (1995) (or
close to them) are formed.

In the OSC models of Danilov and Dorogavtseva (2008), the large-scale oscilla-
tions of a density and a regular field develop spontaneously and rapidly. A develop-
ment of an instability in the OSC models is used by Danilov and Dorogavtseva (2008)
and Danilov (2008) to explain the oscillations of the virial coefficient values and the
velocity dispersion of cluster stars that do not decay during the large time intervals.
Danilov (2008) performed a theoretical description of the phase density oscillations
in the central parts of the numerical dynamic OSC models. Danilov (2010) used the
formulas obtained by Danilov (2008) for the study of the phase density oscillations
at the centers of six observed OSCs and two OSC models (models 1 and 6 of Danilov
and Dorogavtseva (2008) were considered). Danilov (2010) showed that the PD os-
cillations are unstable at the centers of all considered objects (i.e. OSCs and their
models).

Thus, the equilibrium state and the equilibrium phase density function found for
the objects considered by Danilov (2008) and Danilov (2010) are unstable. Dynamic
evolution of the OSCs and their models must take place in the form of the oscillations
relative to this equilibrium state, and in the direction of a formation of a stable
equilibrium. Otherwise, it should be an evolution toward the equilibrium states with
a lower degree of instability, if in the considered period of time the OSC does not
expand and does not experience a large-scale loss of stars caused by heating of the
cluster by the tidal field of the Galaxy. Fig. 2 from the paper of Danilov (2010) shows
the position of the considered objects inside the region of the unstable PD oscillations
(in the coordinates related to the core density, the tidal density, and the central cluster
density). The further investigation of the PD oscillations in the centers of the OSCs
(with a much smaller step in the core density than in the paper of Danilov (2010))
revealed an extra regions of an instability of the PD oscillations in addition to ones
revealed by Danilov (2010). It is of interest to refine the position of the boundaries
of an unstable oscillation region for the clusters considered by Danilov (2010), to
find these boundaries for all six models of Danilov and Dorogavtseva (2008), as well
as to determine the positions of these models in the diagrams (the same as fig. 2
from Danilov (2010)) for two noticeably different time points. This will allow us
to judge of the direction of the dynamic evolution of the OSCs and their models in
the diagrams of fig. 2 of Danilov (2010), as well as to judge of the mechanisms that
affect the development of the PD oscillation instability in the OSCs. An important
role in the development of the gravitational instability considered by Danilov (2008)
and Danilov (2010) in the central parts of the OSCs is played by the heating of the
outer parts of the clusters by the tidal field of the Galaxy, which is revealed when
studying the stellar kinematics in the OSC models.

The objectives of this chapter are: 1) to analyze the dispersion of the stellar
velocities in the OSC models of Danilov and Dorogavtseva (2008) and to discuss
the causes of the PD oscillation instability development in the central regions of the
OSCs; 2) to search the new areas of an instability of the phase density oscillations in
the cores of some OSCs and the OSC models of Danilov and Dorogavtseva (2008);
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3) to determine the boundaries of this instability in the OSC models of Danilov
and Dorogavtseva (2008) for two noticeably different time points and to discuss the
mechanisms and the directions of the dynamic evolution of the OSCs.

9.2 Stellar Velocity Dispersion in the OSC Models

Danilov (2011) obtained the estimates of a stellar velocity dispersion f2
E in the

numerical dynamic OSC models according to the data of Danilov and Dorogavtseva
(2008) on the phase coordinates of stars in the cluster models for several time points
C (see the description of the OSC models in Section 16.1).

Table 9.1 Velocity Dispersion in the OSC Models

№ C1/gEA f2
E

= = 50 = = 100 = = 200 = = 300 = = 400 = = 500
1 2 3 4 5 6 7 8
1 0.025 0.169 0.154 0.190 0.200 0.204 0.203

±0.018 ±0.011 ±0.007 ±0.008 ±0.007 ±0.005
2 0.025 0.190 0.172 0.210 0.220 0.221 0.218

±0.020 ±0.013 ±0.007 ±0.007 ±0.007 ±0.004
3 0.021 0.258 0.248 0.224 0.246 0.252 0.246

±0.017 ±0.013 ±0.004 ±0.003 ±0.004 ±0.017
4 0.025 0.216 0.197 0.238 0.246 0.246 0.241

±0.023 ±0.015 ±0.008 ±0.007 ±0.006 ±0.003
5 0.018 0.291 0.281 0.269 0.255 0.264 0.265

±0.014 ±0.011 ±0.007 ±0.003 ±0.002 ±0.001
6 0.019 0.263 0.263 0.260 0.256 0.248 0.249

±0.010 ±0.010 ±0.005 ±0.005 ±0.003 ±0.002

In Tables 9.1−9.3 for three time points C8 (8 = 1, 2, 3), we give the estimates of
f2
E (in pc2/Myr 2) obtained by Danilov (2011) by to = stars closest to the center of a

cluster model. In the case 8 = 1, f2
E in Tables 9.1−9.3 is equal to the meanf2

E relative
to two time points C = 0 and C = 100ℎ, where ℎ is the initial step of an integrating
the equations of a stellar motion in time. In the case 8 = 2, 3, f2

E is equal to the mean
f2
E relative to the period %A of the regular field oscillations of the cluster model. In

every cases 8 = 2, 3 for each cluster model, the time period %A is determined by the
time dependencies of the virial coefficient U = 2�/, , where � and, are total and
potential energies of the cluster model, respectively. The first and second columns
of Tables 9.1−9.3 show the number of the cluster model and the time point C8 (in
the units of the time gEA ) for which the values of f2

E are indicated in the following
columns of Tables 9.1−9.3 at different = (here, gEA is the initial time of the violent
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Table 9.2 Velocity Dispersion in the OSC Models

№ C2/gEA f2
E

= = 50 = = 100 = = 200 = = 300 = = 400
1 2 3 4 5 6 7
1 1.60 0.224 0.235 0.258 0.267 0.268

±0.022 ±0.017 ±0.020 ±0.025 ±0.031
2 1.60 0.234 0.257 0.284 0.285 0.279

±0.042 ±0.023 ±0.022 ±0.021 ±0.026
3 1.65 0.325 0.315 0.294 0.299 0.290

±0.036 ±0.024 ±0.016 ±0.018 ±0.019
4 1.65 0.288 0.298 0.336 0.332 0.316

±0.039 ±0.026 ±0.023 ±0.023 ±0.022
5 1.60 0.389 0.378 0.353 0.331 0.319

±0.027 ±0.020 ±0.010 ±0.006 ±0.006
6 1.60 0.453 0.421 0.375 0.348 0.320

±0.041 ±0.035 ±0.028 ±0.024 ±0.019

Table 9.3 Velocity Dispersion in the OSC Models

№ C3/gEA f2
E

= = 50 = = 100 = = 200 = = 300 = = 400
1 2 3 4 5 6 7
1 2.677 0.212 0.220 0.241 0.245 0.281

±0.027 ±0.024 ±0.018 ±0.014 ±0.019
2 2.738 0.254 0.280 0.284 0.284 0.273

±0.028 ±0.024 ±0.016 ±0.017 ±0.019
3 2.821 0.332 0.324 0.308 0.306 0.294

±0.035 ±0.027 ±0.016 ±0.010 ±0.009
4 2.484 0.295 0.314 0.338 0.333 0.313

±0.042 ±0.028 ±0.016 ±0.014 ±0.014
5 2.915 0.374 0.374 0.356 0.334 0.317

±0.032 ±0.024 ±0.016 ±0.010 ±0.007
6 3.592 0.362 0.354 0.336 0.312 0.291

±0.045 ±0.027 ±0.016 ±0.010 ±0.010

relaxation obtained according to the formula gEA ≃ 2.6C2A (Aarseth, 1974); C2A is the
mean initial time of intersection of the cluster by a star (a crossing time)).

Danilov and Dorogavtseva (2008) performed the calculations of the cluster models
by an integration of the equations of a stellar motion using the difference schemes of
the 10th and 11th accuracy orders in the time interval C ∈ [0, C0], C0/gEA ≃ 3.9− 5.1,
where C0 is the time interval for the dynamic evolution of the OSC model, during
which a statistical criterion for the accuracy of calculations is performed (Danilov,
1997b) (see Section 16.1, 16.3). By the time C/gEA = 1.3, in models 1−6 of Danilov
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and Dorogavtseva (2008), an equilibrium regime of the density and a regular field
oscillations is established. The values of C8 (8 = 2, 3) are assumed to be equal here:
C2 = 1.3gEA+0.5%A (C2) and C3 = C0−0.5%A (C3) (the values%A in the models of Danilov
and Dorogavtseva (2008) change slowly with time, therefore the corresponding time
points are indicated in parentheses for %A ). From Tables 9.2, 9.3, it is clear that the
value of C3 − C2 in models of Danilov and Dorogavtseva (2008) is more than 1gEA ,
and in model 6 C3 − C2 ≃ 2gEA . Thus, the considered time interval C3 − C2 is quite
sufficient for a registering the possible changes with time in the stellar motions and
in the dynamic state of the OSC models of Danilov and Dorogavtseva (2008).

Fig. 9.1 shows the dependencies f2
E = f2

E (=) for OSC models 1−6 of Danilov
and Dorogavtseva (2008). Figs. 9.1a−c correspond to the dependencies f2

E = f
2
E (=)

for the time points C1, C2 and C3, respectively. Numbers near the curves f2
E = f2

E (=)
in figs. 9.1a−c correspond to the numbers of the OSC models. Comparison of f2

E

in fig. 9.1a and in figs. 9.1b,c reveals that during the evolution f2
E increases in all

models, which is caused by both compression of the cluster models at C . 0.5 %A
and "heating" of clusters by a tidal field of the Galaxy at C ∼ C8 (8 = 2, 3). According
to Danilov and Seleznev (1994), the OSCs with the massive extended cores (i.e.
with the "halo-core" structure parameters as models 5 and 6 have) are quite rare.
Basically, the sample of 103 OSC (Danilov and Seleznev, 1994) includes the clusters
for which the structural parameters are close to the parameters of models 1−4.

The rate of a dynamic evolution of the considered OSC models is related to the
slope and the distance from the = axis of the curves f2

E = f2
E (=) in fig. 9.1. The

lower curves in fig. 9.1 correspond to the fastest evolving model 1 of Danilov and
Dorogavtseva (2008). In time C0, model 1 passes through the most of its evolution
towards a formation of a stable equilibrium state (see below). According to (Danilov,
2011), the time for the formation of the spherical velocity distribution of stars Cf in
model 1 is Cf ≃ (7.6−8.9)gEA , and in model 6− Cf ≃ (21.5−24.9)gEA , see Table 3 in
Danilov and Dorogavtseva (2008). The synchronization time CB of the cluster rotation
with its motion around the center of the Galaxy in model 1 is CB = (7.5±0.2)gEA , and
in model 6 CB = (26.6 ± 4.0)gEA , see Table 2 in Danilov and Dorogavtseva (2008).
The dependencies f2

E = f2
E (=) at C8 (8 = 2, 3) show a slight increase or constancy of

f2
E with increasing = for models 1−4, and a slight decrease of f2

E with increasing =
for models 5, 6, see fig. 9.1.

We note that the matter densities in the OSCs and in the central parts of OSCs
are sufficiently small, which leads to small values of the potential and the dispersion
of the stellar velocities near cluster centers (Danilov, 2010). According to Danilov
(2010), the OSC halo are usually much more populated by stars than follows from
the King distribution (eq. (14) from King (1962)). Tidal "heating" of the OSCs and
their models is more significant at the cluster periphery. The contribution of the halo
stars to f2

E (=) increases rapidly with an increase of =. Therefore, the f2
E (=) values

for models 1, 2, 4 increase with increasing =. As a result, the central regions of OSC
models 1, 2, 4 are more "cold" than the entire cluster, which leads to the formation
of gravitational instability of the OSCs and their models noted in Danilov (2008)
and Danilov (2010). In the core of model 3, f2

E is only slightly higher than f2
E in the
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Fig. 9.1 Dependencies of the stellar velocity dispersion in the OSC models on =

whole cluster, which also ensures the formation of a gravitational instability at the
center of this cluster model, see below.

Thus, the small densities and a tidal "heating" of the OSCs provide the formation
of "cold" cores of these clusters which therefore are gravitationally unstable.

Models 5, 6 evolve slowly (in comparison with models 1−4), and during time C0
they undergo only a small part of their evolution in the direction of formation of
the stable equilibrium state. Therefore, the form of the curves f2

E = f
2
E (=) for these

models varies little at different C8 . Dependencies f2
E = f2

E (=) for models 5 and 6
change places of each other by the distance from = axis passing from C = C2 to C = C3
(at equal =, model 5 at C = C3 has greater f2

E (=) than model 6, and at C = C2, model
5 has smaller f2

E (=) than model 6). We note that at C/gEA ∈ [2.3, 4.6], model 5
shows a temporary decrease in the amplitude of oscillations of the virial coefficient
U (temporal virialisation), which is observed on the plots of U = U(C) dependencies
obtained by Danilov and Dorogavtseva (2008). In this case, most of the energy of the
radial oscillations of the cluster temporarily passes into the energy of the peculiar
stellar motions, and the cluster temporarily expands (see fig. 2 from Danilov and
Dorogavtseva (2008) for model 5). At C > 4.6gEA , the U oscillation amplitude in
model 5 again increases significantly. The same temporal virialisation (to different
degrees and at different time intervals) is observed in other OSC models, with the
exception of model 1. The value of C 〈A 〉 from Table 3 in Danilov and Dorogavtseva
(2008) (the time point in which the average distance 〈A〉 of the star from the cluster
center begins to increase) approximately coincides with the beginning of the temporal
virialisation stage in models 2−6.
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In model 2, a decrease in the amplitude of the cluster oscillations (and the U
values) near C = C3 (at C/gEA ∈ [2.40, 3.14]) also leads to an increase in f2

E (=),
which is noticeable in comparison with f2

E (=) for model 1 (see fig. 9.1b and 9.1c;
the mutual arrangement of the f2

E = f2
E (=) curves for models 1 and 2). However,

at C/gEA > 3.14, the large-scale oscillations in this cluster model continue, the core
continues to contract, which should lead to an increase in f2

E (=) at = ≃ 100 − 150.
The reason for a temporal virialization of the analyzed OSC models is the "heat-

ing" of the cluster core by the energy flow from the periphery toward the cluster
center caused by the large-scale cluster oscillations at the previous stage of evolu-
tion. Such energy flow in cluster model 1 was detected and investigated by Danilov
(2002b). At the stage of sa temporal virialization, the gravitational instability in the
cluster cores is largely suppressed (due to a temporarily increased dispersion of the
stellar velocities). Further "cooling" of the OSC core due to the expansion of the core
and the entire cluster again leads to the development of a gravitational instability
near the center, and to an increase in the amplitude of cluster oscillations. In model 1,
the stage of temporal virialization is not observed, since the mechanism of a heating
and an expansion of the cluster core considered here rapidly leads to the loss of a
significant part of the halo stars in this model, and to a relative stabilization of the
model’s core near the stable equilibrium state (see the position of model 1 at C = C3
in fig. 9.2). This state is probably the final stage in the evolution of the OSCs and
their models.

We note that the external field of the Galaxy not only "heats up" the outer parts of
the cluster, but also largely prevents the entry of the high-energy stars into the cluster
center (due to the non-radiality of the cluster star orbits in the presence of the Galaxy
field). Therefore, the transfer of the energy of the regular field oscillations toward
the cluster center (Danilov, 2002b) plays an important role in the "heating" of the
cluster core. The energy transfer into the cluster core also is partially ensured by
the diffusion of stars in the velocity space during the stellar encounters. In our OSC
models, such mechanism is less efficient, since estimates of the collision relaxation
time gBC of the models (due to stellar encounters) exceed gEA in 1.9−2.6 times (see,
for example, Table 3 from Danilov (2010) for models 1, 6). We also notice that the
slope of the curves f2

E = f2
E (=) in fig. 9.1 at small = ≃ 50 − 200 in models 1, 2, 4

indicates the presence of an external source of the cluster "heating" .
Thus, for the OSCs, a temporal virialization is possible, during which a significant

part of the cluster oscillation energy temporarily transforms into a kinetic energy
of the peculiar stellar motions. Among the considered OSC models, the greatest
duration ΔC of this stage is achieved in model 5 (ΔC ≃ 2.3gEA , which corresponds to
ΔC ≃ 9.8 × 107 years).

Observational data on the radial dependencies of the stellar velocity dispersions
f = f(A) in the OSCs are very few. The errors in the stellar velocity dispersion
are either too large for reliable conclusions about dependencies f = f(A), or not
given in the papers on this topic. We shall mention only the following two papers.
According to the data on the proper motions of stars in cluster NGC 2669, Sagar and
Bhatt (1989) have shown that the stellar velocity dispersions depend weakly on the
distance A from the cluster center at A ≥ 45′ (arcminutes), and increase at A ≥ 45′
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(see Table 3 from Sagar and Bhatt (1989)). Geller et al. (2008), from the data on
the radial stellar velocities in cluster NGC 188, have shown that the stellar velocity
dispersions do not change within errors with an increasing distance from the cluster
center after a considering the influence of the binary stars in the cluster core, that are
not resolved into the single stars in the observations. Such observed dependencies
f = f(A) quite can lead to dependencies f2

E = f
2
E (=) shown in fig. 9.1.

9.3 Instability Parameters of OSC and their Models

Danilov (2008) and Danilov (2010) used a three-integral PDF in the formΨ = Ψ(T )
to describe the motion of stars in the cluster core, where T = �1 + ^2�2 + B�3, �; are
the integrals of motion ((; = 1, 2, 3); ^2 and B are the constant values. ^2 and B are
related to the ratios of the mean stellar velocity dispersions along the coordinate axes
(averaged over the period %A of the regular field oscillations). The formulas for ^2

and B are given in the explanations to formulas (35) and (18) from Danilov (2006).
The B value in the Danilov (2008), Danilov (2010), and Danilov (2006) papers is
denoted as f2, since in these papers at C = C2 models 1, 6 were considered, for
which B > 0. In models 3 and 5 at C = C2 and in models 4 and 5 at C = C3, the mean
values of the coefficient B < 0, so a denotation B is used here instead of f2, which
does not affect the possibility of an estimating the instability parameters of the PDF
oscillations at the cluster center.

Results of an estimating of the dynamic parameters of the OSC models of Danilov
and Dorogavtseva (2008) for two time points C = C2, C3 are given in Table 9.4. In the
1st column of Table 9.4, the number of the cluster model is indicated. In columns 2,
3 and 9, 10 of Table 9.4, for the time points C = C2 and C3, respectively, the values of
the coefficients ^2 and B are given in the case of a stellar motion in the joint force
field of the Galaxy and a homogeneous ellipsoid with the potential*4 (�-ellipsoid),
see formula (8) from Danilov (2010).

In the papers of Danilov (2008) and Danilov (2010) and in this work, the mean
potential (averaged over the period %A ) near the center of the numerical dynamic
cluster model was approximated by the *4 potential. The eigenvalues of _ in the
problem of the PDF value oscillations near the center of �-ellipsoid were obtained
by solving equation (31) from Danilov (2008). The complex conjugate roots of this
equation _ = W1 ± 8W2 allow to estimate the period %W = 2c/W1 of the oscillations
with a dominating amplitude and the time C_ = 1/W2 of the instability development
of the PDF oscillations near the center of the cluster model. In columns 4, 5 and 11,
12 of Table 9.4 at C = C2 and C = C3, respectively, the values of %W (1) and C_ (1) in
Myr are given. The unity in the parentheses at %W and C_ means that the considered
stars have energies Y, which are sufficient to remove a star by 1 pc from the cluster
center (till the cluster core boundary) during its motion within the cluster. In this
case, �: = 1 pc, : = (1, 2, 3), see formulas (30) from Danilov (2008); the �: values
are directly proportional to the amplitudes of an unperturbed stellar motion with
respect to the spatial coordinates, and have the same order of magnitude as these
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amplitudes. In columns 6−8 of Table 9.4 for C = C3, the following values are given:
d(0) (the mean density near the center of the cluster model averaged over %A and
obtained from the 5−6 stars closest to the cluster center); d4 (the density of the
�-ellipsoid approximately equal to the mean density of the cluster model averaged
over %A , see Danilov (2010)); YC (the energy per unit of the star mass, which is
necessary for the star to exit from the center to the surface of �-ellipsoid). d(0),
d4 are given in the units of <⊙/pc3, and YC is given in the units of (pc/Myr)2. The
values of d(0), d4 and YC for models 1−6 at the time point C = C2 are given in Table 2
from Danilov (2010). The values of d4, YC , ^2, B, �: , : = (1, 2, 3), as well as data on
the mass, the tidal sizes of the cluster model, and the parameters of the force field of
the Galaxy U1 and U3 (Chandrasekhar, 1942), taken in accordance with the model of
a Galactic potential of Kutuzov and Osipkov (1980), were used in this work to find
the coefficients of equation (31) from Danilov (2008) and to calculate the values of
%W and C_.

When calculating the boundariesof the unstable PD oscillation region in the space
of d (the mass density of the cluster core) in the OSC models and in the clusters
considered in Danilov (2010), for the cases �: = 0, 1 pc, : = 1, 2, 3,, we used the
technique described in Danilov (2010) (the variation of the YC and d4 values at the
constant cluster mass "2 = 2>=BC). In comparison with Danilov (2010), the range
�C of the considered values of YC ∈ �C was extended. The �C range was investigated
in steps of ΔY equal to ΔY = (10−4 − 10−6) × YC (Danilov (2010) used the step
ΔY = (1 − 10) × YC , and when the stable oscillations were found, the position of the
boundary of the instability region was refined by a "bisection method"). The results
of the d calculations are shown in fig. 9.2. In fig. 9.2, d4 values for models 1−6 at
the time C = C3 are taken from Table 2 of Danilov (2011), see also in Table 9.4; in
the case C = C2 − the values d4 are taken from Table 3 of Danilov (2010). For six
OSC considered in Danilov (2010), the d4 values are also taken from Table 3 of
Danilov (2010). As in Danilov (2010), the tidal density dC of the OSCs and their
models was calculated using a formula dC = −3U1/(4c�), where � is gravitational
constant, and U1 < 0 (see above, and also Geller et al. (2008); Danilov (2006)). The
numerical values of d at the boundaries of the instability regions for the considered
objects in the form of tables are not given here due to a cumbersome form of such
tables. The errors fd of d obtained for the OSCs and their models at the boundaries
of the instability regions do not exceed the errors of d indicated in columns 13−16
of Table 3 from Danilov (2010), and in the case of regions II and II′, see fig. 9.2,
the fd values are ∼ (0.64 − 7.10) % of the width Δd of these regions relative to d
(here, Δd is obtained at the mean YC for the given model of the object).

In fig. 9.2 and 9.3 in coordinates (ln(d4/dC ), ln(d/d4)) and (d(0)/d4, ln(d/d4)),
the dots indicate the positions of the objects considered in our work (the OSCs and
the OSC models) within the region of the unstable PD oscillations at the centers of
these objects. Letters a, b, c, d, e, f mark the points corresponding to the OSCs NGC
188, NGC 6819, IC 1848, NGC 1912, NGC 6705, NGC 7654 (as in Danilov (2010)).
Numbers 1−6 mark the points corresponding to the OSC models 1−6 at C = C2, and
numbers 1′−6′ mark the points corresponding to these models at C = C3. Solid and
dashed lines in figs. 9.2, 9.3 indicate the boundaries of the unstable PD oscillations
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at �: = 0 and�: = 1 pc, respectively. Solid (and dashed) vertical arcs with numbers
I, II (and I′, II′, III) in figs. 9.2, 9.3 indicate the regions of an instability of these
oscillations at �: = 0 (and �: = 1 pc). All considered objects in figs. 9.2, 9.3 are
located within regions I and I′. In addition to the unstable PD oscillation regions
indicated in Danilov (2010), the present study reveals the very narrow regions II
and II′ (at the density values of d = d� � ,� � ′ ∼ (0.114 − 0.127)<⊙/pc3 for models
1−6 ('� = 8200?2, see above) and d� � ,� � ′ ∼ (0.181 − 0.192)<⊙/pc3 in the case
of NGC 6705, '� = 6820 pc, d� � ,� � ′ ∼ (0.068 − 0.086)<⊙/pc3 in the case of
IC 1848, '� = 9520pc; '� values are assumed here according to Danilov and
Seleznev (1994), Table A.2.1; the d� � ,� � ′ values are usually ∼ (9 − 21)% larger
than dC ). An upper bound of the values of d = d� ′ in the OSC models is reached at
d� � ′ ∼ (3.8 − 4.5)<⊙/pc3. The lower bounds of the d� ′ values in six OSCs and in
OSC models 1, 6 at C = C2 are listed in Table 3 of Danilov (2010), column 15. At
�: = 1 pc, this study also reveals the region III of the unstable PD oscillations (the
density values d = d� � � ∼ (18.6 − 37.3)<⊙/pc3 in the OSC models), see figs. 9.2,
9.3.

According to fig. 9.2, model 1 in time ΔC = C3 − C2 evolves toward the reducing of
the core density. The point in fig. 9.2 corresponding to model 1 herewith moves to
the left almost till the boundary of the unstable oscillation region I′ (and region I).
Thus, the movement of the OSC toward the state of a stable equilibrium is possible
with a decrease of the density of the cluster core (probably, this is the most frequent
version of the OSC evolution). Models 2 and 5 at C ∈ [C2, C3] also evolve toward a
stable equilibrium state with the decreasing core density (see fig. 9.2).

The most noticeable movement to the right in fig. 9.2 is detected for model 4 (the
densest cluster model with the largest initial concentration of stars toward the center,
the same as in models 1, 2, see Table 1 from Danilov and Dorogavtseva (2008),
column 2). In this case, model 4 begins to approach the upper boundary of region I′

and, therefore, evolves toward the state of a stable equilibrium. Models 3 and 6 also
show a slow evolution with the increasing core density towards the upper boundary
of region I′ in fig. 9.2. Models 5 and 6 show an opposing motion in fig. 9.2. In this
case, model 5 approaches a steady equilibrium, and model 6 moves away from it,
which is associated with an increase of the velocity dispersion f2

E (=) in model 5 and
a decrease of f2

E (=) in model 6 at C ∈ [C2, C3], see above.
Thus, if the effects of core "heating" (caused by the oscillations of a regular field

and by a tidal field of the Galaxy) dominate in the cluster, then the cluster in fig.
9.2 moves to the left (in the same direction the evolution of the OSC is accelerated
if we take into account the influence on the evolution of the encounters between
the single stars (SS) and the dynamically active close binary stars (CBS) (Danilov,
1977, 1978)). If the effects of the encounters between SS dominate in the cluster,
then a compression and an increase in the core density take place. Such cluster
moves to the right in fig. 9.2. At d4/dC & 17.8 (see cluster IC 1848, point "c" in
fig. 9.2), an evolution with the core compression gradually leads the cluster to the
state of a stable equilibrium. During the dynamic evolution of the cluster, the roles
of the mechanisms operating in the cluster can change (for example, a temporal
virialization of the cluster or a replacement of the dominant type of the encounters
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between SS by the encounters between SS and CBS as a result of an accumulation
of the total binding energy in CBS (Danilov, 1977)). In this case, after a prolonged
stage of the cluster compression, a prolonged cluster expansion may occur, see fig.
1, 2 from Danilov (1977). The critical cluster density value d<, at which the cluster
compression is replaced with an expansion, is obtained by Danilov (1977) within
the framework of the gross-dynamic description of the OSC (in the form of the d<
dependency on the number and the parameters of the CBSs, see formula (17) and
fig. 3 from Danilov (1977)).

We note that changes ΔG in the position of the OSC models 2, 3, 5, 6 along the
axis G = ln(d4/dC ) in time ΔC = C3 − C2 in fig. 9.2 are within the limits of the errors
fG . In model 4, ΔG is ∼ 2.5 times larger than fG , and in model 1, ΔG is ∼ 6.0 times
larger than fG . The errors fG are defined by the errors fd4 of d4, and are given in
Table 2 from Danilov (2010) for C = C2 and in Table 9.3 of this work for C = C3.
Usually, the fd4 values are ∼ 10 % of the d4 values. They are determined by the
errors in defining the YC (see formula (9) from Danilov (2010)), and are an upper
bound of errors fd4 , since in addition to the random deviations of the gravitational
potential* of the model from the mean value (averaged over the %A period), the *
values also characterize the amplitude of the * oscillations near the center of the
cluster model.

Table 9.4 Dynamic parameters of six OSC models

C = C2 C = C3
№ ^2 B %W (1) C_ (1) d (0) d4 YC ^2 B %W (1) C_ (1)
1 2 3 4 5 6 7 8 9 10 11 12
1 0.71 0.061 37.4 53.7 4.53 0.49 0.25 0.75 0.037 49.2 128.4

±0.16 ±0.024 ±1.8 ±2.9 ±1.94 ±0.05 ±0.02 ±0.21 ±0.040 ±2.0 (100.1-244.1)
2 0.75 0.034 38.2 60.5 4.57 0.82 0.40 0.77 0.039 39.4 61.9

±0.19 ±0.044 ±1.8 ±3.7 ±1.52 ±0.08 ±0.04 ±0.19 ±0.034 ±1.9 ±4.4
3 0.90 -0.006 37.0 67.1 4.43 0.97 0.46 0.85 0.023 36.6 59.4

±0.21 ±0.037 ±1.8 ±4.0 ±2.00 ±0.10 ±0.04 ±0.19 ±0.043 ±1.8 ±3.2
4 0.81 0.012 36.2 61.4 12.22 1.28 0.59 0.82 -0.026 32.8 64.8

±0.20 ±0.047 ±1.9 ±3.5 ±7.62 ±0.13 ±0.06 ±0.21 ±0.055 ±1.3 ±2.5
5 0.86 -0.0006 34.8 61.7 3.30 1.01 0.48 0.85 -0.003 35.9 64.4

±0.13 ±0.0330 ±1.7 ±2.8 ±1.68 ±0.10 ±0.04 ±0.14 ±0.037 ±1.8 ±3.5
6 0.78 0.052 38.1 56.3 2.32 0.94 0.45 0.84 0.034 37.0 57.8

±0.18 ±0.039 ±1.8 ±3.3 ±1.48 ±0.10 ±0.04 ±0.16 ±0.034 ±1.8 ±3.2

According to fig. 9.3, cluster models 1−6 at C ∈ [C2, C3] evolve with decreasing
d(0)/d4. The most significant decrease in H = d(0)/d4 is observed in model 2.
Apparently, the clusters marked by letters in fig. 9.3 evolve in the same direction. With
an increase of C, the central densities in the OSCs gradually decrease in comparison
with the mean cluster core density. We note that the errors fH of H are ∼ 14.2 % of
the H values. The changes ΔH in the position of models 1−5 along the axis d(0)/d4
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in time ΔC in fig. 9.3 go beyond 2fH (the value of ΔH < fH only in the case of model
6, but for model 2 ΔH ≃ 10fH).

9.4 Structure of Regions of the PD Oscillation Instability

in the Centers of Six OSCs

Fig. 9.4 shows (according to Danilov (2011)) the dependencies of the PD oscillation
parameters in the center of NGC 6705 on the density d and %−1

W for �: = 0 (fig.
9.4a and 9.4c) and�: = 1 pc (fig. 9.4b and 9.4d) according to Danilov (2011). Solid
(and dashed) lines in fig. 9.4a, 9.4b indicate dependencies of ln(C_) (and ln(%W))
on ln(d) within the instability regions. In comparison with fig. 3 from Danilov
(2010), three new instability regions are added here. Moreover, fig. 3b from Danilov
(2010) contains typos (the ordinate axis name in fig. 3b from Danilov (2010) must
be C_, %8 instead of ln(C_), ln(%8); the values changing along the abscissa axis are d,
not (d)). Outside the instability regions, according to (31) from Danilov (2008), five
periods of the stable phase density oscillations are obtained. Of these, the maximum
(%1) and minimum (%2) periods are indicated in fig. 9.4a,b by dashed and solid lines,
respectively. The vertical arrows in fig. 9.4 mark the "observed" values of d4 and %−1

W

(see Table 3 from Danilov (2010), column 9 for d4 and column 10 for %W at �: = 1

pc). When d is changing from d4 to the d value on the boundaries of instability
regions, C_ in fig. 9.4a,b increases indefinitely (in this case, the growth rate of the
PD oscillation amplitude decreases to zero). According to fig. 9.4a,b, the dominant
oscillation period %W and the periods %1, %2 decrease with increasing density d. Fig.
9.4c,d, shows the resonance curves (Strelkov, 2005) for the PD oscillation amplitude
in the cluster center within the instability zones.

Resonance curves were obtained by Danilov (2011) under the assumption that
the amplitude of the steady-state PD oscillations at the cluster center is directly
proportional to the instability growth rate (an increment) W2 of such oscillations.
Values of the coefficients �8 were chosen so that it would be convenient to compare
the resonance curves obtained for different instability regions. The index values 8 in
fig. 9.4c,d mark their corresponding resonance curves. At �: = 0, the values 8 = 1, 2

correspond to regions II, I in fig. 9.2 and 9.3, and at �: = 1 pc, the values 8 = 1, 2, 3

correspond to regions II′, I′, III, see above. At �: = 0, the values �8 (in Myr) are
assumed to be: �1 = 50, �2 = 1, and at�: = 1 pc, they are assumed to be: �1 = 100,
�2 = 3, �3 = 1. We note that for other clusters and cluster models considered in this
work, the dependencies of ln(CW) and %W on ln(d), as well as the resonance curves
have a form similar to that shown in fig.9.4 for cluster NGC 6705. The amplitudes
(and energies) of the established PD oscillations in the cluster center (and the cluster
as a whole) decrease when passing from the large frequencies W1 = 2c%−1

W to smaller
ones. When passing from�: = 1 pc to�: = 0 (to the lower motion energy of the stars
in the cluster core), the number of the regions of the unstable oscillations decreases,
but the width of the regions I and I′ of the unstable PD oscillations, containing
clusters and their models, increases. When the core is "heated" , the number of the
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Fig. 9.4 The dependencies of the PD oscillation parameters in the center of cluster NGC 6705 on
the density d and the %−1

W value

complex conjugate roots _ of equation (31) from Danilov (2008) increases, which
should lead to an increase in the number of the instability regions in figs. 9.2−9.4
and to a decrease in their width in the spaces of ln(d) and W1. In this case, we can
expect the OSCs and their models to fall into the region of stable PD oscillations,
which contains a larger number of the narrower instability zones.

The OSCs and their models considered here are not in the maxima of the reso-
nance curves of regions I and I′, although they are located near these maxima. In
order to describe the instability regions, it is convenient to introduce the following
value: & = W10/ΔW1 = %−1

W0
/Δ%−1

W , where W10 and %W0 correspond to the frequency
and the PD oscillation period at the maximum of a resonance curve, and ΔW1 and
Δ%−1

W correspond to the width of this instability region at W2 = 0. A similar param-
eter is introduced when describing the quality factor & of the simplest oscillation
mechanical systems (Strelkov, 2005). However, Strelkov (2005) determines ΔW1 for
& at the level of the values W2 =

1
2W20 , where W20 corresponds to the maximum

of the resonance curve. According to Strelkov (2005), & characterizes the relative
energy loss of a mechanical oscillation system due to the energy dissipation caused
by friction on an interval of time equal to one oscillation period. In our OSC models,
the energy of the system oscillations passes into the energy of the peculiar stellar
motions under the action of the relaxation mechanisms, and remains largely within
the system. In linear mechanical systems (Strelkov, 2005, p.53), the source of oscil-
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lations is the external driving force, and in our OSC models, the oscillation source
(the gravitational instability) is inside the system.

Different ways of an estimating of ΔW by Strelkov (2005) and by Danilov (2011)
for OSCs do not lead to a significant discrepancy in &, which is explained by the
shape of the resonance curves (see fig. 9.4c,d). In the case of NGC 6705 at �: = 1

pc, the use of the values W2 =
1
2W20 leads to an increase of & by 12.4, 12.6, 18.2%

in the regions II′, I′, III, respectively, in comparison with the & values obtained at
W2 = 0 (in the case �: = 0, an increase of & at W2 =

1
2W20 is 11.8 and 24.0% in

regions II and I, respectively, in comparison with & obtained at W2 = 0).

Table 9.5 Parameters of the instability regions of the PD oscillations in the centers of six OSCs

OSC �: = 0
Region & W20 %W0 W10/l

1 2 3 4 5 6
NGC 188 I 0.27614 0.03636 4.9811 50.146

±0.00002 ±10−9 ±0.0004 ±0.004
II 74.7 0.00031 117.236 2.13059

±0.7 ±0.8 × 10−10 ±0.001 ±0.00002
NGC 1912 I 0.276 0.03498 5.17745 50.14634

±0.001 0.6 × ±10−10 ±0.4 × 10−6 ±0.5 × 10−5

II 77.4 0.00030 121.862 2.13053
±7.4 ±0.4 × 10−7 ±0.001 ±0.00002

NGC 6705 I 0.27617 0.05109 3.5454 50.141
±0.00003 0.6 ± 10−10 ±0.0002 ±0.003

II 79.0 0.00042 83.430 2.13076
±2.1 ±0.8 × 10−8 ±0.002 ±0.00005

NGC 6819 I 0.27615 0.04288 4.22401 50.14368
±0.5 × 10−6 ±10−10 ±0.3 × 10−6 ±0.4 × 10−5

II 77.7 0.00036 99.4103 2.13064
±1.4 ±0.4 × 10−9 ±0.0005 ±0.00001

NGC 7654 I 0.27614 0.03657 4.9533 50.146
±0.9 × 10−6 ±0.5 × 10−10 ±0.3 × 10−6 ±0.3 × 10−5

II 76.3 0.00031 116.580 2.13061
±2.2 ±0.7 × 10−9 ±0.001 ±0.00002

IC 1848 I 0.27630 0.03229 5.60964 47.74339
±0.6 × 10−6 ±0.4 × 10−10 ±0.5 × 10−6 ±0.4 × 10−5

II 86.8 0.00024 131.915 2.03027
±5.8 ±0.9 × 10−10 ±0.003 ±0.00005

Tables 9.5 and 9.6 give the parameters of the instability regions of the PD oscil-
lations in the centers of six OSCs. Columns 1 and 2 of Tables 9.5 and 9.6 indicate
cluster names and numbers of the unstable oscillation regions (coinciding with their
numbers in figs. 9.2, 9.3). The& values obtained at W2 = 0, as well as W20 (in Myr−1),
%W0 (in Myr) and W10/l are given in columns 3−6 of Tables 9.5 and 9.6 at �: = 0

and �: = 1 pc, respectively. Here, l is the frequency of the cluster rotation around
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Table 9.6 Parameters of instability regions of PD oscillations in the centers of six OSC

OSC �: = 1 pc
Region & W20 %W0 W10/l

1 2 3 4 5 6
NGC 188 I′ 0.917 0.0194 25.1 10.0

±0.054 ±0.0011 ±1.5 ±0.6
II′ 2.6 0.10790 3.1 80.6

±0.2 ±0.00001 ±0.2 ±5.2
III 96.7 0.00029 117.221 2.13086

±11.4 ±0.3 × 10−5 ±0.005 ±0.00009
NGC 1912 I′ 0.856 0.0212 22.7 11.4

±0.048 ±0.0009 ±1.3 ±0.7
II′ 3.11 0.10379 2.6 99.9

±0.25 ±0.4 × 10−5 ±0.2 ±7.7
III 80.3 0.00029 121.846 2.13081

±1.8 ±0.2 × 10−5 ±0.003 ±0.00005
NGC 6705 I′ 0.862 0.306 15.7 11.3

±0.049 ±0.001 ±0.9 ±0.7
II′ 3.07 0.15158 1.82 97.7

±0.25 ±0.000006 ±0.15 ±8.1
III 82.6 0.00041 83.420 2.13102

±2.3 ±0.3 × 10−5 ±0.003 ±0.00008
NGC 6819 I′ 0.851 0.026 18.2 11.6

±0.047 ±0.001 ±1.0 ±0.6
II′ 3.2 0.12722 2.1 100.9

±0.3 ±0.000004 ±0.2 ±9.6
III 80.2 0.00035 99.399 2.13088

±1.5 ±0.2 × 10−5 ±0.001 ±0.00002
NGC 7654 I′ 0.852 0.022 21.46 11.6

±0.047 ±0.001 ±1.19 ±0.6
II′ 3.2 0.10848 2.5 99.4

±0.3 ±0.000004 ±0.2 ±8.0
III 80.0 0.00030 116.568 2.13082

±2.5 ±0.2 × 10−5 ±0.003 ±0.00005
IC 1848 I′ 0.829 0.0218 21.6 12.4

±0.045 ±0.0008 ±1.2 ±0.7
II′ 3.5 0.10061 2.4 111.6

±0.3 ±0.000002 ±0.2 ±9.3
III 77.0 0.00028 125.696 2.13072

±1.5 ±0.2 × 10−5 ±0.002 ±0.00003
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the Galaxy center obtained by Danilov (2010) assuming the planar circular orbit of
the cluster. Errors f&, fW20

, f%W0
, fW10/l of &, W20 , %W0 , W10/l given in Tables 9.5

and 9.6 are caused by the errors in evaluation of the cluster mass "2 (related to the
errors in the number of cluster stars #2 and in the mean mass of a cluster star, see
Danilov and Seleznev (1994)), as well as by the errors in a defining the position of the
maxima of the resonance curves and the boundaries of the instability regions (related
to the step value ΔY, used with a studying the region �C , see above). Probably, small
values of f&, fW20

, f%W0
, fW10/l in Table 9.3 are due to a weak dependency of the

parameters&, W20 , %W0 , W10/l on the sources of errors mentioned above.
According to Tables 9.5 and 9.6, for all six clusters, the & values for region

I approximately equal &� ≃ 0.276, and for region I′, the & values are &� ′ ≃
0.829−0.917. With a decrease of the density d of the cluster core in region II′, the&
values reach&� � ′ ≃ 2.6 − 3.5, and in region II, the & values are &� � ≃ 74.7 − 86.8.
With a decreasing density d in region III, the & values are &� � � ≃ 77.0 − 96.7.

All the considered clusters are located in regions I, I′ with small& values, which
indicates a low Q factor (goodness) of such systems. In this case, the rate of the energy
loss of the system’s oscillations (see, for example, Strelkov (2005, p.312,175)) due
to the relaxation mechanisms must be large, and for a maintaining of the oscillations,
the sufficiently large growth rates W2 of the instability increase are needed. Indeed,
the relaxation times gY in models 1−6, obtained by Danilov and Dorogavtseva (2003)
from data on the star fluxes in the space of an energy Y, are large enough, and the
relation gY > C_(1) is fulfilled (see Table 9.4 of this work and Table 2 from Danilov
and Dorogavtseva (2003); the values of gEA can be found, for example, in Table 1
from Danilov and Dorogavtseva (2008)). According to the estimates of Danilov and
Dorogavtseva (2003) and of this work for models 1−6, we find gY/C_ (1) ∼ 2.0− 4.8

at C = C2 and gY/C_ (1) ∼ 2.0 − 3.2 at C = C3. Consequently, the values of W2 for
models 1−6 are sufficiently large in comparison with the velocity WY of the system
relaxation in the space of Y (WY ∼ 1/gY).

According to Table 2 from Danilov and Dorogavtseva (2003) and 9.4 for models
1−6, the following relations are satisfied: C_ (1) > gEA , C_(1) > gE . In the case of
the OSC models 1 and 2, C_(1) . gA , and for models 3−6, the relation C_(1) > gA
is fulfilled. Here, gE and gA are the relaxation times of models 1−6 obtained by
Danilov and Dorogavtseva (2003) from the data on the stellar fluxes in the spaces
of E (the stellar velocity moduli) and distances A of the star from the mass center of
the cluster, respectively. gEA , gE , gA determine the time of the system’s transition to a
virial equilibrium in the absence of the conditions for a gravitational instability in it.
Relations between C_ (1) and gEA , gE , gA indicate a fairly rapid loss of the oscillation
energy due to the relaxation processes in the OSCs and their models.

Thus, the estimates of &� and &� ′ considered here correspond to systems with
low Q factor. Since&� ′ > &� , the Q factor for a subsystem of stars of a core with the
higher energies increases, and the relative losses of an oscillation energy under the
action of relaxation mechanisms decrease (the faster the core star moves, the weaker
it interacts with an alternating force field of the system).

According to Tables 9.5 and 9.6, for very narrow regions II, II′ at small d, we find
&� � ≫ &� � ′. In this case, �: = 1 pc (and the star energy Y) used in the calculations
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may be insufficient to describe the dynamics of a stellar subsystem reaching the
boundaryof the cluster core. Probably, for such stars and such systems, it is necessary
to use �: , which are comparable with the average cluster radius. In this case, we
can expect the characteristic values of & < &� � ′ (or & ≪ &� � ′). In region III, in the
systems with a high density of cores d, the values of �: = 1 pc used in calculations
can be overestimated (with an increase of d the cluster mass remains constant, and the
core dimensions decrease, see Danilov (2010)). Unfortunately, in a case of �: = 0,
for large values of d, an instability region could not be detected. Probably, the region
of the unstable oscillations in this case is formed for �: = (0.1 − 0.5) pc.

We note that the resonance curves in fig. 9.4c,d characterize not only star cluster
NGC 6705, but also the force field of the Galaxy. Fig. 9.5 shows the dependencies
of W20 on the distance '� of the clusters from the center of the Galaxy, obtained
from data on the clusters considered here. The values of '� (in kpc) are taken here
according to Danilov and Seleznev (1994). The curves in fig. 9.5 are labeled with the
numbers of instability regions for which these curves are constructed. It is easy to
see that the values of W20 decrease with increasing distance '� . Thus, the presence
of an external field of the Galaxy is an essential factor in the development of an
instability in the centers of the OSCs.
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As '� increases, the periods %W0 increase on average, and the oscillation fre-
quencies W10 corresponding to these periods decrease on average. Figs. 9.6a,b show
the dependencies of %−1

8 −%−1
9 on '� . The numbers of the corresponding instability

regions of the PD oscillations are used as 8 indices of %8 = %W0 . According to fig.
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9 and ΔW1 on '�

9.6, %−1
8 − %−1

9 and ΔW1 = 2c/(&%W0) decrease on average with increasing '� in all

cases, except for the dependency of %−1
� ′ −%−1

� � ′ on '� (see fig. 9.6b). In this case, the
values %−1

� ′ − %−1
� � ′ are observed to be constant or weakly growing as '� increases.

In figs. 9.6c,d,e, the dependencies of the width of the instability region ΔW1 on '�
are marked by the numbers of these regions. Thus, as the distance from the center of
the Galaxy increases, the maxima of the resonance curves and the instability regions
on the plots shown in fig. 9.4 approach each other in frequency. If we consider the
plots in fig. 9.4c,d as the spectra of a certain signal (Strelkov, 2005, p.154) formed
with the participation of the Galaxy force field in the cluster core (by creating the
conditions for the formation of a PD oscillation instability in the cluster core), then
the amplitude of such a signal decreases, and the width of the spectrum decreases
with an increasing distance of the cluster from the center of the Galaxy.

The frequencies W10 of the resonance curves maxima in regions II and III (for
�: = 0 and �: = 1 pc, respectively) practically coincide each other (see Table 9.5
and 9.6) for every considered clusters. Therefore, when constructing the resonance
curves on the basis of the numerical experiments on the integration of the equations
of a stellar motion in the OSC, these curves (spectra) for subsystems of stars with
the different energies will be superimposed on each other, which will complicate the
interpretation of such curves.

According to Tables 9.5 and 9.6, the values W10/lwithin the limits of the indicated
errors can be completely represented as integers or rational numbers. Therefore, the
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resonances between the frequencyl and the frequencies of the PD oscillations in the
centers of the considered OSCs for the stellar subsystems with the different energies
Y can play an important role in the formation of the instability regions.

9.5 Conclusions

1. We have performed an analysis of the stellar velocity dispersions in the OSC
models. The central regions of these models are rather "cold" (or more "cold" than
the cluster as a whole), which leads to a gravitational instability in the cores of the
OSCs and their models noted by Danilov (2008) and Danilov (2010). An external
field of the Galaxy not only "heats up" the outer parts of the cluster, but also largely
prevents an entry of the high-energy stars to the cluster center (due to a non-radiality
of the cluster stars’ orbits in the presence of the Galactic field).

2. In the OSC models, a temporary virialization have been noted, when a signifi-
cant part of a cluster oscillation energy temporarily transfers into the kinetic energy
of the peculiar stellar motions. The duration of this stage can reach ∼ 108 years. The
main cause of a temporary OSC virialization is a "heating" of the cluster core by the
energy flow from the periphery to the center of the cluster (Danilov, 2002b) caused
by the large-scale cluster oscillations at the previous stage of evolution. During the
stage of a temporal virialization, a gravitational instability in the cluster cores is
largely suppressed. A further "cooling" of the OSC core caused by the expansion
of the core and the cluster as a whole again leads to the development of a gravita-
tional instability near the center and to an increase of the amplitude of the cluster
oscillations.

3. We have considered the natural oscillations of the phase density in the centers
of six OSCs and six OSC models. Instability of such oscillations in these objects is
shown. In addition to the areas of the unstable PD oscillations indicated by Danilov
(2010), several new regions have been noted (see above). We have revealed the
possibility of the motion of the OSCs and their models towards the state of a stable
equilibrium, both with the decreasing and increasing density of the cluster core. If
the effects of the core "heating" by the regular field oscillations and by the tidal
Galactic field dominate in the cluster, then the cluster evolves to the state of a stable
equilibrium with a decrease in the core density. If the encounters of single stars
dominates in the cluster, then the cluster evolves to the state of a stable equilibrium
with the increasing core density. In the considered time intervals ΔC ≃ (1 − 2)gEA ,
on average (relative to the period of regular field oscillations), the central densities
in the OSC models decrease in comparison with an average cluster core density.

4. We have considered the structure of the PD oscillation instability regions in
the centers of six OSCs. We have performed the resonance curves obtained under
the assumption that the amplitude of the steady-state PD oscillations at the cluster
center is directly proportional to the growth rate (an increment) of the instability
W2 of such oscillations. In order to describe the instability regions in the OSCs, we
introduce a & coefficient, similar to Q factor in the simplest mechanical systems.
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In regions I and I′, for the considered OSCs, & equals & ≃ 0.276 − 0.917, which
indicates the significant rates of loss of the OSC oscillation energy under the action
of relaxation processes. With an increase of the cluster distance from the center of
the Galaxy, the largest increment W20 and the width ΔW1 of the instability region
decrease on average for all regions of the unstable oscillations. An important role in
the formation of the instability regions can be played by the resonances between an
l frequency of the orbital cluster motion in the Galaxy and the frequencies of the
natural PD oscillations at the centers of the analyzed OSCs.
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Chapter 10

Parameters of Nonstationarity of Open Star
Clusters

Abstract In this chapter, we consider the estimates of a number of dynamic pa-
rameters of 103 open star clusters (contrast of densities in the cluster core; stellar
velocity dispersion obtained with an allowance for the effect of the external field of
the Galaxy and the cluster non-stationarity on the cluster; the oscillation periods of
the cluster and the cluster core, etc.). The analytic solutions of the equations of a
gross dynamics are given for the simple cluster models. These solutions are used to
estimate a number of values characterizing the degree of the cluster non-stationarity
(an oscillation amplitude of the virial cluster coefficient, an oscillation amplitude of
the cluster core radius, etc.). The astrophysical applications of the obtained results
are discussed.

10.1 Introduction

At the present time, a number of features of the OSC structure is known, which
indicate the non-stationary nature of these clusters (an irregular shape of the cores
that does not correspond to the equilibrium state of the OSCs, a presence of the
stepped structures in the radial density profiles (Barkhatova (1956); Seleznev (1988),
Kholopov (1981, p.328)), etc.). Formation of the stepped structures in the radial
density profiles of the non-stationary OSC models is noted by Danilov (1984);
Danilov and Ryazanov (1985) using two different methods of studying the dynamic
evolution of the OSCs. Estimates of the degree of the OSC non-stationarity from
the data on the structural parameters of the OSCs had been fulfilled by Danilov
and Seleznev (1994). In the OSC models of Danilov and Dorogavtseva (2008), the
large-scale oscillations of the density and a regular field develop spontaneously and
rapidly. Estimates of the gravitational instability parameters of the OSCs and their
models were performed by Danilov (2008) and Danilov (2010). Development of
an instability in the OSC models is used by Danilov and Dorogavtseva (2008) and
Danilov (2008) to explain the oscillations in the values of the virial coefficient and
the dispersions of the cluster stars’ velocities that do not decay during the large time
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intervals. A theoretical description of the phase density oscillations in the central
parts of the numerical dynamic OSC models was performed by Danilov (2008). In the
paper of Danilov (2010), the formulas obtained by Danilov (2008) are used to study
the phase density (PD) oscillations in the centers of six observed OSC and the OSC
models 1, 6 of Danilov and Dorogavtseva (2008). Danilov (2010) has shown that the
PD oscillations are unstable at the the centers of all considered objects (the OSCs and
their models). According to Danilov (2011), an important kinematic sign of the OSC
non-stationarity is an increase of the dispersion of the stellar velocities with a distance
from the cluster center. However, the clusters, in which stellar velocities decrease
slightly with distance from the cluster center, are also non-stationary, but with a
lesser degree of a non-stationarity and with a slower rate of a dynamic evolution
(Danilov, 2011) (the degree of the cluster instability is characterized here by the
amplitude XU of the virial coefficient oscillations U = 2�/, , where � = ) +,; ) is
a kinetic energy of the stellar motions in the cluster,, is a potential cluster energy).

We denote by a = d(0)/d2 the ratio of the density of star number d(0) at the
cluster center to the average density of star number d2 of the cluster core (hereinafter,
for brevity, a will be called as a density contrast in the cluster core). According to
Danilov (2011), the small a values in the cluster cores are formed due to the dynamic
evolution of the numerical OSC models. The small a values indicate the effect of
an instability and a non-stationarity on the radial profile of the OSC density. An
increase in the dispersion of a with the increasing amplitude XU of oscillations of
the values of the virial coefficient U in the sample of the OSCs is also a sign of the
clusters’ non-stationarity.

We denote, as in the paper of Danilov and Seleznev (1994), b = '1/'2, ` =

#1/#2, where '1 and '2 are the radii of the core and the halo, respectively (the halo
radius equals the cluster radius); #1 and #2 are the numbers of stars in the core and
in the halo, respectively. Standard deviations f'1 of '1 from the mean '1 (averaged
over the oscillation period of a regular cluster field) can be used as estimates of
X'1 being the oscillation amplitude of the '1 value. In the OSC models of Danilov
and Dorogavtseva (2008), the values of f'1 vary from f'1 ≃ (0.25 ± 0.01)'1 in
model 1 with the greatest degree of non-stationarity to f'1 ≃ (0.17 ± 0.01)'1 in
model 6 with the least degree of non-stationarity. Oscillations of the OSC cores with
such amplitudes can quite affect the width Δb (`) = b<0G (`) − b<8= (`) of the band
occupied by the clusters in the diagram (b, `), see Danilov and Seleznev (1994), fig.
21 (or fig. 10.3c of the present work), andΔb (`) can also determine the degree of the
OSC non-stationarity with a given `. Here, b<0G (`) and b<8= (`) are the maximum
and minimum values of b at a given `.

Estimates of XU = XUCℎ of Danilov and Seleznev (1994) were based on the
assumption that the oscillations of the regular field of the OSC are caused by the
action of the stellar encounters and the thermal fluctuations of the OSC density. The
formula for XUCℎ in Danilov and Seleznev (1994) was obtained considering the data
of the numerical experiments on the dynamic evolution of the OSC. However, XUCℎ
in these numerical experiments was determined by the stars with the distances A 6 'C
from the cluster center, where 'C is the tidal cluster radius obtained according to
King (1962). We note that several clusters from the sample of Danilov and Seleznev
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(1994) have radii '2 > 'C . For them, the very large values of XUCℎ were obtained.
Apparently, in such cases, it is better to determine XUCℎ values only for a system of
stars with A 6 'C . It is also of interest to redefine the degree of non-stationarity XU
for the OSCs of a sample of Danilov and Seleznev (1994) applying other methods
(for example, within a gross dynamic description) and considering the results of
Danilov (2008) and Danilov (2010) on the development of a gravitational instability
in the OSC cores.

It is of interest to estimate the following values: periods %1 and %2 of the '1

and '2 oscillations for the OSCs of a sample of Danilov and Seleznev (1994); the
violent relaxation times gEA of these clusters; the amplitudes X'1 of the oscillations
of the radii of the cores; equilibrium values U0 of a virial coefficient (with respect
to which the U oscillations with the XU amplitude occur). The above parameters
characterize in more detail the non-stationarity and the oscillations of the force field
in the OSCs in comparison with the data of Danilov and Seleznev (1994) only on
XUCℎ. The values of X'1, X'1/'1, U0, XU/U0 have not been previously determined
for the OSCs. The gEA values for the OSCs also have not been determined by Danilov
and Seleznev (1994).

During the study of the numerical dynamic OSC models 1−6 of Danilov and
Dorogavtseva (2008) in Danilov (2010), formula (13) was obtained to estimate the
dispersion f2

E of the stellar velocities in the OSCs, considering the influence of a
non-stationarity and of the external force field of the Galaxy on the cluster. Since the
f2
E values are often used for the virial estimates of the OSC masses without taking

into account the effect of the Galactic force field on the cluster (see, for example,
Geller et al. (2008); de Grĳs et al. (2008)), it is of interest to find how different are
the estimates of f2

E (and of the dynamic masses of the OSCs) obtained with and
without considering the influence of the cluster non-stationarity and of the Galactic
force field on the OSC. For these purposes, it is convenient to use formula (13) from
Danilov (2010) and the data on the OSCs from the sample of Danilov and Seleznev
(1994).

The objectives of this chapter are: 1) to consider a number of parameters (a, XU,
gEA , %'1,2 , X'1/'1, U0, XU/U0, etc.) characterizing the non-stationarity of the OSCs
from Danilov and Seleznev (1994); 2) to discuss the values of these parameters and
the OSC distributions in the spaces of the indicated parameters in order to reveal new
signs of the clusters’ non-stationarity according to the data on the OSC structure; 3)
to analyze the influence of the OSC non-stationarity and of the external force field
of the Galaxy on the estimates of the dynamic masses of the OSCs; 4) to discuss the
solutions of the gross dynamics equations of the non-isolated OSC models; to apply
these solutions to the analysis of the OSC non-stationarity.

10.2 Contrast of Densities in the OSC Cores

In order to estimate the a values, we use the King distribution 5 (A, :, A2 , '2) for the
spatial density of the number of stars at the distance A from the cluster center, see
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Fig. 10.1 Positions of the OSCs and the OSC models 1−6 of Danilov and Dorogavtseva (2008) in
coordinates (a, lg(C))

King (1962), formula (27) (or Kholopov (1981), formula (8.41)). Here, :, A2 , '2 are
the King distribution parameters of an apparent density of the cluster star number.
d(0) = 5 (0, :, A2 , '2). Since the cluster star number #2 = #1 + #2, and #1 = `#2,
'1 = b'2, d2 = 3#1/(4c'3

1), then

d2 = 3`#2/(4c(1 + `)b3'3
2).

Consequently,
a = 4c(1 + `)b3'3

2 5 (0, :, A2 , '2)/(3`#2). (10.1)

Formula (10.1) was used by Danilov and Putkov (2012a) to obtain the estimates of
a for 89 OSCs from Danilov and Seleznev (1994). When calculating a, the values
of b, `, #2 , '2 were used, as well as the parameters :, A2 of a King distribution all
from Danilov and Seleznev (1994). The results of the a calculation by Danilov and
Putkov (2012a) for the OSCs and six cluster models of Danilov (2011) are shown in
fig. 10.1 depending on the decimal logarithm of the cluster age C (C values are taken
here according to Danilov and Seleznev (1994)). The a values for the cluster models
were determined by Danilov (2011) for two time points C1 and C2, therefore in fig.
10.1,they are shown as arrows, the beginning and end of which correspond to the
time points C1 and C2, respectively; direction of the arrow indicates the direction from
C1 to C2 (C1 < C2). The numbers near the arrows in fig. 10.1 indicate the numbers of
the cluster models of Danilov and Dorogavtseva (2008).
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Fig. 10.1 does not show the positions of three clusters NGC 2169, NGC 2194,
NGC 7235 from the sample of Danilov and Seleznev (1994) with the largest values
a & 30. The values a for these OSCs are more than 3fa different from the mean a,
which is a = 7.19 ± 0.80 (fa ≃ 7.55 is a standard deviation of a from a). Without
considering these three clusters, the mean a for OSCs from the sample of Danilov and
Seleznev (1994) is a = 3.62 ± 0.36 (fa ≃ 3.34). These estimates of a and fa were
obtained under the assumption of an equal accuracy of a in the considered OSCs.

To estimate the a errors, we used the data on ma
mx

, where x = ('1, #1, :, A2 , '2) is
the vector of the parameters entering into the expression for a. We used the data
on the errors of #2 , '2, :, A2 given by Danilov and Seleznev (1994). b and ` errors
were assumed equal to 0.05 and 0.37`0.65, respectively (Danilov and Seleznev,
1989). As a result, the large enough errors f(a) were obtained for the a values. The
mean f(a)/a over the sample of 86 OSCs are f(a)/a = 1.00 ± 0.05 (three clusters
mentioned above were not taken into account here). If we neglect the estimates with
f(a)/a > 1, then for the remaining 52 OSCs we find a = 3.92 ± 0.51, fa ≃ 3.64,
f(a)/a = 0.71±0.02. We note that the values of a obtained here are not statistically
different. f(a) and a correlate fairly closely (a ∼ f(a), since the OSCs with a
small number of stars in Danilov and Seleznev (1994) appear to have smaller errors
of '2 and #2 than the clusters with the medium and large values of the indicated
parameters). Therefore, the calculation of the weighted mean values of a is not given.
The total contribution of the #1 and '1 errors to f(a) on average is ∼ 56 % of f(a).

Thus, a values are small enough and are comparable to the a values for the OSC
models 5, 6 of Danilov and Dorogavtseva (2008). Small a for most of the considered
OSCs can be caused by the following reasons: 1) OSCs are formed with small a, and
then the a values are kept small due to the gravitational instability of the clusters’
cores and a non-stationarity of the OSCs; 2) at C < 106 years, OSCs are formed both
with large and small a, and then, under the action of the regular-field oscillations, the
radial density profiles of the OSCs evolve towards the profiles with the small a (as
in the cluster models 1−5 of Danilov and Dorogavtseva (2008)). If, then, at C > 109

years (fig. 10.1) the a values in some clusters begin to increase with increasing C, then
in the dynamic evolution of such clusters, the role of stellar encounters increases,
and the radial density profiles in such OSCs begin to resemble the density profiles
of the globular clusters.

Fig. 10.2 for the same OSCs, as in fig. 10.1, shows the a depending on XU,
which characterizes the degree of a cluster non-stationarity in the gross-dynamic
description of the cluster (see below). According to fig. 10.2, the maximum a values
and a dispersion of a at a given XU grow with increasing XU. These dependencies
can be due to the following reasons: 1) the OSC oscillations at a given XU have a
non-homological character (in this case, the density distribution by a distance from
the cluster center at different times can not be considered as similar; we observe
the clusters with the different phases of the radial oscillations); 2) during a dynamic
evolution of the OSCs, their positions in fig. 10.2 are gradually shifted towards
the small XU (as in the OSC models of Danilov (2011)). In this case, the cluster
approaches the state of a stable equilibrium.
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We note that taking into account the influence of the less bright stars with the
stellar magnitudes<� > 16< exceeding the limiting magnitude of stars considered in
Danilov and Seleznev (1994) can not significantly change a for the OSCs considered
here, since usually the stars of the small masses (and luminosities) are located at the
cluster periphery.

10.3 Homologous Oscillations of the OSC Models

Following to Chandrasekhar (1942), we consider the cluster moving in the Galactic
plane along a circular orbit at the distance '� from the Galactic center with an
angular velocity l = 2>=BC. We write the equations of a stellar motion in the
rotating coordinate system (G, H, I) and use the expansion of the Galactic regular
potential in a series up to quadratic terms with respect to G, H, I coordinates. The
G, H, I axes used in our work coincide with b, [, Z axes from Chandrasekhar (1942,
fig.24, p.222). We make use of the gross-dynamic (GD) description of the OSC
evolution in order to estimate XU of the clusters and to study the OSC oscillations
near the equilibrium state. Within the framework of a GD description, the integral
characteristics of the cluster as a whole are usually considered (Kuzmin, 1965).
Taking into account the equations of a stellar motion in the field of the forces of
the Galaxy and the cluster, it is easy to obtain the equations for the momentum of
the cluster inertia � , the kinetic energy ) of the cluster star motion, and the angular
momentum !I of the cluster rotation around the I axis which is perpendicular to the
Galactic plane and passing through the cluster’s center of mass (see, for example,
formulas (3)−(5) from Danilov (2008)). For a cluster with a spherically symmetric
mass distribution, we write

¥� = 4) + 4l!I −
2@2

3
�, ¤) = −@

2

6
¤�, ¤!I = −2l

3
¤�, (10.2)

where ¤� = 3�
3C

; the values ¤) , ¤!I are defined similarly; ¥� = 3 ¤�
3C

; @2 = U1 + U3 + 3V;
U1, U3 are the constants characterizing a Galactic force field in the vicinity of the
cluster’s circular orbit (Chandrasekhar, 1942) (their numerical values are defined
in our work using the Galactic potential model of Kutuzov and Osipkov (1980)).

V characterizes a force field of the cluster, m*
mA

= −VA, * (A) is the gravitational
potential of the cluster, A is the distance from the cluster’s center of mass.

Following to Danilov and Putkov (2012a), we consider the OSC model in the
form of a homogeneous gravitating sphere with the mass "2 and radius '2. In this
case, V = �"2/'3

2. The third equation in (10.2) is easily integrated by the time C:
!I = −2l�/3 + !I (0), !I (0) = 2>=BC. Let !I (0) = 0 (in this case, the cluster does
not rotate with respect to external galaxies). We substitute !I to (10.2). We linearize
the resulting system by setting � = �0 + X� , ) = )0 + X) , |X� | ≪ �0, |X) | ≪ )0, where
�0 and )0 are the equilibrium values of � and ) . As a result of these transformations,
we find
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¥X� = 4X) −  X�, ¤X) = −
@2

0

6
¤X�, (10.3)

where
 = 2

(
4l2 + @2

0 − 9?2/(2�3/20 )
)
/3,

@2
0 is an equilibrium value of @2, ?2 = �"2 (0.6"2)3/2; in this case, , = −?2/

√
�

(a similar approach to the study of the oscillations of the spheroidal stellar systems’
models was applied by Ossipkov (2001); see the conditions for the quasi-homology
oscillations of a stellar system, as well as references in Ossipkov (2001)).

Characteristic equation of the system (10.3) and its roots has the form

_3 + _
(
2

3
@2

0 +  
)
= 0, _1 = 0, _2,3 = ±8lℎ , (10.4)

where 8 =
√
−1; lℎ =

√
2@2

0/3 +  . The positive l2
ℎ

values indicate the stability of

the considered oscillations, lℎ is the frequency of such oscillations.
Integrating the second equation of system (10.3), we find

X) = −
@2

0

6
X� + X) (0),

where X) (0) = 2>=BC (it is the X) value in the time point C = 0). Let us consider
the case _2,3 = ±8lℎ . According to (10.3)−(10.4), the values of X) , X� can be
represented by the linear combinations of the functions sin(lℎC), cos(lℎC). Let

X) (0) = 0. Then X� (0) = 0 and X� ∼ sin(lℎC). Varying U, considering X) = − @
2
0

6 X�

and X, = ?2X�/(2�3/2) we find

XU = −[1 − @2
0�

3/2
0 /(3?2) − �0/,0]X�/�0.

Here, indices "0" indicate the equilibrium values. In order to find the equilibrium
values �0, ,0, we integrate the second equation of system (10.2). We obtain the
integral of the cluster energy:

�2 = ) + (U1 + U3)�/6 − ?2/
√
� = � + (U1 + U3)�/6 = 2>=BC.

Substituting integrals �2 and !I (see above) in the first equation of system (10.2),
we obtain a Lagrange−Jacobi equation in the following form:

¥� = 4�2 + 2?2/
√
� − 4(U1 + U3 + 2l2)�/3.

Assuming ¥� = 0, we find from this equation the value �2 . We use this value to
calculate � = �0 with the help of the energy integral. An equilibrium value

U0 = 2�0/,0 = 1 − (U1 + U3 + 4l2)�3/20 /(3?2) < 1.
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An inequality U0 < 1 is consistent with the data of the numerical experiments
(Danilov and Dorogavtseva, 2008). For the models of the isolated clusters, U0 = 1,
since U1 = U3 = l = 0.

Let us estimate the kinetic energy of the oscillations of our cluster model ) 5 .
According to Danilov (1984), the solution of the continuity equation for the non-
stationary spherically-symmetric homogeneous star clusters leads to a linear depen-
dency of the radial velocity EA of the star flow at the distance A from the cluster

center: EA =
A ¤'2
'2

. For a homogeneous ball with the mass density d, we find

) 5 = 2cd

∫ '2

0
A2E2

A3A = 2cd'3
2
¤'2

2/5.

Considering d = 3"2/(4c'3
2), we find ) 5 = 0.3"2 ¤'2

2
.

Let X)<, X�< be the amplitudes of the X) , X� values (the maximum moduli of X)

and X�). Then X)< =
@2

0
6
X�<. For our cluster model, we find ¤� = 1.2"2'2 ¤'2. In the

case of the small oscillation amplitudes of the cluster radius, the maximum modulus
of ¤� equal X�<lℎ . Consequently, the maximum value

¤'2
2
= X�2<l

2
ℎ/(1.2"2'2)2.

Therefore, the maximum value ) 5 is

X)< = 1l2
ℎX�

2
< , where 1 = 0.3"2/(1.2"2'2)2.

Considering that X�< = 6
X)<
@2

0

, see above, we find

X)< = @4
0/(361l2

ℎ).

Let "2 = 500"⊙, '� = 8200 pc. When the value '2 is changed from 1 pc to
10 pc< 'C ≃ 10.468 pc in the OSC model in the form of a homogeneous sphere,
XU decreases from 1.994 to 0.973, U0 decreases from 0.999 to −0.357, X�</�0
decreases from 3.986 to 1.375, X)</)0 decreases from 3.984 to 1.101, the period of
the cluster oscillations %'2 increases from 4.163 to 56.338 Myr. In order to estimate
the influence of the cluster mass distribution on XU, X�</�0, X)</)0 etc., we have
done the calculations, similar to the above ones, for the cluster models with a density
d(A, C) = d0(C)/A2. In this case, the continuity equation for the cluster model also

leads to a solution EA =
A ¤'2
'2

, see above. At "2 = 500"⊙, '� = 8200 pc, at

the change in '2 from 1 to 10 pc in the model with d(A, C) = d0 (C)/A2, the value
XU decreases from 1.997 to 0.895, U0 decreases from to 0.9995 to 0.548, X�</�0
decreases from 3.995 to 2.077, X)</)0 decreases from 3.995 to 1.852, the period
of the cluster oscillations %'2 increases from 2.407 to 48.228 Myr. Thus, in the
considered GD-models of the OSCs, the degree of a non-stationarity is very high
(10−20 times exceeding the corresponding estimates for the numerical dynamic
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OSC models of Danilov and Dorogavtseva (2008)). This result depends a little on
the accepted density distribution for the cluster model.

The periods %A of the radial oscillations of the considered GD-models of the
OSCs with parameters "2 = 500"⊙, '2 = (0.7 − 0.9)'C , '� = 8200 pc decrease
from %A = 53.2 ± 2.4 Myr to %A = 42.6± 1.8 Myr with a transition from the cluster
models with a homogeneous density to the models with the density d ∼ 1/A2. For the
numerical dynamic OSC models (Danilov and Dorogavtseva, 2008) with the same
initial parameters "2 , '2 at '� = 8200 pc, the %A values are %A = 27.6 ± 0.9 Myr.
Let us specify the periods of the homologous oscillations for the GD-models of the
OSCs. To do so, we apply the King distribution 5 = 5 (A, :, A2 , '2) for the spatial
density of the number of stars in the cluster. Under a condition of the homologous
oscillations of the cluster, B = '2/A2 = 2>=BC. We write the function 5 in the
following form:

5 = W(:, '2, B)6(A, '2, B),

where
W = :B/(c'2(1 + B2)1.5) ; 6 = arccos(I)/I3 −

√
1 − I2/I2;

I =
√
(1 + (AB/'2)2)/(1 + B2),

see King (1962). Using the data on the values :, A2 , '2 for the OSCs from the
catalogue of Danilov and Seleznev (1994) and function 5 , we find the numbers of
stars in the clusters:

#: = 4c

∫ '2

0
A2 5 3A = 4cW

∫ '2

0
A263A.

Comparison of #: with the number of stars #2 in the cluster obtained by Danilov
and Seleznev (1994) with the star counts, shows that #:/#2 on average over the OSC
sample of Danilov and Seleznev (1994) equals #:/#2 = 0.62 ± 0.02. A standard
deviation of #:/#2 from #:/#2 is f#:/#2

≃ 0.19. #:/#2 ∈ [0.17, 1.08]. Thus,
the distribution 5 = 5 (A, :, A2 , '2) gives an understated number of stars in the OSC
(when using the function 5 , the stars located at the OSC periphery are not fully
considered, see also Danilov (2010)). To take into account X# = #2 − #: > 0

of stars when estimating the dynamic parameters of the OSCs, let us consider the
following modified King distribution model:

5 ∗ = 5 (A, :, A2 , '2) + X 5 , where X 5 = 3X#/(4c'3
2).

In this case, the density of the number of stars in the cluster center increases only
slightly as compared with 5 (0, :, A2 , '2), since usually X 5 / 5 (0, :, A2 , '2) ≪ 1, but
at the cluster periphery, the contributionof X 5 to 5 ∗ (and to"2) becomes significant.
Distribution 5 ∗ is corresponded to the apparent density distribution of star number
�∗ = � (A ′) + X� (A ′), where � (A ′) is an apparent density of the number of stars by
King (1962);

X� (A ′) = 2'2

√
1 − (A ′/'2)2X 5 ;
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A ′ is the distance from the cluster center in the tangent plane, see, for example,
equation (8.5) on p. 299 in the book of Kholopov (1981).

Using the function 5 ∗, we write the expression for the momentum of inertia and
the potential energy of the cluster in the following form:

� = 4c<W

∫ '2

0
6A43A + 0.6<X#'2

2,

, = −4c<�

[
W

∫ '2

0
" (A)6A3A + 3X#

4c'3
2

∫ '2

0
" (A)A3A

]
,

where < = 2>=BC is the mean star mass in the cluster;

" (A) = 4c<W

∫ A

0
6(A ′, '2, B)A ′23A ′ + <X#A3/'3

2

is the mass of a cluster stars with the distances from its center A ′ ≤ A. For a spherically
symmetric cluster model with the distribution of a star number 5 ∗, we can write:

, = −22�"2.5
2 /

√
� , where 22

= 22 (:, B, #2 , #:) = 2>=BC

(a constancy of 22 is revealed when calculating the values of −,
√
� at a fixed "2).

After simple transformations made in Danilov and Putkov (2012a), the system of
equations (10.2) for this model can be written in the following form:

¥� = 4) − 2

3
(U1 + U3 + 4l2)� + 2,,

¤) = −U1 + U3

6
¤� − �

∑
9

< 9" (A 9 )
A2
9

¤A 9 . (10.5)

The first equation of the system (10.5) is obtained after a substitution of the integral
!I of the third equation of system (10.2) in the first equation (see the explanation
for equations (10.2)). Summation over 9 in the second equation of system (10.5) is
carried out for all cluster stars, < 9 = 2>=BC and A 9 are a mass and a distance of the
9-th star from the mass center of a cluster, respectively. To calculate the sum by 9

in the second equation of (10.5), we consider the velocity of a radial flux of stars EA
in this cluster model. Integrating the continuity equation corresponding to our OSC
model

m 5 ∗

mC
+ 1

A2

m

mA
(A2EA 5

∗) = 0

by A, we find

EA = −
¤W
∫ A

0
6A ′23A ′ + W ¤'2

∫ A

0

m6

m'2
A ′23A ′ + ¤X 5

∫ A

0
A ′23A ′

A2 ( 5 + X 5 )
.
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Let #: = 2>=BC. In this case,

¤#: = 4c

(
¤W
∫ '2

0
6A23A + W ¤'2

∫ '2

0

m6

m'2
A23A

)
= 0.

Consequently,

¤W = − W ¤'2

∫ '2

0

m6

m'2
A23A

/ ∫ '2

0
6A23A.

We substitute ¤X 5 = −9X# ¤'2/(4c'4
2) and the expression for ¤W in the formula for EA

and find

EA
¤'2

=

S + A
3X 5
'2

A2 ( 5 + X 5 )
,

where

S = W

[ ∫ '2

0

m6

m'2
A23A

∫ A

0
6A ′23A ′

/ ∫ '2

0
6A23A −

∫ A

0

m6

m'2
A ′23A ′

]
.

A numerical integration of the integrands in the formula for S and calculation of
EA/ ¤'2 leads to the linear dependency on A of EA = A ¤'2/'2. Here and below, in the
considered integrals by A ′, 6(A, '2, B) is assumed equal to 6(A ′, '2, B).

The mass of the stars with the distances from the cluster center A ′ ≤ A at a time
point C for our cluster model is

" (A) = 4c<

∫ A

0
5 ∗A ′23A ′ = 4c<W

∫ A

0
6A ′23A ′ + <X#A3/'3

2.

Here, it is assumed 5 ∗(A) = 5 ∗ (A ′) (for a brevity, we omit the values of the parameters
of the 5 ∗(A) function). During the oscillations of cluster models, while A varies
proportionally to the change of '2, " (A) remains constant. Indeed,

¤" (A) = 4c<

[
¤W
∫ A

0
6A ′23A ′ + W ¤'2

∫ A

0

m6

m'2
A ′23A ′ + W6A2 ¤A

]
+<X#3A2

'3
2

(
¤A − A ¤'2

'2

)
.

We substitute in ¤" (A) the expression for ¤W. Considering that EA/ ¤'2 = A/'2 = ¤A/ ¤'2,
we find ¤" (A) = 0. Consequently, under the condition of the homologous oscillations
of the cluster model, " (A) = 2>=BC. Differentiating the potential energy of the
cluster model, = −�∑

9 < 9" (A 9 )/A 9 by C, we find ¤, = �
∑
9 < 9" (A 9 ) ¤A 9/A2

9 . In
this case, the second equation of system (10.5) can be written in the form

¤) = −U1 + U3

6
¤� − ¤,.

Integrating this equation by C, we find the energy integral of the cluster model

� = ) +, + U1 + U3

6
� = 2>=BC,
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which agrees with the energy integral (5.522) from Chandrasekhar (1942). Varying
the first equation of system (10.5), considering X� = 0, X, = 22�"2.5

2 X�/(2�1.50 )
and taking into account only the linear terms in X� , we obtain the equation ¥X�+l2

ℎ
X� =

0, where lℎ =

√
4(U1 + U3 + 2l2)/3 + 22�"2.5

2 /�1.50 is the frequency of the small

� oscillations for the considered cluster model. The period of such oscillations is
%2 = 2c/lℎ.

Danilov and Putkov (2012a) performed the estimates of %2 for OSCs from the
sample of Danilov and Seleznev (1994). The mean %2 has been obtained equal to
%2 = 31.8 ± 1.7 Myr, a standard deviation of %2 from %2 has been obtained equal
to f%2 ≃ 16.1 Myr, %2 ∈ [6.0, 70.7] Myr. For seven clusters Danilov and Seleznev
(1994) gives the radii '2 > 'C . In these cases, the %2 values were recalculated
considering only stars with the distances from the cluster center A ≤ 'C . As a result
of this refinement, the following values of the parameters of the OSC distribution
by %2 were obtained: %2 = 31.4 ± 1.6 Myr, f%2 ≃ 15.3 Myr, %2 ∈ [6.0, 67.0] Myr.
The estimates of %2 and f%2 are obtained here under the assumption of an equal
accuracy of %2 in the considered OSCs. On average for our sample of clusters, we find
f(%2)/%2 = 0.17 ± 0.01, where f(%2) is the error of %2. %2 and f(%2) are weakly
correlated with each other (a correlation coefficient :1,2 ≃ 0.23). The weighted mean
value of %2 is (%2)? = 23.3±0.3 Myr, and a weighted standard deviation of %2 from
(%2)? is f(%2)? ≃ 18.8 Myr. According to Danilov and Seleznev (1994), the errors
of '2 and #2 increase with increasing '2 and #2 . The %2 values for the considered
star clusters on average decrease with decreasing "2 . Therefore, (%2)? < %2.

Following the procedure of Lynden-Bell (1967), assuming
���m*
mC

��� ≃ */%2, in the

framework of a GD description of a dynamics of the isolated star cluster models with
density d ∼ 1/A2, it is easy to obtain an expression for the time of a violent relaxation
gEA ≃ 0.75%2 = 0.75

√
c/(�d) (here, * = * (A, C) is a gravitational potential of the

system, d is a mean mass density in the system). The estimate of gEA ≃ 0.75%2 is in
a good agreement with the estimate of

gEA ≃ 2.6C2A ≃ 0.72
√
c/(�d),

obtained by Aarseth (1974) in the framework of the numerical experiments on a
modeling of the OSC dynamics (here, C2A is the mean crossing time). gEA is com-
parable in magnitude with %2; it characterizes the time in which the cluster transits
from a non-stationary state in the regular field to a stationary and equilibrium state
(Lynden-Bell, 1967) in the absence of the conditions for a gravitational instability;
g−1
EA characterizes the rate of the cluster oscillations’ energy loss during a violent

relaxation (Danilov, 2011).
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10.4 Oscillations in the Cores of OSC and OSC Models

The reason for overestimation of XU, X�</�0, X)</)0 in the GD models is a non-
homology of the oscillations in the real OSCs and a difference in the velocity of the

star flux in the OSCs from EA =
A ¤'2
'2

. Indeed, in the OSC models of Danilov and

Dorogavtseva (2008) with increasing A outside the cluster core, EA decreases, and the
tangential flow velocity increases (see formula (18) and its explanation in Danilov
(2006), as well as fig. 1 from Danilov and Dorogavtseva (2008) for the OSC models
1, 4). The instability of the phase density oscillations develops to a greater extent near
the center and in the cluster core (Danilov and Dorogavtseva, 2008; Danilov, 2008),
which is approximately spherical during an evolution. The effect of the density and
force field oscillations in the cluster core on a halo star’s motion decreases with
increasing A outside the cluster core. According to Danilov (2005), the amplitudes of
the oscillations of the regular potential in the halo of the non-stationary OSC models
(Danilov and Dorogavtseva, 2003) are small, and amount to less than 6 % of the
mean regular potential averaged by the oscillation period.

In order to obtain the more accurate estimates of XU, X�</�0, X)</)0 in the
framework of a GD description, we consider a cluster model consisting of two ho-
mogeneous concentric spheres simulating the core and the halo of a cluster (Danilov,
1984) moving along a circular orbit in the Galactic plane. The use of the spherical
halo models instead of ellipsoidal ones is dictated by the following considerations.
The density oscillations near the cluster center depend a little on the symmetry of
the density distribution at the cluster periphery (the difference in the attraction force
between the spherical and ellipsoidal halos of equal masses at small distances from
the cluster center is small). Non-stationary nature of the cluster is mainly determined
by the oscillations of the cluster core. Therefore, our estimates of the non-stationarity
parameters of the OSCs are consistent with the results of the determination of these
values from the calculation data of Danilov and Dorogavtseva (2008), see below. The
spherical models allow us to obtain the analytical formulas for the non-stationarity
parameters, which can be used for the mass estimates of new (previously undetected)
characteristics of the OSCs.

Let us consider the oscillations with the finite amplitudes of the cluster core under
the condition that the mass and the halo cluster radius are constant. In this case, the
oscillations of the entire cluster are non-homologous, and a lower estimate of the
cluster’s non-stationarity degree can be obtained.

Let " 9 , ' 9 , � 9 , , 9 , and )9 be mass, radius, inertia momentum, potential and
kinetic energy of the 9-th subsystem of cluster stars. Indices 9 correspond to the core
( 9 = 1) and halo ( 9 = 2) of the cluster. The potential* (A) of the cluster at A ≤ '1,
'1 < '2, is

* (A) = 1.5� ("1/'1 + "2/'2) − 0.5� ("1/'3
1 + "2/'3

2)A
2,

see formula (27) from Danilov (1988). According to Danilov and Putkov (2012a),
the GD equations for the cluster core can be written as follows:
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¥�1 = 4)1 + 4l!1,I −
2@2

1

3
�1, ¤)1 = −

@2
1

6
¤�1, ¤!1,I = −2l

3
¤�1, (10.6)

where @2
1 = U1 +U3 +3V1; V1 = � ("1/'3

1 +"2/'3
2); !1,I is the angular momentum

of a rotation of the cluster core around the I axis. Let us introduce the following
notation:

?2
0 = 1.5�"1"2/'2 , ?2

1 = (0.6"1)1.5�"1 , ?2
2 = 0.5�"2/'3

2 .

The inertia momentum of the cluster core is �1 = 0.6"1'
2
1. From the last relation, we

find '1 =
√
�1/(0.6"1). A potential energy of the cluster core is,1 = ,1,1 +,1,2,

where,1,1 is the energy of interaction between the core stars, and,1,2 is the energy
of interaction between the core stars and the halo stars (Danilov, 1984). Following
the notations adopted, according to Danilov (1984), we find

,1,2 = −?2
0 + ?

2
2�1, ,1,1 = −?2

1/
√
�1, @2

1 = U1 + U3 + 3(?2
1/�

1.5
1 + 2?2

2).

We substitute @2
1 to the second equation of system (10.6) and integrate it by C. We

obtain the energy integral of the core:

�1 = )1 − ?2
1/

√
�1 + (U1 + U3 + 6?2

2)�1/6 = 2>=BC.

From the third equation of system (10.6), we find

!1,I = −2l�1/3 + !1,I (0).

Assuming !1,I = 0, we substitute !1,I and �1 in the first equation of system (10.6).
After the simple transformations, we find

¥�1 = 4�1 + 2?2
1/

√
�1 − 20�1, (10.7)

where 0 = 2(U1 + U3 + 6?2
2 + 2l2)/3. Assuming ¥�1 = 0 in (10.7), we find �1 =

0.5(0�1,0 − ?2
1/

√
�1,0), where �1,0 is an equilibrium value of �1. We multiply (10.7)

by ¤�1 and integrate the resulting equation by C:

¤�21 = 2 5 (�1); 5 (�1) = −0�21 + 4�1�1 + 4?2
1

√
�1 + �, � = 2>=BC. (10.8)

Assuming 5 (�1) = 0 in (10.8), we find

� = 0�21,< − 4�1�1,< − 4?2
1

√
�1,<,

where �1,< is the minimum (�1,<8=) or the maximum (�1,<0G) value of �1 at a given �1

value. The considered oscillations of the size of a cluster core occur under condition
` = "1/"2 = 2>=BC. In deriving the formulas (10.8), we applied the same method as
in Ferronsky et al. (1978) for solving the Lagrange−Jacobi equation for the spherical
isolated systems.

Let us consider two possible situations in the dynamics of the observed OSCs.
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1. If the cluster radius '1 obtained from the observations determines �1,0 value,
and the maximum (or the minimum) value of b = b (`) determines one of the values
�1,<, then the equation 5 (�1) = 0 is an algebraic equation of the fourth degree with
respect to g =

√
�1 and allows us to find the second �1,< value. The solution of

equation (10.8) can be written in the following form:

±
∫ �1

�1 (0)
3�1/

√
2 5 (�1) = C,

where �1(0) is the initial value of �1. The period %1 of a core oscillation in this cluster
model is

%1 = 2

∫ �1,<0G

�1,<8=

3�1√
2 5 (�1)

. (10.9)

By substitution g2 = �1, integral (10.9) can be reduced to

%1 = 2
√

2

∫ g4

g1

g3g/
√
5 (g2),

where 5 (g2) = −0(g − g1) (g − g2) (g − g3) (g − g4) is the fourth-degree polynomial
in g; g: are the roots of equation 5 (g2) = 0, : = 1, ..., 4.

In the considered versions of clusters, 0 > 0, g1 =
√
�1,<8= and g4 =

√
�1,<0G are

real roots, 0 < g1 < g4; g2 and g3 are the complex conjugate roots. Therefore, the
integral for %1 is improper, and the integrand in it is unbounded in the neighborhoods
of the points g = g1, g4. If g2,3 = \ ± 8q, then (g − g2) (g − g3) = (g − \)2 + q2 (here,
\ = 2>=BC, q = 2>=BC) (Korn and Korn, 1968). The integrals of the form of %1 are
elliptical, and can be reduced to the normal elliptic ones (Korn and Korn, 1968), but
we apply the following method of calculating such integrals. We divide the domain
of integration over g into two equal parts: g ∈ [g1, gB] and g ∈ [gB , g4], where
gB = (g1 + g4)/2. Next, we use the substitutions E2 = g − g1 and E2 = g4 − g in the
integrals over g for the first and second range of the g values, respectively. These
substitutions lead to integrals over E from the bounded functions. Such integrals are
easily computed using the numerical methods.

2. If the radius '1 of the cluster core obtained from the observations determines
�1,< = �1,<8= (or �1,< = �1,<0G), and the maximum (or the minimum) value of
b = b (`) determines the second value of �1,<, then from the equation for � (see
explanations for (10.8)), we can determine

�1 = 0(�1,<0G + �1,<8=)/4 − ?2
1/(

√
�1,<0G +

√
�1,<8=)

at �1,<0G ≠ �1,<8= . Substituting �1 in the expression for �1, obtained from (10.7) at
¥�1 = 0, we can determine �1,0 from the cubic equation for g0 =

√
�1,0:

g3
0 − 2�1g0/0 − ?2

1/0 = 0.
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In the considered cluster versions, this equation has two complex conjugate roots
and one real root g0 > 0, which determines the �1,0 values. The �1,< values allow us
to find �, to determine function 5 (�1) and the %1 value according to (10.8),(10.9).

Thus, for different positions of the point representing the OSC in the plane
(b, `), we can obtain the values of X�1 = |�1,< − �1,0 |, X�1/�1,0 and X'1/'1,0 =

|'1,< − '1,0 |/'1,0, characterizing the degree of a cluster non-stationarity (here,
'1,< and '1,0 are determined by the corresponding �1 values, see above). In order
to obtain the equilibrium values of the kinetic energies )9 ,0, as well as a potential
energy,0 and a virial coefficient U0 of the cluster, corresponding to the conditions
¥� 9 = 0, 9 = 1, 2, it is convenient to use equations (14) for ¥� 9 and formulas (31), (32),
(35) from Danilov (1984), written for the cluster model considered in our work.
Considering conditions ¥� 9 = 0 and the notations adopted here, according to Danilov
(1984) and Danilov and Putkov (2012a), we write

)1,0 = l0�1,0 +
1

2

(
?2

1√
�1,0

+
2?2

0�1,0"2

5�2,0"1

)
,

)2,0 = l0�2,0 +
1

2

[
?2

3√
�2,0

+ ?2
0

(
1 − 3�1,0"2

5�2,0"1

)]
, (10.10)

where l0 = (U1 + U3 + 4l2)/6, ?2
3 = �"2 (0.6"2)1.5. The value of )1,0 − l0�1,0

(see the first equation from (10.10)) can also be written directly from the first and the
third equations of system (10.6) in a different form (using constants ?2

1, ?2
2). These

two forms of an expression for )1,0 give the same )1,0 values. According to Danilov

(1984), a potential energy of an interaction of the cluster stars is , =
1
2

∑2
9=1, 9 =

,1,1 +,2,2 +,1,2, where,2,2 is the energy of the interaction of the halo stars with
each other. Considering our notation, we find

, = −?2
1/

√
�1 − ?2

3/
√
�2 − ?2

0(1 − �1"2/(5�2"1)).

In the case � 9 = � 9 ,0, we find the equilibrium values of a potential energy ,0 and
a virial coefficient U0 = 2()1,0 + )2,0 +,0)/,0 for our cluster model. We note that
¤)2 = 0, and )2 = 2>=BC, since ¤)2 ∼ ¤�2 = 0, and the equation for ¤)2 has the form
similar to the second equation of system (10.6) for ¤)1. Moreover,,2 = ,2,2 +,1,2,
and for the isolated cluster model in this case ¤)2 = ¤�2 − ¤,2 = 0, see (33) from
Danilov (1984); �2 is determined in Danilov (1984) as the total energy of the
subsystem of the halo stars ( 9 = 2).In the considered cluster model, consisting of
two homogeneous concentric spheres simulating the core and the halo, U0 < 1 (as
in the case of the GD models of a cluster with a homogeneous density and a cluster
with the density d ∼ 1/A2). The difference of U0 from unity characterizes the degree
of an influence of the external Galactic field on the cluster. Minimum and maximum
values of U = U< can be obtained by substituting �1,< to formula for )1 (see above,
the energy integral of a core �1) and in formula U = 2()1 + )2,0 + ,)/, . The
values of XU = |U< − U0 | and XU/U0 = |U< − U0 |/U0 characterize the degree of
non-stationarity of the considered cluster model.
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Fig. 10.2 Positions of OSC in coordinates (a, XU)
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Fig. 10.3 Comparison of XU and XUCℎ (a, b) for two methods of a conducting of the lines
b (`)<0G,<8= in the diagram (b , `) indicated in (c)
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Figs. 10.3a,b show the results of calculations of XU for OSCs from the catalogue
of Danilov and Seleznev (1994) using the formulas from Section 10.3 of this book.
XU in fig. 10.3 are given in comparison with XUCℎ, obtained by Danilov and Seleznev
(1994). In those cases when the several estimates of XUwere possible (for the different
phases of the oscillations of the observed clusters), for such a cluster in fig.10.3 the
average estimate of XU is used. Fig. 10.3c shows two versions of the upper and
lower "enveloping" dependencies of b = b (`) for the considered OSCs in the plane
(b, `). The solid lines indicate lines b = b (`) approximately corresponding to the
maximum and minimum b values for a given ` value at ` < 4.69. For four OSCs with
` ≥ 4.69, due to the small number of clusters, the b (`)<0G,<8= values were assumed

as b (`)<0G,<8= = b (`) ± fb , where b (`) is the mean b for these four clusters, and

fb is the standard deviation of b from b (`). Fig. 10.3a gives XU obtained using this
version of the "envelopes" . We note that the b values from Danilov and Seleznev
(1994) are known with the errors f(b) of ∼ 0.14b (since the relative errors of a
determination of the radii of the core and the halo in Danilov and Seleznev (1994)
are ∼ 10 %). The errors f(b) of b must lead to an increase of the width Δb (`) of
the band occupied by the clusters in the plane (b, `). To estimate the effect of the
changes in the width ofΔb (`) on the XU values in our work, we plot the dependencies
b (`) ′<0G,<8= = 0.86b (`)<0G, 1.14b (`)<8=, shown in fig. 10.3c by the dashed lines.
Fig.10.3b gives XU values obtained using the dependencies b (`) ′<0G,<8=.

The values XU, used in figs.10.3a,b, show a significant correlation (with a prob-
ability % > 0.999) with XUCℎ. A sample correlation coefficient :1,2 and statistics of
C′ with a Student’s t-distribution, in the case of the sample XU corresponding to fig.
10.3a, are obtained equal to :1,2 = 0.67 and C′ = 6.81 at critical C′ ≃ 3.49, and in
the case of the sample XU, corresponding to fig. 10.3b, :1,2 = 0.39 and C′ = 3.56 at
critical value C′ ≃ 3.45 (Korn and Korn, 1968) (the values of :1,2 and C′ are obtained
here without consideration of the clusters with XUCℎ > 0.3, see fig. 10.3a,b). We note
that the %1 and %2 values of the oscillation periods of the core and a homologous
cluster mentioned here and in the previous sections of this book are also significantly
correlating with each other (with a probability % > 0.999). In this case, :1,2 ≃ 0.83,
C′ ≃ 13.88, a critical value C′ ≃ 3.43.

Let X = (XU, X'1/'1,0, XU/U0, U0, %1). The average (over the OSC sample)
values of coordinates -8 (8 = 1, ..., 5) of the vector X, as well as standard deviations
f-8

of -8 from the mean -8 values in the cases corresponding to fig. 10.3a,b are given
in Table 10.1 (%1 and f%1 in Table 10.1 are given in Myr, -8 values at 8 = 1, ..., 4 are
dimensionless). The values f-8

in the case corresponding to fig. 10.3b, differ a little
from f-8

given for the case corresponding to fig. 10.3a, and, therefore, they are not
indicated in Table 10.1. Thus, the above mentioned decrease in Δb (`) practically
does not affect the U0 and %1 values, and it decreases the XU, X'1/'1,0, XU/U0

values approximately in ∼1.5 times. For the OSCs with XUCℎ < 0.3 considered here,
XUCℎ = 0.10 ± 0.01 (see also Danilov and Seleznev (1994)), which is in complete
agreement with the estimate of XU in the case of fig. 10.3a.

We note that in the case of the homologous oscillations of the OSC models
with a density d(A, C) ∼ d0(C)/A2, such value of XUCℎ corresponds to the relative
amplitude of the oscillations of the cluster radius X'2/'2,0 ≃ 0.111 ± 0.002. Here,
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Table 10.1 Parameters of the non-stationarity of OSC

b (`)<8=,<0G (fig. 10.3, a)

XU = 0.09 fXU ≃ 0.05 f ( XU)/XU = 0.53
±0.01 ±0.04

X'1
'1,0

= 0.34 fX'1/'1,0 ≃ 0.11
f ( X'1/'1,0)
X'1/'1,0

= 0.34

±0.01 ±0.03

XU/U0 = 0.14 fXU/U0 ≃ 0.17
f ( XU/U0)
XU/U0

= 0.53

±0.02 ±0.04

U0 = 0.77 fU0 ≃ 0.28 f (U0)/U0 = 0.07
±0.03 ±0.04

%1 = 16.8 f%1 ≃ 12.6 f (%1)/%1 = 0.180
±1.3 ±0.005

b (`)′<8=,<0G (fig. 10.3, b)

XU = 0.062±0.004

X'1/'1,0 = 0.25 ± 0.01

XU/U0 = 0.08±0.01
U0 = 0.76±0.03

%1 = 16.7±1.3

we used the values '� = 8806 ± 94 pc, '2/'C = 0.576 ± 0.032 averaged over the
OSC sample of Danilov and Seleznev (1994) as well as the expressions for XU, U0

obtained for this cluster model in the same way as was done for the homogeneous
cluster model, see above. We also used a relation X,/,0 = −X'2/'2,0; in this
case, X'2/('2,0XU) does not depend on "2 . Thus, on average for the OSC sample,
X'1/'1,0 may be approximately 2.3−3.1 times larger than X'2/'2,0 obtained for the

homologous oscillations of the cluster. Such difference of X'1/'1,0 from X'2/'2,0,
as well as the difference of %1 from %2 ≃ 1.9%1 indicates the non-homology of
the OSC oscillations. Non-homologous oscillations of the OSC models of Danilov
and Dorogavtseva (2008) are another argument against the homology of the OSC
oscillations.

The value X'1/'1,0 in the case corresponding to fig. 10.3b, quite agrees with
the estimates of f'1/'1,0 for the cluster model 1 with the greatest degree of non-

stationarity (Danilov and Dorogavtseva, 2008), see above. The XU/U0 value in the
case corresponding to fig. 10.3a, is not statistically different from XU/U0 = 0.21±0.07

obtained for six OSC models of Danilov and Dorogavtseva (2003), for which the
standard deviation XU/U0 from XU/U0 is fXU/U0 ≃ 0.18.

Thus, the oscillations of the OSC cores with such amplitudes quite can determine
the width Δb (`) of the band occupied by the clusters in the diagram (b, `), see fig.
21 from Danilov and Seleznev (1994), and the Δb (`) value quite can determine
the non-stationarity degree of the OSCs with a given `. We note that at ` & 2.5,
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the method for calculating the non-stationarity parameters XU, X'1/'1,0, XU/U0

applied here can give overestimated results for these values. According to Danilov
and Dorogavtseva (2008), during the periods of the greatest compression to the plane
of the Galaxy in the clusters with ` > 2.5, the toroidal structures can form with an
increased density of the number of stars inside the torus, and with the equatorial
plane coinciding with the plane of the Galaxy (see, for example, the cluster model
6 of Danilov and Dorogavtseva (2008), for which the initial value of ` = 4). This
leads to an increase in the non-homology of the oscillations and to a decrease in
the degree of non-stationarity of such cluster models (Danilov and Dorogavtseva,
2008; Danilov, 2008). Probably, in such cases, in order to estimate the degree of the
cluster non-stationarity, it is necessary to carry on the numerical experiments on the
simulation of the OSC dynamics (as in Danilov and Dorogavtseva (2008, 2003)).
The indicated effect only weakly affects the mean values of the OSC non-stationarity
parameters obtained here, since the clusters with ` > 2.5 in our sample are only
seven.

The estimates of the -8 (8 = 1, ..., 5) values are obtained here assuming that the
values -8 have an equal accuracy for different OSCs. Let f(-8), f('2), f('C ) be
the errors of -8, '2, 'C for the considered OSCs. The valuesf(-8)/-8 averaged over
the sample of the clusters with '2+f('2) < 'C −f('C ) are given in the 3rd column
of Table 10.2. All -8 values, except for X'1/'1,0, correlate fairly well with f(-8).
The weighted mean value estimate of X'1/'1,0 for the considered sample of clusters
was obtained equal to (X'1/'1,0)? = 0.33± 0.01, which is not statistically different

from X'1/'1,0, see above. The weighted mean square deviation of X'1/'1,0 from
(X'1/'1,0)? is obtained equal to f( X'1/'1,0)? ≃ 0.09, which also agrees with the
estimate of fX'1/'1,0 .

Let y = ("2 , '2, b, `). The coordinates H 9 ( 9 = 1, ..., 4) of a vector y allow
to determine a vector X. When estimating the errors f(-8) for each OSC, the H 9
values were assumed to be distributed according to the normal law with a probability
density

F(y) ∼ exp(−
4∑
9=1

C29/2),

where C 9 = (H 9 − 〈H 9 〉)/f(H 9 ), 〈H 9 〉 and f(H 9 ) are the parameters of a distribution
F(y). In this case, the equation of the ellipsoid of the "one-sigma" errors of f(H 9 )
in the C 9 coordinates has the form

4∑
9=1

C29/2 = 1

(an equation of a sphere with the radius
√

2 in the 4-dimensional space (C1, ..., C4)).
Assuming by the order an every value of C 9 equal to zero in this equation, we obtain
four equations of spheres in 3-dimensional spaces. Passing in these equations to the
spherical coordinates and varying the angular variables in steps of c/4, we specify 96
points on the surface of the ellipsoid of the "one-sigma" errorsf(H 9 ). The indicated
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points and the center of the "one-sigma" error ellipsoid are used to calculate 96 -8
values and the 〈-8〉 values. The f(-8) values were defined as standard deviations of
-8 from 〈-8〉.

We note that the errors f(<) of the mean mass of a cluster star do not affect the
estimates of f(XU), f(X'1/'1,0), f(XU/U0). The contribution of the f(<) values
to f(%1) and f(U0) on average for the sample of the considered OSCs is ∼ 25 and
∼ 33%, respectively.

How can the taking into account the less bright stars with stellar magnitudes<� >
16<, which exceed the limiting magnitude of the stars considered by Danilov and
Seleznev (1994), to affect the estimates of the OSC dynamic parameters? Estimates
of the OSC parameters performed in our work using the catalogue of Danilov and
Seleznev (1994) show that XU, U0 (and d = 3"2/(4c'3

2)) on average (relatively to
"2 in several selected "2 intervals) decrease, while %1 and %2 on average grow with
an increase of "2 . Although, at "2 > 350"⊙, the indicated changes in the mean
values do not exceed the standard deviations of these values from the corresponding
mean values. The X'1/'1,0 and XU/U0 values on average (relatively to "2 , see
above) are practically independent of "2. Therefore, at <� > 16<, it is likely that
the values of XU and U0 obtained in our work can be considered as overestimated.
The values of %1 and %2 can be considered as the lower estimates of these values for
the considered OSCs. Estimates of X'1/'1,0 and XU/U0 do not seem to depend on
the limiting magnitude <� of stars at <� > 16<.

10.5 Dynamic Dispersions of Stellar Velocities in OSC

In order to estimate the dispersions of the stellar velocitiesf2
E in the OSCs according

to the data on the structural-dynamic parameters of the clusters, we use equation
(13) from Danilov (2010). Following to Danilov and Putkov (2012a), for the model
of a spherically symmetric cluster, we write this equation as follows:

f2
E ≃

1

2

{
1

"2

[
−, + 1

3
(U1 + U3) �

]
+ * (0)

2

}
, (10.11)

where * (0) is the potential in the cluster center. According to Danilov (2010), this
equation takes into account the influence of the force field of the Galaxy and the
non-stationary nature of the cluster on f2

E . For the cluster model consisting of two
homogeneous concentric spheres imitating the core and the halo of the cluster, we
find* (0) = 1.5� ("1/'1 + "2/'2), see * = * (A), as well as the formula for, in
the explanations for equations (10.6) and (10.10).

Following to Danilov and Putkov (2012a), we write the equation (13) from Danilov
(2010) for a cluster model with a homogeneous spherical core and an ellipsoidal halo
with coincident centers of mass as follows:

f2
E ≃ 1

2

{
1

"2

[
−, +

(U1 + U3)"1'
2
1 + (U10

2 + U32
2)"2

5

]
+ * (0)

2

}
, (10.12)
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Table 10.2 Values _ and _2 of OSC

Halo model 0 = 1 = 2 0 > 1 > 2 1 > 0 > 2

_ 1.17 ± 0.01 1.15 ± 0.01 1.16 ± 0.01
_<8= 1.07± 0.01 1.07± 0.01 1.07± 0.01
_<0G 1.36± 0.15 1.29± 0.15 1.36± 0.15

_2 1.38 ± 0.02 1.32 ± 0.01 1.35 ± 0.02
_2
<8= 1.14± 0.02 1.14± 0.02 1.14± 0.02
_2
<0G 1.9± 0.5 1.7± 0.5 1.9± 0.5

where

* (0) = � (1.5"1/'1 + 0.75"2�0),

�0 =

∫ ∞

0
3B/Δ(B),

Δ(B) =
√
(02 + B) (12 + B) (22 + B);

0, 1, 2 are the semiaxes of the ellipsoid of the halo directed along the coordinate axes
G, H, I, respectively;

, = −� (0.6"2
1/'1 + 0.3"2

2 �0 + 0.75"1"2(�0 − 0.4'2
1/(012))).

Let us consider the case of equal densities (and volumes) of a spherical and ellipsoidal
cluster halo 012 = '3

2 and 2/0 = 0.5, 1/0 = 2/3, 0 = '2
3
√

3 (such semi-axis ratios
are adopted taking into account the results on the dimensions of the critical surface
of zero-velocity in the two-point non-isolated OSC model (Danilov and Chernova,
2008)).

In the case of an isolated virialized cluster, f2
E equals f′2

E = −,/"2 (Chan-
drasekhar, 1942). Using the data on the b, `, #2 , "2, '2 = '2, '� values for the
OSCs from Danilov and Seleznev (1994), we find the fE , f′

E and _ = fE/f′
E val-

ues. The results of calculations for a cluster with an ellipsoidal halo in the case
0 > 1 > 2 are shown in fig. 10.4. The points and triangles in fig. 10.4 indicate
the values of fE (in pc/Myr ≃ km/s) and _ (in dimensionless units), respectively,
depending on the cluster mass "2 . According to fig. 10.4, the fE values grow with
an increasing mass "2 ; the growth rate of fE with an increasing "2 decreases at
large "2 . The largest values of fE are noted for clusters NGC 6705 and NGC 6755
(f (#��6705)
E > f

(#��6755)
E ). According to fig. 10.4, the _ values vary slightly as

"2 increases. The mean values of _ and _2 for a spherical halo (0 = 1 = 2 = '2) and
for an ellipsoidal halo (0 > 1 > 2), (1 > 0 > 2, at 1 = '2

3
√

3, 0 = 21/3, 2 = 0.51)
are given in Table 10.2. The latter case corresponds to a halo ellipsoid elongated in
the direction of the cluster motion. In the case of a spherical halo (0 = 1 = 2 = '2),
the equations (10.11) and (10.12) give the same values of fE and _, but the use of
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Fig. 10.4 The dependencies of fE (•) and _ (▽) on the cluster mass "2

the equation (10.11) is preferable, since it does not require the calculation of the
improper integral �0; _<8= and _<0G correspond to the smallest and largest _ values

in the sample. In all three cases, the _2 values in Table 10.2 differ a little from each

other (_2 ≃ 1.3 − 1.4). We can note a some decrease of _2 in the case of a halo

ellipsoid with 0 > 1 > 2 as compared to _2 for a spherical halo. _2
<0G ≃ 1.7 − 1.9.

Within the framework of a spherical halo model, a standard deviation of _2 from

_2 equals f_2 ≃ 0.16. _2 is obtained under the assumption that _2 values for the
considered OSCs are equally accurate. If we take into account an unequal accuracy

of _2 for the considered OSCs, we find on the average f(_2)/_2 = 0.10 ± 0.01,
where f(_2) is an error of _2. The values of f(_2) and _2 correlate rather closely
(_2 ∼ f(_2)). Therefore, we did not calculate the average weighted values of _2.
The contribution of the error of the average star mass < to f(_2) is, on average,
∼ 16 % of f(_2).

Thus, the impact of the Galactic field on the cluster and the non-stationarity

of the cluster increase f2
E on average in ∼ _2 times. If we use f2

E obtained from
the observational data on the stellar velocities in order to estimate the virial mass
" ′
2 of an isolated cluster, then " ′

2 ≃ "2_2. Consequently, the " ′
2 values for such

estimates are overrated in comparison with "2 on average in ∼ _2 times (the largest
overestimation of" ′

2 relative to"2 reach_2
<0G times, see Table 10.2). Unfortunately,

the source of inaccuracy in the estimates of the dynamic OSC masses indicated here
does not lead to the most significant errors in "2 . The 2.5−3.3 times difference in
the "2 estimates obtained for NGC 6705, NGC 188 in Danilov and Seleznev (1994)
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and Geller et al. (2008); de Grĳs et al. (2008) noted in the Danilov (2010) may be
partially due to the difference in the data on the size of clusters used in these papers.

10.6 Conclusions

In this part of the book, we have considered the estimates of a number of parameters
characterizing the non-stationarity of the OSCs and the various manifestations of
the non-stationarity in these clusters. We have shown that it is necessary to take into
account the non-stationarity of OSCs when estimating the dynamic masses of these
clusters.

1. The average value of the density contrast in the OSC cores from Danilov and
Seleznev (1994) in the work of Danilov and Putkov (2012a) was obtained to be
a = 3.62 ± 0.36. Such a values are comparable to the smallest estimates of a for the
cores of the OSC models of Danilov and Dorogavtseva (2008). The most probable
causes of small a in the OSCs are: 1) formation of the OSCs with small a values; 2)
an effect of a gravitational instability of the OSC cores and the non-stationarity of
the OSCs on the density distribution in the cores of such clusters.

2. We have considered a gross-dynamic description of the homologous oscilla-
tions of the OSC models. We wrote the expressions for XU and U0 in the models of
a homogeneous sphere and a sphere with the density d ∼ 1/A2. We have presented
the estimates of the kinetic energy ) 5 of such oscillations in these OSC models.
The ) 5 values in these models are very large and, in comparison with the data of
numerical experiments of Danilov and Dorogavtseva (2008), lead to an overestima-
tion in 10−20 times of XU and other parameters characterizing the degree of the
cluster non-stationarity. The reasons for overestimation of these parameters are: 1)
a non-homology of the OSC oscillations; 2) a difference of the velocity EA of the
radial flux of stars in the OSCs from the relation EA ∼ A. It is noted that the use of
King’s distribution for the spatial density of the number of stars 5 = 5 (A, :, A2 , '2)
leads to an underestimated number of stars in the OSCs on average 0.62±0.02 times
in comparison with the number of stars obtained in Danilov and Seleznev (1994)
by star counts (when one uses the 5 function, the stars located at the periphery
of the OSC are not completely taken into account). We have considered a gross-
dynamic description of the homologous oscillations of a combined cluster model
consisting of a homogeneous sphere and a sphere with the spatial density distribu-
tion 5 (A, :, A2 , '2). Within the framework of this model, the dependency EA ∼ A is
shown; estimates of the periods %2 of the oscillations of the OSCs from Danilov and
Seleznev (1994) are given. The average value of %2 is %2 = 31.8 ± 1.7 Myr.

3. We have considered a gross-dynamic description of the non-homogeneous
oscillations of the OSC models consisting of two homogeneous concentric spheres
imitating a core and a halo of the cluster. Subject to the constancy of the mass and
the halo cluster radius, we have examined the lower bounds of XU and X'1/'1,0 for
the OSCs in the framework of such cluster model. The mean XU and X'1/'1,0 for

the OSCs from Danilov and Seleznev (1994) are: U = 0.09 ± 0.01 and X'1/'1,0 =
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0.34± 0.01. Solution of the gross-dynamic equations for this OSC model is reduced
to quadratures. We have obtained the estimates of %1 periods of the OSC core
oscillations. Mean %1 for the OSCs from Danilov and Seleznev (1994) is %1 =

16.8±1.3 Myr. X'1/'1,0 values are 2.3−3.1 times larger than the relative amplitude
of the oscillations of the cluster’s halo radius X'2/'2,0 obtained for the homological
oscillations of the cluster model with density d ∼ 1/A2 and mean "2, '�, '2/'C
for the OSCs from Danilov and Seleznev (1994). According to Danilov and Putkov
(2012a), the XU values show a significant (with probability % > 0.999) correlation
with XUCℎ values obtained in another way by Danilov and Seleznev (1994); the mean
XU values from Danilov and Putkov (2012a) and XUCℎ from Danilov and Seleznev
(1994) are quite consistent with each other. Consequently, the oscillations of the
OSC cores with the relative amplitudes X'1/'1,0, see above, can quite determine
the width Δb (`) of the band occupied by clusters in the diagram (b, `), and Δb (`)
value can also determine the degree of non-stationarity of the OSC with a given `.

4. We have given the estimates of the dispersion of stellar velocities f2
E in the

clusters obtained by Danilov and Putkov (2012a) from the data on the structural-
dynamic parameters of the OSCs from Danilov and Seleznev (1994).These estimates
take into account the influence of the force field of the Galaxy and the non-stationarity
of the cluster on f2

E value. The effect of these factors increases f2
E in OSCs on

average in _2 = 1.3 − 1.4 times as compared to f2
E estimates for the isolated

virialized clusters. According to estimates of the dispersion of the stellar velocities
f2
E in the clusters performed by Danilov and Putkov (2012a), the largest _2 value

reaches _2
<0G ≃ 1.7 − 1.9. Consequently, the virial masses of OSCs obtained from

the observational data on the stellar velocities without taking into account the effect

of the external field of the Galaxy on the cluster, are on average _2 times overvalued
estimates of the dynamic masses of the OSCs.
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Chapter 11

On the Dynamics of Correlations in Models
of Open Star Clusters

Abstract In this chapter, we consider two-time and two-point (two-particle) corre-
lations for a number of parameters of stellar motion, as well as for the density and
the phase density of the models of the open star clusters in the vicinity of these
stars. We consider estimates of the time and the radius of a correlation of the OSC
models in the spaces of indicated parameters. We discuss distributions of two-point
correlations over distances between stars in the spaces of the coordinates and the
velocities of stars. We determine the parameters of a density, a potential, and the
phase density waves in the models of star clusters. The analysis of the fine structure
of the two-point correlations’ condensations in the space of the mutual distances
between stars indicates the formation of the polarization clouds near a number of
such distances. We consider the distributions of the correlations of the phase density
values. The dynamics of these distributions is discussed. We note a growth of the
correlations with time for 50 % of the considered star cluster models. The fluxes
of the correlations of the phase density values are discussed. The dominant flux of
correlations from the region of strong correlations to the region of weak correlations
is detected. Such a flux leads to the appearance of a kinetic energy flux towards the
cluster center. The estimates of the rate of heating of the cluster models’ cores by this
flux is discussed. We note the signs of a weak turbulence in the motions of the stars
located in the cluster core of the model with the greatest degree of non-stationarity
in a regular field.

11.1 Introduction

The encounters of stars in the OSCs result in the formation and change with time
of both the stellar velocity distributions and the various correlations in the positions
of stars in the phase space. Due to a long-range nature of the Newtonian forces, the
interactions of stars are continuously ongoing, and have a non-Markovian character
(Prigogine and Severne, 1966; Prigogine, 1962). In this case, the rate of change of
the velocity distribution function at the time point C depends on the values of this
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function at the previous time points C − g, where g ∈ [0, C] is the value associated
with a nonzero duration of the stellar encounters. Also we refer the reader to the
non-Markovian evolution equation (2.1) from Prigogine and Severne (1966) for the
velocity distribution function of stars in a homogeneous and infinite gravitating
system (gravitational plasma); the derivation of equation (2.1) can be found in
the book of Prigogine (1962), formula (11.9). As a result of the interactions, the
different states of the correlations (binary, triple, etc.) pass into each other. A flux
of the correlations arises, it is an irreversible process (Prigogine and Stengers, 1994,
p.174,175). Two types of a correlations’ propagation in the system are shown in the
book of Prigogine (1962), see figs. 80, 81 there. In the first case, the propagation of
a correlation is accompanied by its scattering by other particles. In the second case,
this correlation is "born" from the correlation of a lower order.

In the theoretical papers, when studying the spatially inhomogeneous stellar
systems, the differential equations for the single-particle distribution functions of
stars and the two-particle correlation functions are also used. When writing such
equations, the different simplifying assumptions are usually applied (Severne and
Haggerty, 1976; Gilbert, 1968, 1970). However, until 2012, the calculations of the
correlation functions from the numerical experiments for the dynamic OSC models
are absent in the literature. This is due to the exponential instability of the stellar
trajectories in such systems (Goodman et al., 1993; Kandrup et al., 1994), as well as
a low accuracy of an integration of the stellar motion equations on the sufficiently
large time intervals (Komatsu et al., 2008) (usually, an integration uses the difference
schemes, the accuracy order of which does not exceed 4 (Goodman et al., 1993;
Kandrup et al., 1994; Komatsu et al., 2008)).

The calculations of the phase coordinates of stars (PCS) in the OSC models by
Danilov and Dorogavtseva (2008) have been performed by integrating the equations
of stellar motion using the difference schemes of the 10th and 11th accuracy orders
on the time interval C ∈ [0, C<], where C< ≃ 5.1gEA ; gEA is the initial time of the
violent relaxation obtained according to the formula gEA ≃ 2.6C2A (Aarseth, 1974);
C2A is the average initial crossing time. Let C0 be the time interval for the dynamic
evolution of the OSC model, during which a statistical criterion for the accuracy of
the phase density calculations is satisfied (Danilov, 1997b) (see also Section 16.3).
Near the centers of the models of Danilov and Dorogavtseva (2008) the value of
C0/gEA ≃ 3.0 − 3.9, and at the periphery of the models C0/gEA ≃ 3.6 − 5.1. In this
case, the maximum relative error in a calculating of the cluster energy reached on the
time interval C< in the Danilov and Dorogavtseva (2008) models was∼ (1−4)×10−13

in modulus, and the accuracy of a calculating of the phase density function (PDF) of
the cluster on the time interval C0 can be considered as sufficient for the conclusions
about the statistical properties of PDF.

It is of interest to estimate the time g2 and the radius A2 of a correlation for the
values of E = |v|, A = |r|; for the star motion energy Y per unit of the star mass; for
the phase density 5 = 5 (r, v, C) and for the density of the number of stars = = =(r, C)
in the OSC models of Danilov and Dorogavtseva (2008), where v is the velocity
vector, and r is the radius-vector of the star. These estimates can be used both in
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discussing of the dynamics of the OSC models, and in the theoretical description of
the dynamic processes in the OSCs.

Kandrup (1998) proposed a hypothesis on the increase of the overall coherence of
the stellar motions (i.e., on the growth of correlations) in the stellar systems far from
equilibrium in comparison with the collisionless systems with the ordinary violent
relaxation. According to Kandrup (1998), the motion coherence growth and the
preservation of a memory about the initial conditions in the stellar systems should be
due to the action of the long-range forces, the interactions of the "wave-wave" type,
a coupling and an energy transfer between the different modes of the oscillations
on a distance scale comparable to the size of the system. In this connection, it is of
interest to study the correlations’ distribution of = and 5 by the correlation values
in the OSC models, as well as to analyze the changes of these distributions over
time (an analysis of the correlation dynamics). At C ∈ [0, C0] , the accuracy of the
obtained correlations is sufficient for the conclusions about the properties of these
distributions, see below.

According to Kandrup (1985), a taking into account the long-range forces and
inter-particle correlations in the gravitating systems should lead to the transition of
a potential energy from the correlations to the kinetic energy of the system (into the
energy of the thermal motion of particles). In this connection, it is of interest to study
the fluxes of correlations of the phase density values in the models of Danilov and
Dorogavtseva (2008), as well as the analysis of the associated kinetic energy fluxes
in the OSC models. In this way, it is possible also to estimate the rate of a transfer of
the OSC models’ oscillation energy into the energy of peculiar stellar motions.

The objectives of this chapter are: 1) to discuss the correlation parameters g2 and
A2 for the phase density, the density of the star number, the modules of a velocity
vector and of a radius-vector of stars, the specific energies of the star motions in the
OSC models of Danilov and Dorogavtseva (2008); 2) to discuss the g2 and A2 values
and to use g2 for the construction of the distributions of the two-point correlations for
the different time points, as well as to analyze the changes of these distributions over
time; 3) to discuss the fluxes in the space of the phase density correlations, as well to
analyze the related kinetic energy fluxes in the models of Danilov and Dorogavtseva
(2008); 4) to apply the reviewed results in order to analyze the OSC dynamics.

11.2 Times and Radii of Correlations in OSC Models

Danilov and Dorogavtseva (2008) considered the cluster models consisting of # =

500 stars, moving along a circular orbit of radius '� = 8200 pc in the plane
of the Galaxy around its center. The initial parameters of the numerical dynamic
OSC models (Danilov and Dorogavtseva, 2008) are given in Table 1 of Danilov
and Dorogavtseva (2003); cluster models 1−6 in Danilov and Dorogavtseva (2008)
and Danilov and Dorogavtseva (2003) are numbered in a descending order of the
degree of the model’s non-stationarity in a regular field (for detailed description of
the considered OSC models see Section 16.1).
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Following to Klimontovich (1982, p.136), as well as Danilov and Putkov (2012b),

in order to determine the correlation time g (A)2 in the space of A, let us consider the
two-time correlation:

6
(A)
2 (C, C′) = A (C)A (C′) − A (C) · A (C′), (11.1)

where the bar denotes an averaging over all cluster stars; A (C) and A (C′) are the A
values for the same star in the time points C and C′. Let C′ = C + g. Substituting C′ in

(11.1), averaging the function 6 (A)2 (C, C+g) over time points C ∈ [0, C<−g], we find the

ℎ
(A)
2 (g) function and its errors. The plot of this function for cluster model 1 is shown

in fig. 11.1a. We note that in all figures of our work we present the data obtained by
the PCS calculated by the 11th accuracy order, see above. We shall assume that the

correlation time g (A)2 equals g, at which ℎ (A)2 (g) = ℎ (A)2 (0)/4, where 4 is the base of

the natural logarithm. In this case, for cluster model 1, we find g (A)2 = (2.1±0.2)gEA .
The error indicated here for g (A)2 is due to the error in a calculating of the ℎ (A)2 (g)
function at g = g

(A)
2 . The similar calculations were made for E and Y, where Y is

the energy of the star motion per unit of the star mass. The plots of the functions
ℎ
(E)
2 (g) and ℎ (Y)2 (g) for model 1 are shown in fig. 11.1b and 11.1c, respectively. g (E)2

for model 1 is obtained equal to g (E)2 = (1.29 ± 0.04)gEA , and g (Y)2 & 5.1gEA . Thus,
g
(E)
2 < g

(A)
2 < g

(Y)
2 .

During the evolution of the cluster model 1, the correlations are most rapidly
destroyed in the space of E values, and most slowly in the space of Y. We note that
these relations between the correlation times of model 1 are quite agreeing with the
relations between the relaxation times gE < gA < gY , obtained from the data on the
stellar fluxes in the spaces of E, A, Y for this model by Danilov and Dorogavtseva
(2003). According to Table 2 from Danilov and Dorogavtseva (2003) for cluster
model 1, we can write gE . g

(E)
2 , gA ≃ g

(A)
2 , g (Y)2 ≃ gY = (5.2 ± 0.8)gEA . The gEA

gE , gA values characterize the time of the cluster’s transition to a virial equilibrium
only in the absence of the conditions for a gravitational instability (Danilov, 2011).
According to Danilov and Dorogavtseva (2008), the periodic oscillations of the stellar
velocities’ dispersions along the coordinate axes in model 1 are still conserved at
C ≃ 5.1gEA ; the synchronization time of a rotation of this cluster model with its
orbital motion is CB = (7.5±0.2)gEA , and the spherization time of the stellar velocity
distribution in model 1 is Cf ≃ (7.6 − 8.9)gEA . For models 2−6, the relations
g
(E)
2 < g

(A)
2 < g

(Y)
2 < CB , Cf are also fulfilled, see Table 11.1, as well as Danilov and

Dorogavtseva (2008). Therefore, the time to smooth out the rapid random changes in
models 1−6 when calculating the correlation radii in the spaces of E, A, Y in Danilov
and Putkov (2012b) was chosen equal to the corresponding correlation time, see also
Klimontovich (1982, p.139).

We note a slight increase of ℎ (E)2 (g) at g/gEA ∈ [3.3, 4.8] in fig. 11.1b, as well as

increase of ℎ (E)2 (g) at g/gEA ∈ [0.5, 1.5] in fig. 11.1d. Perhaps, for the space of the
E values in the OSC models, there are two or more correlation times, which is a sign
of a non-stationarity of such systems (Klimontovich, 1982, p.137,143).
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Fig. 11.1 The dependencies of ℎ (A )
2 , ℎ (E)

2 , ℎ (Y)
2 on g for the OSC model 1 (a−c); the dependency

of ℎ (E)
2 on g for the OSC model 5 (d)

Following to Klimontovich (1982); Danilov and Putkov (2012b), we consider a
two-point correlation for A:

:
(A)
2 (C, 8, 9) = 〈A8 (C′)A 9 (C′)〉 − 〈A8 (C′)〉〈A 9 (C′)〉, 8, 9 = 1, ..., #, (11.2)

where 8, 9 are the numbers of the stars; brackets 〈...〉 mean the averaging over time
C′ ∈ [C, C+g (A)2 ] of the values indicated under the sign of the brackets, at C ≤ C<−g (A)2 .
Let A8 9 (C) = 〈|r8 (C′) −r 9 (C′) |〉, where an averaging over C′ was performed in the same

interval as for : (A)2 (C, 8, 9). The value of : (A)2 (C, 8, 8) characterizes the correlation
between positions of the 8-th star in the space of A at different times C′ and is equal
to the dispersion of the A8 deviations from 〈A8〉 on the time interval C′ ∈ [C, C + g (A)2 ].
Danilov and Putkov (2012b) calculated : (A)2 (C, 8, 9) and A8 9 (C) for the time points

C ∈ [0, C< − g (A)2 ]. Fig. 11.2a shows the distribution of : (A)2 (C, 8, 9) by A8 9 (C) on the

interval A8 9 (C) ≤ 2'C , averaged over C ∈ [0, C< − g (A)2 ], where 'C is the tidal radius
of the cluster model 1 obtained according to King (1962). The mean over C values of

:
(A)
2 (C, 8, 9) in fig. 11.2a are denoted as < (A)

2 and are given in pc2 depending on A8 9 .

The vertical bars in fig. 11.2a indicate the errors of < (A)
2 .

We shall assume that the correlation radius A (A)2 is the value of A8 9 , at which

<
(A)
2 = 4−1<

(A)
2 |A8 9=0. In this case, for model 1, we find A (A)2 = 0.74 ± 0.03 pc. The
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Fig. 11.2 The dependencies of <(A )
2 , <(E)

2 , <(Y)
2 , <(=)

2 , <( 5 )
2 on A8 9 in the OSC model 1

error of A (A)2 indicated here is due to the error in the calculation of the < (A)
2 function

of A8 9 at A8 9 = A
(A)
2 . The similar calculations were performed for E, Y, = and 5 , where

estimates of the number density of stars = and phase density 5 were obtained in
the vicinity of each star considering the data on phase coordinates of this star and
the five stars closest to it. The correlation disruption in the space of E in model 1

occurs at the distances A (E)2 = 0.76 ± 0.02 pc, see fig. 11.2b, where < (E)
2 values are

given in (pc/Myr)2. Thus, A (A)2 ≃ A (E)2 . At C = 1.6gEA , the number of stars inside the
sphere of this radius changes from #?ℎ = 20.1 ± 7.2 in the center of model 1 to
#?ℎ = 1.6 ± 0.2 at the average values of the core density of this cluster model (see
Table 2 from Danilov (2010)). In this case, an average distance A< ∼ =−1/3 between
the stars changes from A< = 0.44 ± 0.06 pc to A< = 1.04 ± 0.03 pc, respectively.
Thus, A (A)2 ≃ A (E)2 ≃ A<.

According to fig. 11.2a the < (A)
2 values increase with growing A8 9 at A8 9 > 1.5

pc. The degree of correlation of the A values in model 1 continues to increase with
increasing A8 9 also at A8 9 > 2'C . In this case, the cluster stars with A8 > 'C form a
group, the motion of which is largely determined by the force field of the Galaxy,
which leads to a sufficiently coordinated motion of these stars in the Galaxy and
to a formation of the large values of |< (A)

2 | (see also fig. 11.3a). A certain role in
increasing the correlations at A8 9 → ∞ belongs to transfer of the correlations to larger
distances from the cluster center as the outer regions expand as a result of the escape
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of a part of the stars from the cluster (see Saslaw (1985, p.197) on a propagation of
the correlations in the problem of a clustering of galaxies in the expanding universe).

In fig. 11.2c the values of < (Y)
2 values are given in (pc/Myr)4. According to fig.

11.2c, with increasing A8 9 at A8 9 < 1 pc, < (Y)
2 rapidly decreases reaching < (Y)

2 < 0.

A
(Y)
2 is obtained equal to A (Y)2 ≃ 0.6 ± 0.01 pc from the conditions < (Y)

2 |
A8 9=A

(Y)
2

=

4−1<
(Y)
2 |A8 9=0 and < (Y)

2 = :
(Y)
2 (0, 8, 9), since g (Y)2 > C<, and here for the estimation

of A (Y)2 , we accept g (Y)2 = C<. The negative < (Y)
2 values at A8 9 ∈ [0.71, 0.97] pc

indicate the influence of stellar encounters (the exchange of energies of the stars
participating in encounters) in the formation of the distribution < (Y)

2 by A8 9 at such
A8 9 (see Saslaw (1985, p.173) on the relationship between the sign of the correlations
and the direction of changes in the fluctuating values). According to fig. 11.2c, the
stellar energies are most correlated in the range of A8 9 ∈ [2.2, 3.1] pc, which indicates
the existence in the model of the radial waves of a potential and a force field with a
wavelength _(Y) = 2.51± 0.21 pc (since in the models of Danilov and Dorogavtseva
(2008) the radial density and potential oscillations are mainly observed). A reduction
of the degree of randomness of the stellar motions and changes in their energies at
A8 9 ≃ _(Y) may well lead to a decrease in the production of an entropy and to
self-organization in the cluster model (for open systems, see Klimontovich (1995,
p.45,49)). At A8 9 > _(Y) , the value of < (Y)

2 slowly decreases with increasing A8 9 ,

which indicates the disruption of such correlations. At A8 9 = A
(Y)
2,4 = 16.25 ± 0.13

pc, < (Y)
2 decreases in 4 times as compared to < (Y)

2 |A8 9=_(Y) . Thus, in model 1, the

oscillations in Y with the wavelengths of _ ∈ [_(Y) , A (Y)2,4 ] are formed with a different
probability. Apparently, in this wavelength interval, the effect of the force field
oscillations of model 1 on the stellar energy can be considered as significant.

In fig. 11.2d, the < (=)
2 values are given in pc−6. The distribution of < (=)

2 by A8 9
reaches its maximum close to A8 9 = _(=) ≃ 0.84 ± 0.21 pc. At A8 9 > _(=) , < (=)

2

decreases with increasing A8 9 and reaches 4−1<
(=)
2 |A8 9=_(=) at A8 9 = A

(=)
2 = 1.41±0.02

pc. In order to calculate < (=)
2 and < ( 5 )

2 , we used the g (A)2 value with the averaging

by C given above, since g (A)2 > g
(E)
2 .

We note that the distributions of < (=)
2 and < ( 5 )

2 by A8 9 are very similar each other

and reach their peaks near A8 9 = 0.84± 0.21 pc, see fig. 11.2e, where < ( 5 )
2 are given

in (Myr6/pc12). Consequently, in model 1, the radial density and phase density waves
with a wavelength _(=) exist and, possibly, with the wavelengths _ = 8=_

(=) , where
8= is an integer (8= = 2, 3, 4, see below). The reduction of the degree of a randomness
of the changes in = and 5 (and, consequently, in the stellar motions) at A8 9 ≃ _(=)

may well lead to a decrease in the production of an entropy and a self-organization

in the cluster model (Klimontovich, 1995). The value of A8 9 = A
( 5 )
2 corresponding

to the condition< ( 5 )
2 |A8 9 = 4−1<

( 5 )
2 |_(=) ) is obtained equal to A ( 5 )2 = 1.30± 0.02 pc.

Fig. 11.2f shows the distributions of < ( 5 )
2 for the positive and negative : ( 5 )2 (C, 8, 9)

values marked by the letters ? and =, respectively (in the case : ( 5 )2 (C, 8, 9) < 0 in fig.
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11.2f the |< ( 5 )
2 | values are given). At : ( 5 )2 (C, 8, 9) > 0, the largest values of < ( 5 )

2 are

reached at A8 9 = _
( 5 )
? = 0.84 ± 0.21 pc, and the values < ( 5 )

2 = 4−1<
( 5 )
2 |

A8 9=_
( 5 )
?

are

reached at A8 9 = A
( 5 )
2,? = 2.00± 0.03 pc. At : ( 5 )2 (C, 8, 9) ≤ 0, the largest |< ( 5 )

2 | values

are reached at _( 5 )= ≃ 1.26 ± 0.21 pc, and values < ( 5 )
2 = <

( 5 )
2 |

_
( 5 )
=

are reached at

A8 9 = A
( 5 )
2,= = 2.50 ± 0.02 pc. In the space of A8 9 , the wavelengths _( 5 )? and _( 5 )=

correspond to the sizes of the phase density fluctuations with the largest correlations
values modulo. The wavelengths of the corresponding 5 oscillations in model 1 are

enclosed in the intervals _ ∈ [_( 5 )? , A
( 5 )
2,? ] and _ ∈ [_( 5 )= , A

( 5 )
2,= ].

Fig. 11.3 shows the values of HA = :
(A)
2 (0, 8, 9) depending on A8 9 for model 1.

When calculating HA , we used g (A)2 . According to fig. 11.3, at |HA | < 50 pc2 and
A8 9 < 2'C ≃ 21 pc, the regions with the positive and negative correlations are closely
intermixed in the space of values A8 9 . Consequently, the processes of an increasing
and a decreasing of A for the stars with numbers 8 and 9 included in the pair (8, 9),
occur in the same regions of the space of A8 9 . However, for close A8 9 values, the values
HA > 0 reach several times higher magnitudes than |HA | at HA < 0, which indicates

the prevalence of changes in A with the same sign of ¤A =
3A
3C

. Apparently, the pairs
of stars with larger HA > 0 participate in the collective radial stellar motions in the
cluster model 1. Probably, the pairs of stars with HA < 0 and A8 9 < (3 − 4) pc are
involved in the chaotic motion to a greater extent. In this case, the negative values of
HA can be due to the effect of the stellar encounters.

We note that at A8 9 < 2'C and HA < 0, the sign of HA can also be due to the
participation of a pair of stars in a collective motion (for example, in the radial
density waves with a wavelength _, if A8 9 ≃ (2:_ + 1)_/2 at :_ = 0, 1, 2, ...). Fig.
11.3b shows a fragment of the region given in fig. 11.3a. At A8 9 > 12 pc in fig. 11.3b,
the vertical areas of an increased density are seen as the condensations of points
near the certain values of A8 9 . For brevity, let us call them as �A -condensations. Such
condensations contain points with the different values of the correlation moduli (also
including the rather large values). The presence of �A -condensations indicates the
existence of the radial density waves at the cluster periphery (see below).

Fig 11.4a shows the values HE = :
(E)
2 (0, 8, 9) depending on A8 9 for model 1. When

calculating HE , we used the value g (E)2 (g (E)2 < g
(A)
2 ). Therefore, the largest A8 9 values

in fig. 11.4a are smaller than in fig. 11.3a (in time g (A)2 , stars with the energies above
the critical value manage to leave the cluster for a longer distance than in time g (E)2 ).
In fig. 11.4a, as in fig. 11.3a, the positive correlations dominate, and most points are
located in the region |HE | < 0.03 (pc/Myr)2. Probably, in this case, a significant part
of the correlations in fig. 11.4a is due to the action of the collective processes on
the positions of stars in the phase space. Perhaps, a small (in size) cloud of points in
the region A8 9 < 4.4 pc is due to the action of the stellar encounters, an influence of
which in fig. 11.4a is more noticeable than in fig. 11.3a.

Fig. 11.4b shows the values HY = :
(Y)
2 (0, 8, 9) depending on A8 9 for model 1. In

order to estimate HY , we adopted the value g (Y)2 = 5.1gEA . In the region of A8 9 < 25

pc, occupied mainly by the stars with the energies below a critical one, in fig.
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Fig. 11.3 The diagrams (HA , A8 9 ) for the OSC model 1. The arrows show some of the most visible
�A -condensations

11.4b, �A -condensations of the points near certain A8 9 values are well visible. Such
condensations of points can be caused by the presence in the model 1 of radial waves
of density and potential with the corresponding wavelengths _ ≃ A8 9 . At A8 9 → ∞,
the maximum |HY | → 0. In this case, one of the stars of the pair (8, 9) is located near

the cluster center and experiences the random changes in the time interval g (Y)2 , and
the second star is located at large distances from the cluster and moves away from
it. Over time, the changes of stellar energies in such pairs are becoming less and
less correlated. When A8 9 < 12 pc and A8 9 → 0, both a dispersion of the HY values
and the contribution of stellar encounters to the changes of energies Y increase (the
main part of the fig. 11.4b is composed by the points with |HY | < 0.005 (pc/Myr)4,
which indicates the chaotic changes of Y). Probably, a significant role in the changes
of the energy of stars at A8 9 ≫ 25 pc near certain A8 9 values, corresponding to the
�A -condensations of points, can be played by the external field of the Galaxy and the
resonances between the frequencies of motion of these stars relative to the cluster
and the frequency of the orbital motion of the cluster relative to the center of the
Galaxy.

Danilov and Putkov (2012b) calculated the values of H= = :
(=)
2 (C, 8, 9) and H 5 =

:
( 5 )
2 (C, 8, 9) for a number of the time points C ∈ [0, C< − g (A)2 ] (when calculating H=

and H 5 , we used g (A)2 ). Fig. 11.4c shows the values of H= = :
(=)
2 (0, 8, 9) depending

on A8 9 for model 1. The diagram (H 5 , A8 9 ) has a form similar to that shown in fig.
11.4c, and, therefore, is not given here. As in the case of fig. 11.3a, on figs. 11.4a,b
the positive correlations of H= and H 5 predominate over negative in their number and
absolute magnitude. The causes and mechanisms considered above also take part
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Fig. 11.4 The diagrams (HE , A8 9 ) , (HY, A8 9 ) , (H=, A8 9 ) for the OSC model 1

in the formation of peculiarities of the points’ location in fig. 11.4c. In the interval
of distances A8 9 ∈ [10, 28] pc in fig. 11.4c the �A -condensations of the points are
visible located near some values of A8 9 , which indicates the existence of the radial
waves of the density and the phase density at the cluster periphery. Distances ΔA8 9
between the�A -condensations of the points nearest to each other are_ ∼ 1.7, 2.5, 3.4

pc, which approximately 2, 3, 4 times exceeds the value _(=) ≃ 0.84 pc, see above.
The�A -condensations of the points in figs. 11.4c, 11.3b and on the diagram (H 5 , A8 9 )
are located near almost identical values of A8 9 . Near the same A8 9 values, the �A -
condensations of points are also detected in figs. 11.4a,b when they are examined
with a larger resolution.

Comparison of the diagrams (H=, A8 9 ) obtained using the PCS of the 10th and
11th accuracy orders, showed that the typical errors (the standard deviations from
the mean) of H= and A8 9 are 0.2 × 10−4 pc−6 and 0.7 × 10−7 pc, respectively, and
the largest errors are approximately 3 times larger than the indicated values, which
is much smaller than the size of the points in fig. 11.4c. Thus, there is a detailed
agreement between the diagrams (H=, A8 9 ), obtained using the PCS of the 10th and
11th accuracy orders (in these diagrams, both the positions of the �A condensations
and the number of points in these condensations coincide). The diagrams in fig. 11.3,
11.4a have the same characteristics.

Comparison of the diagrams (HY , A8 9 ) obtained using the PCS of the 10th and
11th accuracy orders showed that the typical errors of HY and A8 9 in fig. 11.4b are
0.11 × 10−2 (pc/Myr)2 and 0.49 pc, respectively. The noticeably larger errors of HY ,
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A8 9 in fig. 11.4b compared with the errors of H=, A8 9 in fig. 11.4c, are due to the fact
that in calculating HY and A8 9 for fig. 11.4b the averaging of the values of Y8 , Y 9 ,
Y8Y 9 and A8 9 are given over time points C, ∼ 40 % of which satisfies the inequality
C > C0. Despite this, the distributions of HY , A8 9 , the position and density of the
�A -condensations in diagrams (HY , A8 9 ) obtained using the PCS of the 10th and 11th
accuracy orders are largely consistent with each other. The correlation coefficient :A
of the A8 9 values, obtained with the 10th and 11th accuracy orders, is :A ≃0.99991.
The correlation coefficient : Y of the HY values, obtained with the 10th and 11th
accuracy orders, is : Y ≃0.92. :A and : Y are close to unity; for model 1, C0 ≃ 3.1gEA ,
see above.

Danilov and Leskov (2005) carried out a Fourier analysis of the stellar trajectories
at the periphery of cluster model 1. In the distribution of the stellar trajectories over
their periods, "peaks" were found, with periods commensurate with the oscillation
period of the system’s regular field. According to Danilov and Leskov (2005) and
Danilov (2005), the formation of small groups of the halo stars’ trajectories with
such periods indicates that a set of distances from the cluster center is formed in the
system, near which the halo stars preferentially move in the presence of the regular
field oscillations. Probably, the formationof many�A -condensations of points in figs.
11.3, 11.4 is due to the formation in the cluster model of such groups of trajectories, as
well as of the polarization clouds (Gilbert, 1968, 1970), the gravitational excitations,
which are a close analog of plasmons in plasma (Saslaw, 1985, p.92), and also
are the response of the system to the motion of stars near the distances from the
cluster center mentioned above. The �A -condensations of points are also observed
in the diagrams (Hx, A8 9 ) for the OSC models 2−6 (here, x = (A, E, Y, =, 5 )). We
note that such condensations are not formed in the diagrams (Hx, E8 9 ) in the OSC
models 1−6, which indicates the existence of an effective mechanism that destroys
such condensations in the space of values E8 9 = 〈|v8 (C′) − v 9 (C′) |〉 in these models

(gE < gA (Danilov and Dorogavtseva, 2003)). An analysis of the distributions of< (x)
2

by E8 9 indicates the existence of the waves of the coordinates’ values of the vector x

in the space of E8 9 with the wavelengths E8 9 = _
(x)
E (pc/Myr) in the OSC models 1−6

(Table 11.1).
Estimates of the correlation parameters for the OSC models 1−6 are given in

the Table 11.1 (the _(x)E values are given in the columns of Table 11.1 for each
model from top to bottom in an order of decreasing of the corresponding values of

<
(x)
2 > 0). According to Table 11.1, A (E)2 and A ( 5 )2,= grow with increasing mass and size

of the core of the OSC model; the A (Y)2 values grow, and the A ( 5 )2 values decrease
with increasing density of the cluster model. We note that, as the model number
increases, in the time dependencies of ℎ (E)2 , a noticeable local maximum appears
(see, for example, fig. 11.1d for model 5), which corresponds to the oscillations with
a period % (E) in the space of E. The % (E) values for models 3−6 are also given in
Table 11.1 and are in a good agreement with the periods of the oscillations of these
models’ virial coefficient (see column 2 of Table 2 in Danilov and Leskov (2005)).
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Table 11.1 Parameters of OSC models

№ of model 1 2 3 4 5 6

g
(A )
2 /gEA 2.1 ± 0.2 2.0 ± 0.2 1.7 ± 0.2 1.9 ± 0.3 1.8 ± 0.2 1.7 ± 0.2

g
(E)
2 /gEA 1.29 ± 0.04 1.39 ± 0.06 1.0 ± 0.2 0.35 ± 0.04 0.19 ± 0.01 0.22 ± 0.01
% (E) /gEA − − 0.62± 0.02 0.76± 0.03 0.50± 0.02 0.58± 0.02

g
(Y)
2 /gEA >5.1 >5.1 >4.1 >5.1 >3.6 >3.9

A
(A )
2 , pc 0.74 ± 0.03 0.68 ± 0.02 0.69 ± 0.02 0.69 ± 0.02 0.70 ± 0.01 0.73 ± 0.01

A
(E)
2 , pc 0.76 ± 0.02 0.73 ± 0.01 0.88 ± 0.07 0.75 ± 0.01 1.36 ± 0.09 2.41 ± 0.09

A
(Y)
2 , pc 0.60 ± 0.01 0.68 ± 0.21 0.68 ± 0.06 0.78 ± 0.09 0.68 ± 0.21 0.87 ± 0.24

A
(Y)
2,4 , pc 16.25 ± 0.13 2.80 ± 0.46 4.80 ± 0.05 3.87 ± 0.10 2.47 ± 0.10 2.78 ± 0.77
_(Y) , pc 2.51 ± 0.21 1.26 ± 0.22 1.67 ± 0.22 2.09 ± 0.21 1.26 ± 0.21 1.67 ± 0.21

A
(=)
2 , pc 1.41 ± 0.02 1.29 ± 0.03 1.25 ± 0.01 1.29 ± 0.02 1.33 ± 0.02 1.46 ± 0.03

A
( 5 )
2 , pc 1.30 ± 0.02 1.29 ± 0.02 1.21 ± 0.02 1.17 ± 0.01 1.53 ± 0.01 1.15 ± 0.03

A
( 5 )
2,? , pc 2.00 ± 0.03 1.35 ± 0.03 1.46 ± 0.03 1.54 ± 0.02 1.90 ± 0.01 1.15 ± 0.03

A
( 5 )
2,= , pc 2.50 ± 0.02 1.25 ± 0.02 2.59 ± 0.01 1.96 ± 0.02 3.31 ± 0.01 5.825 ± 0.03
_( 5 ) , pc 0.84 ± 0.21 0.84 ± 0.21 0.84 ± 0.21 0.84 ± 0.21 0.84 ± 0.21 0.84 ± 0.21

_
(A )
E , 0.09 ± 0.02 0.07 ± 0.01 0.07 ± 0.01 0.66 ± 0.01 0.07 ± 0.01 0.88 ± 0.01

pc/Myr − − − − 0.74 ± 0.01 −
_
(E)
E , 0.10 ± 0.01 0.12 ± 0.01 0,16± 0.01 0.16 ± 0.05 0.18 ± 0.01 0.13 ± 0.01

pc/Myr − − − − 0.14 ± 0.01 −
_
(Y)
E , 0.47 ± 0.02 0.46 ± 0.02 0.18 ± 0.02 0.20 ± 0.02 0.27 ± 0.02 0.24 ± 0.02

pc/Myr 0.16 ± 0.02 0.25 ± 0.02 0.27 ± 0.02 0.44 ± 0.02 − −
− − − 0.40 ± 0.02 − −

_
(=)
E , 0.19 ± 0.02 0.15 ± 0.01 0.17 ± 0.01 0.07 ± 0.01 0.19 ± 0.01 0.13 ± 0.01

pc/Myr − 0.27 ± 0.01 − 0.17 ± 0.01 0.10 ± 0.01 −
_
( 5 )
E , 0.15 ± 0.02 0.27 ± 0.01 0.10 ± 0.01 0.17 ± 0.01 0.19 ± 0.01 0.08 ± 0.01

pc/Myr − 0.15 ± 0.01 0.24 ± 0.01 0.07 ± 0.01 − −
− 0.34 ± 0.01 − 0.28 ± 0.01 − −

g 5 /gEA 0.51 ± 0.01 0.52 ± 0.01 0.47 ± 0.01 0.52 ± 0.01 0.56 ± 0.01 0.67 ± 0.02
aE2 0.22 ± 0.02 0.14 ± 0.01 0.027 ± 0.004 0.017 ± 0.003 0.012 ± 0.002 0.011±0.002

¤) gEA /) 1.56 ± 0.23 0.50 ± 0.09 0.17 ± 0.07 0.14 ± 0.05 0.10 ± 0.08 0.095±0.094
ΔC/gEA 0.0507 0.1014 0.082 0.1014 0.0712 0.0772

11.3 Distributions of Correlations

Let #: (H=) be the number of correlations H= in a certain interval of the H= values.
In order to discuss the dynamics of the correlations in the cluster model 1, let us
consider the distributions of the correlation numbers #: (H=) and #: (H 5 ) over H=
and H 5 for several time points. Fig. 11.5a,b show the histograms of the distribution
of #: (H=) and #: (H 5 ) for the time points C/gEA = 1.06, 2.54 (in fig. 11.5a,b corre-
sponding histograms are marked with numbers 1 and 2). According to fig. 11.5a,b
the correlations with small |H= | and |H 5 | significantly dominate in their number and
density of distribution over the correlations with large |H= | and |H 5 |. Over time, the
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Fig. 11.5 The histograms of the distribution of #: (H=) , #: (H 5 ) (a,b) and the time dependencies
of f: , =: for the OSC model 1 (c, d)

distribution #: (H 5 ) is more noticeably expanded along the abscissa axis than the
distribution #: (H=). According to diagrams (H=, A8 9 ), (H 5 , A8 9 ), see fig. 11.4c, small
values of |H= | and |H 5 | are generally reached in the region of large A8 9 .

Fig. 11.5c shows the time dependencies of standard deviations f: of H 5 from
the mean H 5 for a given C in the cases A8 9 ≤ 0.5'C , 'C , 2'C (in fig. 11.5c the curves
corresponding to these cases are marked with numbers 1, 2, 3, respectively; H 5
values are given in (Myr6/pc12)).

Fig. 11.5d shows the time dependencies of the number =: of the star pairs (8, 9) for
the cases A8 9 ≤ 0.5'C , 'C , 2'C (the curves corresponding to these cases are marked in
fig. 11.5d with numbers 1, 2, 3, respectively). Letter C in figs. 11.5c,d marks the value
〈C′〉 = C +0.5g

(A)
2 equal to the average value of the time points C′ used to calculate the

correlations H 5 , see explanations to formula (11.2). According to fig. 11.5c,d, the
values off: mainly grow, and the =: values mainly decrease with increasing C, which
indicates an increase over time of the correlation of the phase density fluctuations
in the cluster model 1, which is especially noticeable in the region of small A8 9 (i.e.,
mainly in the cluster core), as well as a systematic decrease with time of the number
of stars and the number of correlations in the cluster core. Thus, the hypothesis of
Kandrup (1998) on the growth of the correlations (and, consequently, a coherence
of the stellar motions) in such systems is confirmed.

Danilov (2002b) showed that an entropy of the star system of the cluster model 1
decreases with the distances from its center A ≤ '−

C (C) during the evolution ('−
C (C)
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is the tidal radius of the cluster obtained by Danilov (2002b) from the data on
the phase coordinates of the stars with the retrograde trajectories in the cluster).
According to Danilov (2002b), a decrease of an entropy is due to a decrease in the
number of stars with A ≤ '−

C (C) in the cluster. However, the second reason for a
decrease in an entropy may be the growth of correlations in the cluster. During the
evolution, model 1 approaches the state of stable equilibrium, and at C ≃ 2.7gEA
this model is already sufficiently close to it (see fig. 11.2 from Danilov (2011),
where the position of the boundary of the unstable oscillations’ region for model 1
is determined by the auxiliary collisionless homogeneous ellipsoidal cluster model
(Danilov, 2008)). According to fig. 11.5c, in the range of values C/gEA ∈ [2.85, 3.55],
the growth of correlations in the core of model 1 is slowed down, and f: even begins
to decrease. If at C ≃ (3.1 − 3.2)gEA the cluster model 1 crosses the boundary of
the region of the unstable oscillations of the phase density 5 , then the oscillations
inside the region of the stable oscillations cease to be supported by the action of the
gravitational instability and begin to decay, which should lead model 1 to a stable
equilibrium, followed by an increase of entropy and a core compression due to the
stellar encounters and a dissipation of the high-energy stars. In this case, according to
fig. 2 from Danilov (2011), model 1 returns to the region of the unstable oscillations,
and the growth of correlations continues.

Probably, in some cases the increase off = (f: )A8 9≤0.5'C
over C can be used as one

of the empirical signs of a self-organisationof such systems (in addition to the criteria
for a self-organisation considered by Klimontovich (1995, p.49,487), associated with
a minimum of an entropy production in the system). When constructing the criterion
for a self-organisation of the OSCs and their models, it is necessary to take into
account the presence of the complex-conjugate roots of the dispersion equation (31)
from Danilov (2008) in the problem of the natural frequencies of the small phase-
density oscillations at the cluster center. Thus, the effect of a gravitational instability
in the OSC models significantly changes the classical scenario of the evolution of the
systems of this type to the state of a stable equilibrium (with an increasing entropy)
described by Klimontovich (1995). We note that the rapid loss of the stars by the
clusters can also lead to an increase in f over time C (in this case, the stars leaving the
cluster are weakly connected with the other stars, they take away many correlations
with the small |H 5 |, and the proportion of the correlations with the large |H 5 | increase
in the cluster). Model 4 is more free of this effect due to its larger density, see fig.
11.6c. In model 4, it is convenient to observe the change of the stages of cooling and
heating of the core as a result of the formation and destruction of the correlations
with large |H 5 |.

A comparison of the f values obtained in the framework of the 10th (f10) and
11th (f11) accuracy orders for model 1, showed that when C ≤ 3.7gEA , the values of
|f10 − f11 |/f11 ≤ 0.22 and f10 < f11. At C > 3.7gEA , the value of |f10 − f11 |/f11

rapidly grows with increasing C. Apparently, the results of the calculations of f
for the cluster model 1 should not be used when C > 3.7gEA . We note that at
C > 2.1gEA , the maximum values of C′ used for calculating H 5 , begin to satisfy a
condition C′ > C0 ≃ 3.1gEA near the center of the cluster model 1, which leads to the
appearance of the small differences in the estimates of f10 and f11 at C > 2.1gEA .
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Fig. 11.6 The time dependencies of f for the OSC models 2−6 respectively (a−e)

Fig. 11.6 shows the time dependencies of f for the OSC models 2−6. The solid
and dashed lines indicate the dependenciesf = f11 (C) and f = f10 (C), respectively.
In contrast to model 1 (see curve 3 in fig. 11.5c), in model 2, f decreases with time,
which is due to the greater density of model 2, smaller loss of stars in comparison
with model 1, and a destruction of the correlations due to the stellar encounters.
The saltatory changes in f are caused by the escape of one or several stars from the
region of the large |H 5 | (according to the estimates of Section 11.4 of this book, each
of these stars participates in the creation of ∼ 20 − 40 correlations with the large
|H 5 |). In model 3, the radius and the mass of the core, the dispersion of the residual
stellar velocities, and the influence of the tidal forces of the Galaxy are greater than
in model 2 (see fig. 1 of Danilov (2011), and also column 2 in Table 3 from Danilov
(2011)). A large dispersion of the stellar velocities in model 3 leads to a weakening
of the correlations between the stars in a comparison with the correlations in model
2 (see fig. 11.6a,b), and to a decrease of f over time C due to the tidal heating of the
cluster. Model 5 also evolves in a similar way, see fig. 11.6d. In model 6, f abruptly
increases over time C, which is caused by the formation of the correlations with the
large |H 5 |. A definite contribution to the formation of the correlations in models 3−6
can be made by the oscillations with the periods % (E) mentioned in Section 11.3
of this book (see Table 16.1 of Section 16.1) and by the collective stellar motions
associated with these oscillations.
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11.4 Fluxes of Correlations in the Space of y f

Following to Danilov (2002b), we will divide all  = # (# + 1)/2 = 125250

of the values of H 5 of the cluster model at some time point C into groups of
: = 12525 values in the order of an augmentation of H 5 . Then the values H′

5
∈

((H 5 ):×(8−1)+1, (H 5 ):×8] ≡ (. 5 )8 (C) set in the space of H 5 the value of the interval
Δ(H 5 )8 = (H 5 ):×8 − (H 5 ):×(8−1)+1, where 8 = 2, ..., 10. When 8 = 1, it is necessary
to consider the interval of the values of H′

5
∈ [(H 5 ):×(8−1)+1, (H 5 ):×8] ≡ (. 5 )1(C),

in order to include also the correlation with the smallest (H 5 )1 in the consideration.
Let = (H 5 ) (8, 9) be the number of correlations that pass in time ΔC in the space of H 5
from the interval 8 to the interval 9 . This number can be obtained from the data on
the phase coordinates of the stars (PCS) of the cluster model at times C and C + ΔC:

= (H 5 ) (8, 9) =
 ∑
?=1

X?, (11.3)

where X? = 1 , if (H 5 )? (C) ∈ (. 5 )8 (C), (H 5 )? (C + ΔC) ∈ (. 5 ) 9 (C + ΔC);
X? = 0 in all other cases.

Values Δ(H 5 )8 at the time points C and C + ΔC are usually not equal to each other
for any value 8 = 1, ..., 10. The value of = (H 5 ) (8, 9)/ΔC is equal to the flow of
correlations from the interval (. 5 )8 (C) to the interval (. 5 ) 9 (C + ΔC) in the space of
H 5 . In the framework of the methods used to set the Δ(H 5 ) 9 values, we find a total
number of the transitions of the correlations in the time ΔC to the interval Δ(H 5 ) 9 :

10∑
8=1

= (H 5 ) (8, 9) = :, 9 = 1, ..., 10. (11.4)

Formulas (11.4) are convenient to use in order to check a correctness of the com-
putations of the matrix = (H 5 ) (8, 9). In the case of an equilibrium in the space of H 5
(a balance of the correlation flows), the matrix = (H 5 ) (8, 9) should be symmetrical
(Danilov, 2002b). Following to Danilov (2002b), the average number of the transi-
tions of the correlations in time ΔC on 9 intervals in the space of H 5 can be written
in the following form:

a (H 5 ) ( 9) =




1
10+ 9

10∑
8=1− 9

= (H 5 ) (8, 8 + 9), 9 = −9, ..., − 1;

1
10− 9

10− 9∑
8=1

= (H 5 ) (8, 8 + 9), 9 = 0, 1, ..., 9.

(11.5)

In formulas (11.5), the numbers of all possible transitions of correlations to 9

intervals are averaged in the space H 5 . The values 9 > 0 (< 0) correspond to an
increase (decrease) of the H 5 value as a result of such transition; a (H 5 ) = a (H 5 ) ( 9)
is the distribution of the mean transition numbers by the 9 values in the space of
H 5 in time ΔC. A symmetry of this distribution with respect to 9 = 0 indicates a
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Fig. 11.7 The distributions of a (H 5 ) = a (H 5 ) ( 9) (a) and the time dependencies of k (H 5 ) , f( H 5 ) ,
g 5 for the OSC model 1 (b−d)

balance in the transitions of the correlations in the space of H 5 . According to Danilov
(2002b), the degree of non-symmetry of the matrix = (H 5 ) (8, 9) can be expressed in
one number:

k (H 5 ) =

10∑
9=1

10∑
8=1

|= (H 5 ) (8, 9) − = (H 5 ) ( 9 , 8) |

1
2

10∑
9=1

10∑
8=1

(= (H 5 ) (8, 9) + = (H 5 ) ( 9 , 8))
. (11.6)

Let f2
H 5

be a dispersion of the distribution a (H 5 ) . The number of intervals ΔH 5
"traversed" by the correlation H 5 in the timeΔC towards the increasing (or decreasing)
is equal on average to EH 5 = 0.5fH 5 /ΔC. Since the cluster size in the space of H 5
is equal to ten intervals ΔH 5 (see the explanations to the formula (11.3), then a
relaxation time of the cluster in the space of H 5 is g 5 = 10/EH 5 = 20ΔC/fH 5 (in
model 1, the value ΔC = 0.0507gEA was used, so that g 5 = 1.014gEA/fH 5 ). Thus, g 5
is the mean time of the change of the correlation H 5 under the action of all the forces
and mechanisms present in the cluster by the value of the order of the cluster size in
the space of H 5 .

The results of the calculations using the formulas (11.3), (11.5), (11.6) for
model 1 are shown in fig. 11.7. In fig. 11.7a, for five time points C8/gEA =

1.06, 1.52, 2.03, 2.54, 3.04, the plots of the distributions a (H 5 ) = a (H 5 ) ( 9) are given,
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the numbers 8 near the curves correspond to the time points C8 . For all the considered
time points, the matrices = (H 5 ) (8, 9) are largely symmetric, the diagonal elements of
these matrices are much larger than the other ones; the distribution a (H 5 ) = a (H 5 ) ( 9)
are quite symmetric with respect to 9 = 0. Therefore, in model 1, there is a state
close to the balance of the transitions in the H 5 space over the entire considered
time interval. The model is dominated by the transitions of the correlations H 5 in 9
to Δ 9 = 0, 1, 2. According to fig. 11.7b, the degree of an asymmetry of the matrix
= (H 5 ) (8, 9) decreases slightly with time, on average, and the dispersion f2

H 5
of the

distribution a (H 5 ) , according to fig. 11.7c, weakly grows with an increase of C on
average. Thus, during the evolution of model 1, the balance of the correlation tran-
sitions in the space of H 5 is fulfilled more and more accurately, and the role of the
correlation transitions in 9 to a greater number of intervals Δ 9 somewhat increases.

According to fig. 11.7d, the g 5 value on average changes a little with time and
is of about g 5 = (0.50 ± 0.01)gEA at C ≤ 4.01gEA and g 5 = (0.52 ± 0.01)gEA at

C ≤ 3.04gEA . This value is in a good agreement with the time C (1)2 of the development
of a PDF instability with respect to the small initial perturbations in the core of
model 1, see Table 2 of Danilov and Dorogavtseva (2003). In the paper of Danilov

and Dorogavtseva (2003), C (1)2 ≃ 0.5gEA is considered as an estimate of the local
relaxation time of the core of the cluster model 1.

According to Danilov and Dorogavtseva (2003), in the compared versions a and
b of model 1 (with small differences in the initial PCS), at the time C ≃ C (1)2 , under the
conditions of an exponential instability of the trajectories, the stars already occupy,
with a nonzero density, all the regions of the phase space available for motion, and
the PDF in the versions a and b of the OSC models begin to change approximately

in the same way with time. According to Danilov (2008), at C ≃ C
(1)
2 in model 1,

a balance is formed between a development and a decay of the PDF perturbations,
which is achieved in the system as a result of the combined effect of a gravitational
instability and a violent relaxation.

For brevity, we denote I8 9 = = (H 5 ) (8, 9). Let us consider the correlation flows
between the regions with the large and small |H 5 |. According to fig. 11.5b, the tran-
sitions of H 5 between the intervals (. 5 )<, < = 4, 5, 6, and (. 5 )=, = = 1, 2, 8, 9, 10,
correspond to such flows. The mean value of H 5 for model 1 at C < (3.6− 3.7)gEA is
in the interval (. 5 )5. The number of the transitions of H 5 in time ΔC from the region
of large |H 5 | to the region of small |H 5 | is

#1 =

6∑
9=4

(
2∑
8=1

+
9∑
8=8

)
I8 9 .

The number of the reverse transitions is

#2 =

6∑
8=4

©
«

2∑
9=1

+
9∑
9=8

ª®¬
I8 9
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(#1 and#2 include the largest elements of the matrix I8 9 for the considered transitions
of the correlations; the I8 9 values at 8 = 10, 9 = 4, 5, 6 or at 8 = 4, 5, 6, 9 = 10

are very small in comparison with I8 9 indicated in the formulas for #1 and #2).
#3 = #1 − #2 = 0 in the case of a balance of the considered transitions.

At C < 3.7gEA in model 1, the values of #1, #2, #3 on average decrease with
increasing C and #1 > #2 > #3 (#1 : #2 : #3 ∼ 539 : 396 : 143 for values of
#8 averaged over C). Thus, in model 1, the transitions of the type "1" are dominated
when H 5 pass from the region of large |H 5 | to the region of small |H 5 |. The mean
values of E, A, the dispersions fE and fA of E and A of the stars participating in the
correlation flows between regions with the large and small |H 5 |, on average grow
slowly over time C. We denote as `A = A1/A2 the average over time C ratio of A1(C)
and A2 (C) at C < 3.7gEA , where A1 (C) is the mean A (C) over the number of correlations
H 5 for the stars (8, 9) participating in transitions of the type "1" ; A2 (C) is the same
for the reverse transitions of type "2" . The values `E = E1/E2, `fA = fA 1/fA 2,
`fE = fE 1/fE 2, `E2 = E2

1/E2
2 are introduced similarly. In the case of model 1, we

find `A = 1.33 ± 0.03, `E = 1.09 ± 0.01, `fA = 1.34 ± 0.04, `f E = 1.24 ± 0.03,
`E2 = 1.22 ± 0.02. Thus, the transitions of the H 5 correlations of the type "1"
dominating in model 1 lead to the formation of a stream of the stars towards the
cluster center (`A > 1). These stars also transfer a kinetic energy to the cluster
center (since `2

E > 1 and `E2 > 1). Consequently, the core and the central parts of
the cluster are "heated" , which leads to their expansion and "cooling" (Danilov,
2011).

The values aE = `2
E − 1 = (E2

1 − E2
2)/E2

2 and aE2 = `E2 − 1 can be regarded
as the estimates of the ratio of the kinetic energy of the collective stellar motions
in cluster model 1 (the radial and other ones) to the kinetic energy of the peculiar
("thermal") motions of these stars. For model 1, we find aE = 0.18 ± 0.01 < 1,
aE2 = 0.22 ± 0.02 < 1. We note that Danilov (2002b) revealed a flux of the star
energy Y directed towards the center of model 1 due to the oscillations of the regular
force field of the cluster (for the stars moving towards the cluster center, the energies
Y increase, and for the stars moving from the center, they decrease). In this case, a
kinetic energy X) > 0 is transferred to the cluster center (since Y < 0, Y ≠ 2>=BC,
and the kinetic energies of stars on average increase with the increasing A, see fig.
9.1 for model 1). This energy X) partially goes to the "heating" of the core (it is
redistributed among the stars of the core), and partially turns into the energy of the
cluster oscillations.

Figs. 11.8a,b show the histograms of the distribution � (E) of the velocities of
the stars 8 and 9 , participating in the transitions of the types "1" and "2" of the
correlations H 5 in time ΔC at C = 1.521gEA . The indices 1 and 2 for 8 and 9 denote
the type ("1" or "2" ) of the correlation transitions. The solid lines in figs. 11.8a,b
indicate the distributions � (E) for the stars participating in the transitions type "1" .
The dot-and-dash lines show the distributions � (E) for the stars participating in the
transitions type "2" (we will call them "thermal" for brevity, since they correspond
to the stars from the regions of the phase space with the minimum values of |H 5 |).
When constructing the histograms in fig. 11.8a,b the choice of the interval ΔE was
made in the following way. Starting from the small ΔE values, the interval ΔE was
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Fig. 11.8 The histograms of the distribution of � (E) for the OSC model 1 at C = 1.521gEA

increased until the "thermal" distributions of � (E) were smoothed out. At this ΔE,
the histograms in fig. 11.8c,d were built. A further increase of ΔE leads to the loss of
information and to roughening of the � (E) distributions. Distributions of the stars
81 and 91 in fig. 11.8a,b have the well-defined "peaks" with the local maxima near
the values of E = E0 ≃ 0.45 pc/Myr and E = E1 ≃ 0.55 pc/Myr (1 km/s ≃ 1pc/Myr).
Within each such "peak" the same star can be detected several times if its phase
coordinates strongly correlate with the phase coordinates of several stars participating
in the type "1" transitions. Fig. 11.8c shows the total "thermal" distribution of stars
82 and 92 (the dot-and-dash line) and the total distribution of stars 81 and 91 (the solid
line). In the total distribution of stars 81 and 91, the local maxima also near the values
of E = E0, E1 are seen.

Fig. 11.8d shows the histogram of the distribution� (E) of the stars with A < 0.5'C
for cluster model 1 at C = 1.521gEA . In fig. 11.8d three "peaks" are quite noticeable in
the region of E ∈ [0.25, 0.60] pc/Myr. These "peaks" are significantly distinguished
above the level of the "thermal" part of the distribution � (E) passing in this E region
near the points of the local minima of the distribution � (E), or below these points
judging from figs. 11.8a−c. Two of these "peaks" are located near the values of
E = E0, E1 and are due to the impact of the transitions of the types "1" and "2" on
the distribution � (E) of the stars with A < 0.5'C . The third (highest) "peak" in fig.
11.8d, is apparently formed by the transitions of the correlations H 5 between the
intervals (. 5 ): , which are closer than in the transitions of the types "1" and "2" ,
and have the intermediate values of |H 5 |. We note that only 24 % of all elements of
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the matrix I8 9 correspond to the transitions of the types "1" and "2" ; the transitions
between the close intervals (. 5 ): occur much more often than the transitions of
the type "1" and "2" see fig. 11.5b, so they can form even higher "peaks on the
distribution � (E) in fig. 11.8d, than transitions of the types "1" and "2" .

The presence of the "peaks" on the distribution � (E) in fig. 11.8d in the region
E ∈ [0.25, 0.60] pc/Myr, as well as a gravitational instability of the core of model 1
are signs of a turbulence in stellar motions in this cluster model. Among the signs
of the turbulence of the stellar motions in model 1, we can also can mention a large
number of the wave motions which form in this cluster model, see Section 11.2, and
the transfer of energy from the region of the large |H 5 | to the region of the small |H 5 |
(the dominant transitions of the type "1" ), as well as the chaotization of the phases
of the stellar motion trajectories in model 1, noted by Danilov and Leskov (2005)
(see the conclusion of the paper of Danilov and Leskov (2005) on the proximity
of the distribution of the dependency phases of A (C) to the uniform distribution for
the stars of model 1). One of the reasons for the chaotisation of the phases of the
stellar trajectories can be a chaotisation of the phases of the wave motions and the
action of the non-thermal fluctuations of the density = and the force field on the
stellar trajectories in the cluster model. According to Genkin (1971), the possibility
of a turbulence in the space of velocities in the stellar systems is determined by
the oscillations of the regular field and by the presence of the density waves. Such
waves and oscillations of the force field are a characteristic feature of the numerical
dynamic OSC models of Danilov and Dorogavtseva (2003, 2008); Danilov and
Leskov (2005); Danilov (2002b, 2005, 2008). Perhaps a turbulence accelerates the
"heating" of the core by the regular field oscillations in model 1, and increases the
frequency of the encounters and interactions of the stars. It also increases the rate of
the transfer of an energy of the collective stellar motions to the peculiar ones (on the
turbulent heating in the plasma see in Tsytovich (1971)) .

The distribution � (E) of the stars with A < 'C for the cluster model 1 at C =
1.521gEA does not contain the well-marked local maxima near the values E = E0, E1.
Probably, a turbulence mainly develops in the core of model 1.

Let �2 (E) and �3 (E) are the values of � (E) in fig. 11.8c (the solid line) and
11.8d, respectively, and @ is the mean �2 (E)/�3 (E) value over two local maxima of
the distributions � (E) near E ≃ 0.45 pc/Myr and E ≃ 0.55 pc/Myr. For the stars of
model 1 with A < 0.5'C we find @ = 15.3 ± 1.4. Let ) be the total kinetic energy of
the stars of the cluster model 1 in the region A < 0.5'C . Taking into account the flow
of the kinetic energy from the collective stellar motions to the "thermal" motions
due to transitions of the types "1" and "2" , we find

¤) ≃ (#1`E2 − #2)<⊙E2
2/(2@ΔC),

where ¤) =
3)
3C

, E2
2 is the mean square of the velocities of the stars with A < 0.5'C ;<⊙

is the mass of the Sun. In this case, for model 1, we obtain ¤) = (1.56 ± 0.23))/gEA .
The rate of the ) change under the action of the stellar encounters ¤)BC = 0.5)/gBC
is easily obtained from equation (2.359) of Chandrasekhar (1942). Here, gBC is the
relaxation time of the system under the action of stellar encounters. According to



234 11 On the Dynamics of Correlations in Models of Open Star Clusters

Table 3 of Danilov (2010) for model 1, we find gBC = (2.6 ± 0.3)gEA . Consequently,
¤)BC = (0.19±0.02))/gEA and ¤)/ ¤)BC = 8.1±1.5 for this cluster model. Thus, ¤)BC < ¤) ,
and transitions of the types "1" and "2" in the space of correlations H 5 make the
main contribution to the heating of the core and the central parts of the cluster model
1. Since aE < 1, aE2 < 1, and the value ¤)BC is not many orders of magnitude less
than ¤) , then we can consider a turbulence in the stellar motions, which forms in the
cluster model 1 as a weak one (Tsytovich, 1971, p.41,49).

The estimates of ¤) caused by the transitions of the types "1" and "2" , as well
as the estimates of aE2 and the time intervals ΔC (in the units of time gEA ), used
in (11.3) when calculating of these flows, are given in Table 11.1 for the OSC
models 1−6. In order to estimate ¤) and aE2 , we used the values C ≤ C<0G , at which
|f10 − f11 |/f11 ≤ 0.22. According to Table 11.1, with an increase of the number
of the cluster model (and with a decrease of the degree of its non-stationarity), ¤)
and aE2 decrease. Probably, in models 2−6, the main source of heating of the cluster
core is associated with the fairly slow changes in H 5 and more frequent transitions
in a smaller number of intervals in the space of H 5 over time ΔC comparing with the
transitions of the types "1" and "2" .

11.5 Conclusions

1. In this chapter, we have considered the estimates of the correlation time g2 in the
OSC models in the spaces of A, E, Y. During the evolution of the OSC models, the
correlations are most rapidly destroyed in the space of the E values, and most slowly

in the space of Y. According to the data on the correlations ℎ (E)2 for models 3−6,

we have noted the oscillations of E over time, and defined the periods % (E) of these
oscillations, which are in a good agreement with the periods of the oscillations of
the values of the virial coefficient of these models.

2. We have considered the estimates of the radii of the correlations A2 in the spaces
of the values of x = (A, E, Y, =, 5 ). The A2 values in these spaces quite agree with
the average distance between the stars. The values of Y, =, 5 have the largest two-
point correlations in the region of A8 9 = _(Y) , _(=) , _( 5 ) , respectively. It indicates
the existence in the models of the radial waves of a potential and a force field
with the wavelength _(Y) , as well as the density and the phase density waves with
wavelengths _(=) and _( 5 ) . We have noted the �A -condensations of the points at the
diagrams (Hx, A8 9 ), which also indicates the existence of the radial density waves in
the spaces of x at the periphery of the models and allows us to determine the lengths
of these waves. In the space of the moduli of the relative stellar velocities E8 9 , similar
condensations were not found (Danilov and Putkov, 2012b), which is due to their
active destruction and the short relaxation times gE in comparison with gA in the
considered OSC models.

3. We have discussed the distributions of the correlations of the = and 5 values in
the OSC models. The very high maxima of these distributions in the region of the
small moduli of correlations are noted. Evolution of 50 % of the considered OSC
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models proceeds with an increase of the dispersion of such distributions and with
a decrease of the number of the correlations with A8 9 < 0.5'C , 'C , 2'C . We have
confirmed the hypothesis of Kandrup (1998) on the possibility of the increasing
correlations (and coherence) of the motions in such systems over time.

4. We have considered the flows of the correlations in the space of H 5 . The
distributions of the mean numbers of the transitions of the correlations in time
ΔC in 9 intervals in the space of H 5 have a very high maximum at 9 = 0. These
distributions are very symmetric with respect to 9 = 0. The degree of asymmetry
of such distributions decreases, and their dispersion, on average, weakly grows or
conserves during the evolution of the OSC models. It indicates a proximity to the
balance of the transitions of the correlations in the space of H 5 in the OSC models.
The relaxation time of a cluster in the space of H 5 agrees well with the time of the
development of the instability of the phase density function with respect to the small
initial perturbations of the stellar phase coordinates.

5. We have considered the correlation flows between the regions with the large
and small values of |H 5 | (the transitions of the types "1" and "2" ). We have noted
the excess of the correlation flow from the region of the large |H 5 | to the region of
the small |H 5 | over the reverse flow. We have viewed the estimates of the ratios of
the kinetic energies of the collective and thermal stellar motions (aE < 1, aE2 < 1).
We have noted the signs of a weak turbulence in the stellar motions of cluster model
1. The arguments in favor of the existence of a turbulence in the cores of the OSC
models have been listed. We have considered the estimates of the heating rate ¤) of
the central areas of the OSC models due to the transitions of the types "1" and "2"
in the cluster. For model 1, the ¤) value is noticeably larger than the heating rate
of these regions due to the stellar encounters ¤)BC , and the transitions of the types
"1" and "2" make the main contribution to the heating of the central regions of this
cluster model. With a decrease in the degree of non-stationarity of the cluster, ¤) and
aE2 decrease. Probably, in models 2−6, the main source of a heating of the cluster
core is associated with fairly slow changes of H 5 and with more frequent transitions
in the space of H 5 over time ΔC in a smaller number of intervals comparing to the
transitions of the types "1" and "2" .
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Chapter 12

Correlations, Spectra, and Instability
of Phase-Density Oscillations in Models of Open
Star Clusters

Abstract In this chapter, we consider the two-time correlation and the cross corre-
lation functions for the phase density fluctuations of the OSC models. We give the
estimates of the correlation time of the phase density oscillations (from 0.1 to 1 of
the violent relaxation time of the model gEA ) and the estimates of the mean phase
velocities of a propagation of such oscillations in the cluster models. These veloc-
ities are 2−20 times less than the mean square velocities of the stars in the cluster
core. We discuss the application of the Fourier transform of the cross-correlation
functions for the calculation of the power spectra and the dispersion curves of the
phase density oscillations. We confirm a presence of known unstable oscillations of
the phase density associated with the homological oscillations of the cluster cores. A
number of new unstable oscillations of a phase density in these models are detected
(up to 32−41 pairs of the oscillations with the different complex conjugate frequen-
cies in each model; the rise time of the amplitudes of such oscillations in 4 times
is (0.4 − 10)gEA , the phases of such oscillations are fairly uniformly distributed).
Astrophysical applications of the results are discussed (an irregular structure of the
open star clusters; a formation and a decay of the quasi-stationary states in such
clusters).

12.1 Introduction

The theoretical estimates of the phase density fluctuations and the correlations cor-
responding to them for the spatially homogeneous and inhomogeneous systems with
long-range interactions (including the self-gravitating systems) have recently been
performed by Chavanis (2006a, 2008a,b). For such estimates, the kinetic equations
written with a number of the simplifying assumptions were used in these papers.
The expressions obtained by Chavanis (2006a, 2008a,b) for the correlation functions
have a rather complicated form, which makes it difficult to use them for the analysis
of the dynamic processes in such systems. In our opinion, it would be more produc-
tive to calculate directly the correlation functions from the data on the numerical

239



240 12 Correlations, Spectra, and Instability of Phase-Density Oscillations

integration of the equations of the gravitating particles’ motion in the problems of the
galactic clustering and the evolution of the Universe (see, for example, Baertschiger
and Labini (2004); Bottaccio et al. (2003, 2002)), as well as on the modeling of the
OSC dynamics (Danilov and Putkov, 2012b).

Danilov and Putkov (2012b) calculated the two-time correlations for the values
of A = |r|, E = |v| and for the stellar energy Y per unit of the star mass as well as
the two-particle correlations of A, E, Y, of the star number density = = =(r, C) and
the phase density 5 = 5 (r, v, C) of the OSC models in the vicinity of these stars
(here, r is a radius vector and v is a star velocity vector). According to the data on
correlations, Danilov and Putkov (2012b) determined the time g2 and the radius A2 of
the correlation in the spaces of the indicated parameters; they defined the parameters
of the density, potential and phase density waves in the models of the star clusters;
also, they noted the signs of the formation of the polarization clouds when certain
distances between stars were reached; in addition, they found a dominant flow of the
correlations of the phase density values from the region of strong correlations to the
region of weak correlations. Such a flow leads to the onset of a kinetic energy) flow
to the cluster center (from the region of the large-scale 5 oscillations to the region
of the small-scale ones (Danilov, 2002b) with the smaller amplitudes and the higher
frequencies). According to Danilov and Putkov (2012b), the heating rates of the cores
of the cluster models by this flow are ¤) ∼ (0.1−1.6))/gEA , where) is a total kinetic
energy of stars with the distances A ≤ 0.5'C from the the cluster center; gEA is the
initial time of a violent relaxation of the cluster model taken equal to gEA ≃ 2.6C2A
according to the estimates of Aarseth (1974); C2A is the average crossing time; 'C is
a tidal radius of the cluster (King, 1962), the gEA and C2A values were obtained from
the data on the initial parameters of the OSC models. Danilov and Putkov (2012b)
found the signs of a weak turbulence in the motions of the stars of the core of model
1 which has the highest ¤) and the greatest degree of a non-stationarity in a regular
field. For this model, ¤) ≃ (1.6 ± 0.2))/gEA , which is 8.1 ± 1.5 times faster than the
rate of heating of the core by the stellar encounters. The correlation functions were
obtained by Danilov and Putkov (2012b) from the data of the numerical experiments
for the dynamic OSC models (Danilov and Dorogavtseva, 2008).

It is of interest to study theoretically the turbulence of the stellar motions in the
OSCs (and in their models). However, such a study should be preceded by a study
of the full spectrum of oscillations of such systems and an analysis of the instability
of these oscillations, the identification of all (or most) unstable oscillations in the
OSC models. For oscillations in the plasma, see Volkov et al. (1983); Bernar et al.
(1973); according to Volkov et al. (1983), the main criterion of a plasma turbulence
is the broadening of the oscillation spectrum, the chaotization of their amplitudes
and phases, and the presence of an energy flow across the spectrum. At present, so
complete information on the dynamics of the OSC models is missing. We note that
in the theoretical works (Chavanis, 2008b; Severne and Haggerty, 1976; Gilbert,
1968, 1970; Nardini et al., 2012), the differential equations for the single-particle
distribution functions and the two-particle correlation functions are used in the study
of the spatially inhomogeneous stellar systems. When writing such equations, the
different simplifying assumptions are usually used. Except for the Danilov and Putkov
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(2012b), there are no studies featuring a calculation of the correlation functions from
the data of the numerical experiments for the dynamic OSC models. In our opinion,
this is due to the exponential instability of the stellar trajectories in such systems
(Goodman et al., 1993; Kandrup et al., 1994) and the low accuracy of an integration
of the equations of a stellar motion over the sufficiently large time intervals (Komatsu
et al., 2008) (usually, the difference schemes with the accuracy order not more than 4
are used for such integration (Goodman et al., 1993; Kandrup et al., 1994; Komatsu
et al., 2008)).

Danilov and Dorogavtseva (2008) performed the calculations of the PCS for the
OSC models by integrating the equations of stellar motion using the difference
schemes of the 10th and 11th accuracy orders on the time interval C ∈ [0, C<],
where C< ≃ 5.1gEA . Let C0 be the time interval of the dynamic evolution of the
OSC model, during which a statistical criterion for the accuracy of the phase density
calculations is fulfilled (Danilov, 1997b). Near the centers of the OSC models of
Danilov and Dorogavtseva (2008), C0/gEA is equal to C0/gEA ≃ 3.0 − 3.9, and at the
periphery of the models, it is equal to C0/gEA ≃ 3.6 − 5.1. The maximum relative
error in the computation of the cluster energy reached over a period of time C< in
the models of Danilov and Dorogavtseva (2008) in modulo was (1− 4) × 10−13, and
the accuracy of the calculation of the cluster’s PDF over a time interval C0 can be
considered sufficient for the conclusions about the statistical properties of the PDF.
When C ∈ [0, C0], the accuracy of the distribution of the correlations obtained by
Danilov and Putkov (2012b) is sufficient for the conclusions about the properties of
these distributions. According to Danilov and Putkov (2012b), a comparison of the
investigated distributions or dependencies (for example, the oscillation spectra or
the dispersion curves) obtained by the methods of the 10th and 11th accuracy orders
also gives an effective method for the monitoring of the results of calculations, see
below.

It is of interest to consider the estimates of the correlation time g2 = g
( 5 )
2 for 5

in the OSC models of Danilov and Dorogavtseva (2008). Such estimates were not
performed by Danilov and Putkov (2012b), since the two-time correlations of 5 were

not calculated. The g ( 5 )2 values can be used to calculate the average phase velocity
E 5 of a propagation of the 5 oscillations in the OSC models (see, for example,
Volkov et al. (1983); Bernar et al. (1973)). Also, it is of interest to determine the
average phase velocities EA , EE of the oscillations in the spaces of A, E in the OSC
models according to the data on g2 and A2 of Danilov and Putkov (2012b). Such
estimates for the OSC models have not been carried out previously.

Beginning from the work of Miller (1964), an analysis of the instability of the
motions in the many-body problem was carried out in a number of papers (see, for
example, Kandrup (1989, 1990a,b)). For the systems close to the state of a stable
dynamic equilibrium (Goodman et al., 1993), the exponential instability of the stellar
trajectories leads to an increase of the entropy of the system (Zaslavsky and Sagdeev,
1988, p.105), (Klimontovich, 1995, p.506).

The divergence between the close trajectories in non-stationary stellar systems
and the influence of the collective effects on the stellar trajectories were studied by
various methods in the papers of Kandrup (1989, 1990a,b); Gurzadyan and Savvidy
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(1986); Boccaletti et al. (1991); Danilov and Leskov (2005). In the papers of Kandrup
(1989, 1990a,b); Boccaletti et al. (1991) within the framework of the "geometric"
approach for the elliptical galaxies, the estimates of the time gEA ∼ C2A were obtained.
In Boccaletti et al. (1991) the virial theorem and the assumption that such systems
are close to the state of a stable equilibrium were used in order to obtain such
estimates. The theoretical estimates of Kandrup (1989, 1990a,b); Boccaletti et al.
(1991) of gEA ∼ C2A were confirmed using the numerical experiments by Kandrup
and Smith (1991);Kandrup et al. (1992), etc. Danilov and Leskov (2005) investigated
the maximum Lyapunov characteristic exponent _ of the stellar trajectories of the
OSC models with the different degrees of non-stationarity. It was shown that the _
values averaged by all stellar trajectories of the models decrease during the transition
from the models with an average degree of non-stationarity to more non-stationary
models. It indicates a decrease of the stochasticity of the stellar motions in the
strongly non-stationary systems.

The dynamics of the collisionless gravitating systems near the time-dependent
state of an unstable equilibrium with the distribution of the phase density 50 was
discussed theoretically by Kandrup (1998). In such systems, there should be the
oscillations X 5 of the phase density 5 with respect to a distribution 50 which cor-
responds to a saddle point associated with the local energy extremum � ( 50) of the
mean field of the system. In this case, � ( 5 ) − � ( 50) increases for some X 5 and
decreases for other X 5 , see the analysis of formula (18) from Kandrup (1998).

In the OSC models which are to a different degree close to the unstable equilibrium
state (Danilov, 2011), the correlations in the positions of stars in the phase space can
increase with time, and the entropy in these cases decreases (Danilov and Putkov,
2012b). In the OSC models, due to their low density and the action of the external
field of the Galaxy, the numerous little-studied instabilities of the collective stellar
motions exist and dominate, see below. Among such instabilities, at the present
time, only one of them, connected with the homologous oscillations of the OSC
cores (Danilov, 2008), has been theoretically studied. For such oscillations, the mass
density d in a spherical stellar system can be represented in the form d(A, C) =

d1 (A)d2(C). The study of the oscillations’ instabilities in the OSCs and their models
will make it possible in the future to reveal the mechanisms for the development
of these instabilities, to classify them (like Jeans, non-Jeans, beam, gradient ones
etc. (Polyachenko and Fridman, 1976), in some cases similar to plasma ones). The
instabilities of the collective stellar motions determine both the irregular structure of
the OSCs (more irregular than in the globular clusters) and the dynamic evolution of
OSCs (the development of non-stationarity in a regular field, the development of a
turbulence in the stellar motions due to the interaction of the different modes of the
oscillations, the formation and growth of the polarization clouds in the OSC models,
etc.). In this connection, it is of interest to study the oscillations of the phase density
in the OSCs and to analyze the instability of these oscillations. According to Volkov
et al. (1983); Bernar et al. (1973), the cross-correlation functions of the fluctuations
of a number of the plasma characteristics at two points at a distance A from each
other can be used to construct the dispersion curves and analyze the instabilities of
the oscillations in a plasma. It is of interest to use such a method to construct the
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frequency spectra (power spectra) and to investigate a number of the instabilities of
the 5 oscillations in the OSC models. Such studies of the OSC models were first
performed by Danilov and Putkov (2013b). The results of such study can be used
both in the discussion of the dynamics of the OSC models, and in the theoretical
description of the dynamic processes in the OSCs.

The objectives of this chapter are: 1) to discuss the values of g ( 5 )2 , E 5 , EA , EE for
the OSC models of Danilov and Dorogavtseva (2008); 2) to discuss the two-time and
cross-correlation functions for the phase-density 5 fluctuations in the OSC models;
3) to consider the frequency spectra and the dispersion curves of the 5 oscillations
in the OSC models; 4) to apply the obtained results to the analysis of the OSC
dynamics.

12.2 Estimates of 3
( f )
c , v f , vr , vv in the OSC Models

Description of the OSC models of Danilov and Dorogavtseva (2008) see in Section
16.1.

Following to Klimontovich (1982, p.136), as well as to Danilov and Putkov
(2013b) and the notation of Danilov and Putkov (2012b), to determine the correlation
time g ( 5 )2 in the space of 5 values, let us consider a two-time correlation

6
( 5 )
2 (C, C′) = 5 (C) 5 (C′) − 5 (C) · 5 (C′), (12.1)

where the bar on top denotes averaging over all cluster stars; 5 (C) and 5 (C′) are the
5 values in the vicinity of the same star at time points C and C′. Other arguments (r,

v) of the functions 5 and 6 ( 5 )2 are not written for a sake of brevity. Estimates of the
phase density 5 were obtained here in the neighborhoods of each star, taking into
account the data on the phase coordinates of this star and the five stars closest to
this star, as by Danilov and Putkov (2012b). Let C′ = C + g and g > 0. Substituting C′

in (12.1), averaging the function 6 ( 5 )2 (C, C + g) over the time points C ∈ [0, C< − g],
we find the function ℎ ( 5 )2 (g) and its errors (at g < 0, it is necessary to average

the function 6 ( 5 )2 (C, C + g) over time points C ∈ [−g, C<]). The plot of function

ℎ
( 5 )
2 (g) for the cluster model 1 at g > 0 is shown in fig. 12.1. This function is even:

ℎ
( 5 )
2 (g) = ℎ ( 5 )2 (−g), see also in the book of Bendat and Piersol (1980), therefore its

plot at g < 0 is not given.

As in Danilov and Putkov (2012b), we assume the correlation time g ( 5 )2 is equal

to the g value, at which ℎ ( 5 )2 (g) = ℎ
( 5 )
2 (0)/4, where 4 is the base of the natural

logarithm. In this case, for the cluster model 1, we find g ( 5 )
2,11 = (0.98 ± 0.14)gEA

using the PCS obtained by the method with the 11th accuracy order, and g ( 5 )
2,10 =

(1.09±0.16)gEA using the PCS of the 10th accuracy order. The error of g ( 5 )2 indicated

here is due to the error in calculating the function ℎ ( 5 )2 (g) at g = g ( 5 )2 . The estimates
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Fig. 12.1 The dependencies of ℎ ( 5 )
2 on g for the OSC model 1 at g > 0. Numbers 10 and 11

indicate the accuracy order of the PCS used for the calculation of these curves

of g ( 5 )
2,11 and g ( 5 )

2,10 do not differ statistically. For the OSC models 1−6, Table 12.1

gives the estimates of g ( 5 )2 obtained using the PCS of the 11th order of accuracy.
According to Table 12.1 and Table 1 from the paper of Danilov and Dorogavtseva

(2008), the values of g ( 5 )2 /gEA and g ( 5 )2 decrease with an increase of the model
number and with a decrease in the degree of non-stationarity of the cluster model.
Thus, the correlations in the space of the 5 values is most rapidly destroyed during the
evolution of model 6. Taking into account the data of Danilov and Putkov (2012b) on

g
(A)
2 (the correlation time in the space of A), we find g ( 5 )2 < g

(A)
2 in the OSC models

1−6. Relation g (A)2 /g ( 5 )2 = @ increases from @ ≃2.1 in model 1 to @ ≃17.0 in model
6.

According to Volkov et al. (1983, p.27), the averaged estimate of the phase velocity
of the 5 oscillations can be obtained from the relation of the time and the radius of a

correlation E 5 ≃ A ( 5 )2 /g ( 5 )2 (in the spaces of A and E, the average phase velocities EA
and EE are defined similarly). Table 12.1 gives the values E 5 , EE , and EA (in pc/Myr;
1 pc/Myr≃ 1 km/s), obtained using the PCS of the 11th order of accuracy and taking
into account the data on the correlation parameters in models 1−6 of Danilov and
Putkov (2012b). According to Table 12.1, the E 5 and EE values in models 1−4 are
significantly (5−20 times) smaller than E 5 and EE in models 5, 6. In the case of the
values EA , such large differences between the models are not observed. Perhaps, such
differences of E 5 and EE in models 1−4 and 5, 6 are due to the greater wavelengths
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_ of the 5 and E oscillations in models 5, 6. Let us consider a wave extending
radially in the cluster model: X 5 ∝ exp(−8i), where i = lC − :A A; l and :A are
the frequency of 5 oscillations and the corresponding wave number, respectively.
Assuming i = 2>=BC, l = 2c/% = 2>=BC, :A = 2c/_ = 2>=BC, differentiating i

over time C, we get E 5 =
3A
3C

= l/: = _/%, where % is the oscillation period.
The periods of the radial oscillations of models 1−6 differ a little from each

other (see, for example, Table 2 from Danilov and Leskov (2005)). Therefore, the
differences in the wavelengths _ of the 5 and E oscillations in models 1−4 and 5,
6 can be one of the reasons for the differences between E 5 and EE in these models.
Perhaps, the large E 5 and EE values in models 5 and 6 are related to the presence
of the more extended and massive cores in these models compared to models 1−4.
In addition, in model 6, during the periods of a greatest compression to the Galactic
plane, a toroidal structure is formed with an increased density of the number of
stars inside the torus with an equatorial plane close to the plane of the Galaxy. In
this model, the condensation waves extending along the cluster core from the Z axis
(passing through the center of a mass of the model and perpendicular to the plane
of the Galaxy) are observed with a speed comparable with the average speed of the
peculiar stellar motions (Danilov and Leskov, 2005).

We note that the small E 5 and EE values in models 1−4 can be the result of the for-
mation and superposition of several counter-extending traveling radial waves in these
models (in this case, the average phase velocity of the radial waves in the cluster can
be small). Danilov and Ryazanov (1985, 1987) performed the numerical integration
of the Vlasov equations, they found and investigated the counter-propagating radial
flows of stars formed in a non-stationary isolated spherical system with a constant
phase density (a water-bag model). Such flows are formed in the system’s core during
the periods of the system contractions and are caused by the periodic motion of a
region with the zero phase density inside the phase region occupied by the system.
In this case, near the center of the system, a density perturbation is periodically
formed (a region of a reduced density), which then is carried by a stream of stars
to the boundary of the system’s core. It is possible that such flows of stars are more
actively formed in the OSC models 1−4 with a higher degree of non-stationarity
than in models 5 and 6, which affects the estimates of the correlation parameters

A
( 5 )
2 and g ( 5 )2 , as well as the estimates of E 5 for models 1−4.

Table 12.1 shows the mean square velocities E2 of the core stars (in pc/Myr) for
the stars with the distances from the center A ≤ 0.5'C obtained by Danilov and
Putkov (2012b). According to Table 12.1, the E2 values are 10−20 times greater than
E 5 for models 1−4 and approximately 2 times larger than E 5 for models 5, 6. Thus,
the average phase velocities of the 5 , E, A oscillations in the OSC models 1−6 are
sufficiently small in comparison with the mean square velocities E2 of stellar motion
in the core.
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Table 12.1 The correlation time g ( 5 )2 , the initial time of a violent relaxation gEA , the phase
velocities of the oscillations’ propagation, a mean square velocity E2 of the motion of the core stars
in the OSC models

№ 1 2 3 4 5 6

g
( 5 )
2 /gEA 0.98 ± 0.14 0.60 ± 0.05 0.52 ± 0.03 0.64 ± 0.06 0.14 ± 0.02 0.10 ± 0.01
g1
EA , 49.93 41.84 41.84 34.25 41.84 41.84

Myr
E5 , 0.027 ± 0.001 0.051 ± 0.004 0.056 ± 0.003 0.053 ± 0.005 0.26 ± 0.04 0.27 ± 0.03

pc/Myr
EE , 0.012 ± 0.001 0.013 ± 0.001 0.021 ± 0.005 0.063 ± 0.007 0.17 ± 0.01 0.26 ± 0.02

pc/Myr
EA , 0.007 ± 0.001 0.008 ± 0.001 0.001 ± 0.0001 0.011 ± 0.002 0.009 ± 0.002 0.010 ± 0.001

pc/Myr
E2 , 0.56 ± 0.02 0.56 ± 0.01 0.54 ± 0.01 0.57 ± 0.01 0.58 ± 0.01 0.55 ± 0.01

pc/Myr
E2/E 5 20.7± 1.0 10.9 ± 0.9 9.7 ± 0.6 10.8 ± 1.0 2.2 ± 0.3 2.0 ± 0.2

Note — 1 - Danilov and Dorogavtseva (2008).

12.3 Cross-Correlation Function

Let - (C, r) = 5 (C, r)− 5 (C, r), where 5 is obtained by the =BC stars from the vicinity of
a point with a coordinate r in the cluster model, and the bar above denotes averaging
over time C ∈ [0, C<] (an origin of the coordinate system r coincides with the cluster’s
center of a mass, C< is the largest C values used to calculate the correlations). For
a brevity, we do not write the argument v for the functions 5 and - . - is usually
called a deviation or a fluctuation (Volkov et al., 1983; Bernar et al., 1973), and is
assumed to be a random variable that forms a stationary random process. Following
to Volkov et al. (1983); Bernar et al. (1973), as well as Danilov and Putkov (2013b),
we write the autocorrelation function

�GG (g, r) =
1

C<

∫ C<

0
- (C, r)- (C + g, r)3C, (12.2)

as well as the cross-correlation function of the 5 fluctuations

�GG (g, r,Δr) = 1

C<

∫ C<

0
- (C, r)- (C + g, r + Δr)3C. (12.3)

In a general case, these functions can be written in the form of the limits on C< as
C< → ∞ from the expressions in the right-hand sides of the relations (12.2) and
(12.3). Here, g, like in the previous section, is a time delay.

Let r = 0, |Δr| = A. In this case, the distances of two points 1 and 2 from the
center of the cluster are 0 and A, respectively. Following to Bernar et al. (1973), we
denote the functions (12.2), obtained by the =BC stars closest to each of the points
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1 and 2, as �11 (g) and �22 (g), respectively. In this case, we denote the functions
(12.3) as �12 (g, A). Following the methods of Bernar et al. (1973), we consider the
- fluctuation in the form of a wave packet propagating in the radial direction relative
to the cluster center:

- (C, A) =
∫ ∞

0
�(l) exp[8(A: (l) − lC)]3l. (12.4)

Here, the amplitude �(l) and the wave number : (l) of the waves composing the
packet depend on the frequency of these waves l. In the case (12.4), a Fourier
transform of the function �11 (g) (or �22(g)) is equal to the function � (l), and a
Fourier transform of the function �12(g, A) is equal to

�1 (l) = � (l) exp(8A: (l)),

see also formulas (3.41) or (4.8)−(4.11) from the book of Bendat and Piersol (1980).
Thus, considering the Fourier transform of the function �12 (g, A), we can find

|�1 (l) | = � (l) (a frequency spectrum) and 1
A �A6(�1 (l)) = : (l) (a dispersion

relation); A: (l) ∈ [−c/2, c/2] is an oscillation phase 5 with the frequency l.
Danilov and Putkov (2013b) considered a set of the positions of the point 2 on the

sphere of a radius A with the center at the mass center of the cluster. To do this, the
coordinates of these points were specified in a spherical coordinate system (A, \, q)
with a step Δ\ = Δq = c/(4:) at : = 1, 2, 4. Then, the transition was performed to
the right Cartesian rectangular coordinate system (b, [, Z ) with the origin at the mass
center of the cluster (Z axis is directed perpendicular to the Galactic plane, b axis
is directed from the center of the Galaxy in the Galactic plane, and [ axis is aimed
in the direction of the cluster motion in the Galactic plane). Together with point 1,
the total number of points =? , in the vicinity of which - fluctuations are considered,
equals =? = 27, 115, 483 at : = 1, 2, 4, respectively. The plots of the mean values
of the �12(g, A) function in model 1 at A = 1 pc, =BC = 30, =? = 27 in case C< = C0,
where C0 ≃ 3gEA , are shown in fig. 12.2. An averaging of the �12 (g, A) values was
performed by Danilov and Putkov (2013b) over 26 values �12(g, A), corresponding
to the different positions of point 2 on a sphere of the radius A = 1 pc. The vertical
bars in fig. 12.2 indicate errors of the corresponding mean values of�12 (g, A). When
constructing fig.12.2(a) and fig. 12.2(b), the PCS of the 11th and 10th accuracy
orders, respectively, were used in Danilov and Putkov (2013b). The differences of
the curves �12 (g, A) obtained in the 11th and 10th accuracy orders in fig. 12.2 are

noticeably fewer than the differences of the curves ℎ ( 5 )2 in fig. 12.1, which is due to
the use of the smaller C< than for fig. 12.1. When calculating the curves in fig. 12.2 in
Danilov and Putkov (2013b), only the PCS at C ≤ C0 were used; an averaging by C of
5 and - (C, r)- (C+g, r+Δr) in (12.3) was carried out over the intervals C ∈ [0, C0−g]
at g > 0 and C ∈ [−g, C0] at g < 0. The differences of the curves �12 (g, A), obtained
with the 11th and 10th accuracy orders, are generally smaller or much smaller than
the errors of �12 (g, A) indicated in fig. 12.2, and these differences decrease with the
decreasing |g |. We note a significant asymmetry of�12 (g, A) function with respect to
g = 0. Therefore, the frequency spectrum is specified not only by the real part of the



248 12 Correlations, Spectra, and Instability of Phase-Density Oscillations

-4 -3 -2 -1 -0 1 2 3 4
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t t/
vr

C
1

2
(

,r
)

t

(a)

-4 -3 -2 -1 -0 1 2 3 4
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t t/
vr

C
1

2
(

,r
)

t

(b)

Fig. 12.2 The cross-correlation function in the OSC model 1; A = 1 pc, =BC = 30, =? = 27 (fig. a
and b are built with the use of the PCS of the 11th and the 10th accuracy orders, respectively)

Fourier transform for the �12 (g, A) function (Bendat and Piersol, 1980). In fig. 12.2,
we detect a number of the local extremums of the �12 (g, A) function that go beyond
of the errors of �12 (g, A) in the points g9 = % 9 , which indicates the existence of
the increased cross correlations (with the different signs) between the 5 oscillations
with the periods % 9 in the vicinity of points 1 and 2.

12.4 Frequency Spectra and Dispersion Curves

In order to calculate the frequency spectra and the dispersion curves of the 5 fluc-
tuations in the OSC models 1−6, Danilov and Putkov (2013b) used the Fast Fourier
Transform (FFT) program from the book of Gray (1976). Here, instead of the circular
frequencies l, it is more convenient to use the cyclic frequencies a = l/(2c). In
this case, the complex conjugate pairs of roots a 9 = aA4, 9 ± 8a8<, 9 of the equation

:
(0)
a = 0 allow us to determine the period % 9 = 1/aA4, 9 and time C 9 = 1/(2ca8<, 9 ) of

the instability increase of the 5 oscillations. Danilov and Putkov (2013b) computed
separately the Fourier transforms F1(a) and fF (a) for the mean �12 (g, A) and their
errors f� (g, A). Then the relative phases (the wave numbers) of the 5 fluctuations
were calculated:

:
(0)
a =

1

A
�A6(F1(a)) and :

(1,2)
a =

1

A
�A6(F1(a) ± fF (a)).
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The functions : (0,1,2)a were used to estimate the frequencies a and their errors.
Fig. 12.3 shows the plot of the function (a = |F1(a) |/gEA obtained by Danilov

and Putkov (2013b) for model 1 from the mean values of the function �12(g, A) and
the errors of these mean values. (a values in fig. 12.3 are given in (Myr6/pc12)).
Here and below, a is taken equal to the number of the 5 oscillations in time gEA .
A number of the local maxima of the (a function that go beyond the errors of (a
and are related to the local extremums of the �12 (g, A) function can be seen on
the (a dependency on a. At a ∈ [0.5, 2.4] (the low-frequency region), (a values
are 2−3 times larger than at a ∈ [2.6, 5.2] (the medium frequencies). At larger a,
the (a values decrease. According to fig. 12.3, the low frequencies a ∈ [0.5, 2.4]
corresponding to the oscillations of the core and the entire cluster, make the largest
contribution to the average power of the 5 oscillations (see, for example, Volkov
et al. (1983)). The frequencies of the local maxima of (a from the region of the
medium frequencies are approximately 2.0 times (sometimes 3.0 times) higher than
the frequencies of the corresponding local maxima of (a from the low-frequency
region. It indicates the occurrence of the resonances between the 5 oscillations with
the different frequencies a onto the formation of (a in model 1 (it is possible that
the transfer of the energy of the 5 oscillations from low to high frequencies, to the
region of the oscillations with small amplitudes, has a resonant character). The local
maximum points of (a correspond to both the stable oscillations (for example, a ≃
1.85,3.35 in figs. 12.3, 12.4) and the unstable 5 oscillations (see, for example, a ≃
1.13,1.36,4.41 in figs. 12.3, 12.4).
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Fig. 12.3 The dependency of (a on a for the OSC model 1; A = 1 pc, =BC = 30, =? = 27
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The presence of the local maxima on the curve (a indicates the increased power
and intensity of an excitation of the 5 oscillations with frequencies from the neigh-
borhoods of points of these local maxima in model 1. The curves (a = (

(10)
a and

(a = (
(11)
a , obtained by Danilov and Putkov (2013b) at C< = C0 for the OSC models

according to the data on the PCS of the 10th and 11th accuracy orders, respectively,
practically do not differ each other. Frequencies a of the corresponding local maxima
of ( (10)

a and ( (11)
a coincide, and the values |( (10)

a − ( (11)
a |/( (11)

a averaged over all a

values are approximately 1.9 times less than the values f((a)/( (11)
a averaged over

all a, where f((a) are the errors of ( (11)
a , indicated by the vertical bars in fig. 12.3.

Therefore, the accuracy of the PCS used by Danilov and Putkov (2013b) can be
considered as sufficient for the construction and analysis of curves (a.

Let (a be the mean ( (11)
a in the region of small a, corresponding to the oscilla-

tion frequencies of the cluster core, and Δ(a is the average difference between the

maximum and minimum (
(11)
a in this region of a.

The initial ratios of the radii of the core and the halo in the cluster models 1, 2,
and 4 are the same; the number of stars in the cores of these models is #1 = 100,
and the density of these models increases from the first to the fourth model (the
initial numbers of stars in the models are the same, and the initial radii of models
1, 2, 4 decrease with an increasing model number). In cluster models 2, 3, 5, 6, the
initial number of stars in the core and the core size increase from model 2 to model
6 (#1 = 400) with the identical initial radii of the halo (see, for example, Table 1 of
Danilov and Dorogavtseva (2003)). The values (

′
a = (agE.A and Δ(′a = Δ(agEA (in

Myr7/pc12) for models 1, 2, 4 are obtained equal to (
′
a =5.8±0.4, 2.3±0.7, 3.3±0.7

and Δ(′a =2.9±0.3, 2.0±0.6, 2.3±0.6, respectively. With the increase of the size

and the mass of the core in models 2, 3, 5, 6, the values (
′
a and Δ(′a decrease

approximately in 15 and 14 times, respectively (when going from model 2 to model
6). Thus, a change of the initial density of the cluster model has a relatively weak
effect on (

′
a and Δ(′a , and an increase of the dimensions and the mass of the cluster

core significantly reduces (
′
a and Δ(′a . Let Δa8 be the average distance between the

points of the neighbour local maxima of the function ( (11)
a in the region of small

a, corresponding to the largest values of ( (11)
a and of the oscillation frequencies of

the core of the 8-th cluster model. The values Δa8 in models 1, 2, 4 increase with an
increasing cluster density:

Δa2/Δa1 = 1.71 ± 0.13, Δa4/Δa1 = 2.80 ± 0.65.

The number of the local maxima of the functions ( (11)
a in the low-frequency regions

of the spectra with the large ( (11)
a values decreases (in 2 times) with an increasing

density of the OSC models (when going from model 1 to model 4). It is probable
that the greater degree of a non-stationarity of model 1 in comparison with other
models is ensured by the larger (

′
a values, by a greater number of the local maxima

of the function ( (11)
a , and by a higher density of their location in the low-frequency

region of the spectrum.
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Fig. 12.4 shows the dependencies of :a = :
(0)
a on a for model 1 obtained for the

function�12 (g, A) given in fig. 12.2a. The values of =? = 27, 483 were used. Widely
changing the =BC and =? , we can weaken the influence of a random noise on the form
of dependency of :a on a in the different frequency intervals of a (see, for example,
the almost vertical lines near a ≃ 2.5 in figs. 12.4a,b). With this, the shape and the
position of the "sinusoidal" regions of the dependencies of :a on a, connected with
the instabilities of the 5 oscillations, practically do not change. The further such
areas are from the line :a = 0, the greater the growth increments of such instabilities
are (in these cases, the roots of the equation :a = 0 are the complex conjugate
ones). For example, two pairs of the complex conjugate frequencies a correspond to
the "sinusoidal" section of the curve :a near a ≃ 1.1 − 1.5. The oscillation periods
%5, %6 and the instability growth times C5, C6 for these roots are given in Table 12.2.
A pair of the complex conjugate frequencies corresponding to %6, C6, for model 1
was found in the framework of a linear analysis of the instability of the 5 oscillations
in the cluster core (Danilov, 2008). The intersection of the curve of :a dependency
on a and the line :a = 0 corresponds to the real frequencies a of the 5 oscillations
(if there is no an abrupt change of the phase A:a from ∓c/2 to ±c/2; in this case,
the real part of the Fourier transform of the function�12 (g, A) reaches the zero value
in the neighborhood of the corresponding a; such phase changes can be caused both
by regular (not random) changes of �12 (g, A) with an increasing a, and by a random
noise in the estimates of �12 (g, A)).

Table 12.2 shows the % 9 and C 9 values (in the units of the time gEA ) for the 5

oscillations with the largest increments of the instability growth in the considered
ranges of a in the OSC models 1−6. The values % 9 and C 9 indicated in Table 12.2 of
our work are obtained using the PCS of the 11th accuracy order. For model 1, the data
on 17 pairs of such roots are given for A = 1 pc. The total number =2 of such pairs of
roots in this model for A = 1 pc reaches 41−42. With an increasing A, =2 in model 1
change. At A = 2 pc, we find =2 = 32− 33; at A = 3 pc, =2 = 42; at A = 5 pc, =2 = 32,
and at A = 9 pc, we find =2 = 22. The % 9 and C 9 values indicated for models 1−6
in Table 12.2 were determined by an approximation of the section of the dispersion
curve corresponding to a given root a 9 by polynomials of 3−7th orders. Then the
roots of this polynomial were found numerically, and the complex-conjugate pairs
of roots were used for the calculation of % 9 and C 9 .

It is possible that the degree of an instability of the OSC models at different
distances from the cluster center is related to the number of the complex-conjugate
pairs of roots of the equation :a = 0. In this case, a certain role in the formation of
the instability regions at the different distances from the center of the cluster model
can be played by the resonances between the frequency of the orbital motion of the
cluster in the Galaxy and the frequencies of the natural oscillations of the phase
density in the cluster models (see also Danilov (2011)).

The following notations were used when writing the % 9 and C 9 values in Table

12.2. If % 9 obtained from the data on : (0)a is at the boundary of the % 9 range obtained

from the data on : (0,1,2)a , then in Table 12.2 it is shown in parentheses with a prime
on the side of the range where its value is indicated. If % 9 obtained from the data
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Fig. 12.4 The dispersion curves of the 5 oscillations for the OSC model 1 at A = 1 pc, =BC = 30:
(a) − the curve is obtained at =? = 27; (b) − the same at =? = 483
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on : (0)a , is inside the range of the % 9 values obtained from the data on : (1,2)a , then
in Table 12.2 it is shown as % 9 ± f(% 9 ), where f(% 9 ) is a mean deviation from

% 9 obtained by the data on : (1,2)a . In those regions of a, where the influence of a

random noise in : (0)a , caused by the random oscillations of the mean �12 (g, A), can
not be suppressed by the changes of =? and =BC , in order to isolate the signal at the
noise level, we use the smoothing of the :a dependencies on a by the method of a
locally weighted regression (Cleveland and Devlin, 1988). The curves :a smoothed
in this way at a > 5 are shown by the dotted lines in fig. 12.4. The % 9 and C 9 values
obtained with the help of such smoothed curves :a , are indicated by the sign ":" in
Table 12.2.

Dispersion curves obtained for the OSC models at C< = C0 from the data on
the PCS of the 10th accuracy order practically do not differ from the dispersion
curves of the 11th accuracy order. % 9 and C 9 , obtained by the dispersion curves

of the 10th and 11th accuracy orders (% (10)
9

, C (10)
9

and % (11)
9

, C (11)
9

), are in a good

agreement with each other. In order to compare the values % (10)
9

and % (11)
9

, C (10)
9

and

C
(11)
9

for model 1 in our work, we selected several frequencies a 9 of the unstable
5 oscillations from the different parts of the range of the a frequencies considered
in fig. 12.4 (the accepted values 9 = 5, 6, 10, 14, 16 correspond to the values of
% 9 , C 9 from Table 12.2 for model 1). Let Δ% = Δ% 9 and ΔC = ΔC 9 be the average

values of Δ% 9 = |% (11)
9

− % (10)
9

| and ΔC 9 = |C (11)
9

− C
(10)
9

|. Let f% and fC be the
average (by these 9) errors f(% 9 ) and f(C 9 ) for the % 9 and C 9 values from Table

12.2. Then, Δ% ≃ 0.68f%, ΔC ≃ 0.85fC , and (Δ% 9 )/% 9 ≃ 0.002, (ΔC 9 )/C 9 ≃ 0.04.
Thus, the estimates of % 9 and C 9 obtained with the methods of the 11th and the 10th
accuracy orders, agree well with each other, and an accuracy of the used PCS can be
considered sufficient for the construction and analysis of the dispersion curves.

According to Table 12.2, for model 1, %6 = (36.4−36.9) ′ Myr and C6 = 81.3±2.5

Myr (here, we used gEA = 49.9 Myr, according to Danilov and Dorogavtseva (2008)).
The period %W and the time C_ of the development of the 5 oscillations’ instability,
obtained in the linear collisionless approximation in the analysis of the 5 oscillations
associated with the homological oscillations of the cluster core for this model are
%W = 37.4± 1.8 Myr and C_ = 53.7± 2.9 Myr, see columns 5, 6 of Table 12.2. Thus,
the estimates of %6 and %W are in a good agreement with each other. The value of C6 is
approximately 1.5 times larger than C_, which is probably due to the nonlinearity of
the 5 oscillations and due to the impact of the stellar encounters on the 5 oscillations
in the core of model 1. In time ΔC ≃ C_, C6, the stellar encounters manage to "heat
up" , to some extent, the region of a development of the instability, which reduces
its rate of development. The initial relaxation time of the cluster model due to the
stellar encounters is gBC = 121.9 ± 12.2 Myr and gBC = 72.6 ± 7.2 Myr for models 1
and 6, respectively ( see Danilov (2010), Table 3). Therefore, ΔC < gBC for model 1.
In Table 12.2, the pairs of values % 9 and C 9 which are the closest to the theoretical
estimates of %W and C_ for models 1−6 are marked with "∗" (see Table 12.2, columns
4, 5). On average for models 1−6, for the values % 9 and C 9 marked with "∗" , we find
% 9 = (1.09 ± 0.06)%W and C 9 = (1.56 ± 0.18)C_.
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Table 12.2 The parameters of the unstable 5 oscillations in the OSC models (% 9 and C 9 are given
in the units of the time gEA )

№ 1 2 3
%1

′(6.5−7.3) 1.7 ± 0.1 1.19 ± 0.03
C1

′(4.0−5.7) 1.7 ± 0.1 1.7 ± 0.3
%2

′(3.0−3.5) 1.6 ± 0.1 ∗0.93± 0.03
C2 (4.0−10.0)′ 1.8 ± 0.2 1.7± 0.5
%3 1.19 ± 0.01 ∗1.00± 0.02 0.830 ± 0.007
C3 1.75 ± 0.25 2.2 ± 0.4 (1.7−1.9)′

%4 0.94 ± 0.01 0.594 ± 0.004 ′(0.69-0.71)
C4 (2.0−2.6)′ 1.13 ± 0.09 (1.1−2.4)′

%5 0.89 ± 0.01 0.541 ± 0.003 0.65 ± 0.01
C5 (2.51−2.57)′ 2.9 ± 0.9 ′(1.17−1.30)
%6 ∗ (0.73−0.74)′ 0.496 ± 0.002 (0.562−0.563)′

C6 1.63 ± 0.05 2.4 ± 0.5 1.8 ± 0.5
%7

′(0.410−0.411) 0.2738 ± 0.0004 0.484 ± 0.005
C7 1.43 ± 0.07 2.0 ± 1.5 1.8 ± 0.5
%8

′(0.4078−0.4082) 0.213 ± 0.004 0.449 ± 0.001
C8 1.14 ± 0.07 1.8 ± 0.5 1.4 ± 0.1
%9 0.2271± 0.0002 0.1631 ± 0.0001 0.32764 ± 0.00002
C9 (1.55−1.61)′ 2.2 ± 0.3 1.5368 ± 0.0003
%10

′(0.2214−0.2215) 0.1429 ± 0.0003 0.2643 ± 0.0001
C10 2.14 ± 0.14 2.3 ± 0.5 1.41 ± 0.01
%11 0.17923 ± 0.00004 0.1182 ± 0.0004 0.25128 ± 0.00005
C11 2.49 ± 0.07 ′(1.4−4.1) 3.0 ± 0.1
%12 (0.170−0.175)′ 0.1067 ± 0.0001 0.198± 0.002
C12 1.52 ± 0.03 1.9 ± 0.2 1.4± 0.2
%13 0.1631 ± 0.0001 0.1049 ±0.0003 0.19135±0.00004
C13 0.85 ± 0.01 2.4 ± 0.9 1.45± 0.02
%14 0.155 ± 0.001 0.180929±0.000001
C14 0.76 ± 0.09 4.0± 0.2
%15 0.124 ± 0.004: 0.17296± 0.00001
C15 (0.44−0.98)′: 2.20± 0.03
%16 0.1174 ± 0.0004 0.13773± 0.00002
C16 1.01 ± 0.32 1.13± 0.04
%17 (0.105−0.106)′: 0.13324± 0.00003
C17 (1.15−1.79)′: 1.26± 0.02
%18 0.12984± 0.00005
C18 1.53± 0.02
%19 0.1189± 0.0002
C19 0.787± 0.004
%20 0.11582± 0.00005
C20 1.06± 0.01
%21 0.09016± 0.00001
C21 (1.82−1.84)′

%22 0.0871± 0.0001
C22 1.0± 0.2
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End of table 12.2

№ 4 5 6
%1 5.0 ± 0.2 ′(1.26-1.36) ∗0.895± 0.007
C1 2.1 ± 0.7 1.5 ± 0.5 3.2 ± 1.3
%2

′(2.548−2.550) 1.01± 0.03 0.749± 0.003
C2 1.5± 0.3 1.3±0.4 2.5±0.3
%3 1.90 ± 0.09 ∗0.849± 0.001 0.6614 ± 0.0003
C3 3.5 ± 0.3 2.4 ± 0.6 2.28 ± 0.09
%4 ∗1.47± 0.08 0.72 ± 0.01 0.5741 ± 0.0002
C4 2.25 ± 0.13 2.1 ± 0.3 2.9 ± 0.1
%5 0.905 ± 0.003 0.612 ± 0.003 ′(0.285−0.294)
C5 1.32 ± 0.06 3.1 ± 0.2 1.6 ± 0.3
%6 0.578 ± 0.014 0.529 ± 0.003 (0.268−0.271)′

C6 1.7 ± 0.9 2.3 ± 0.3 (1.55 − 1.77)′
%7 0.500 ± 0.001 0.417 ± 0.001 (0.258−0.259)′

C7 1.27 ± 0.03 1.84 ± 0.11 ′(1.0−1.3)
%8 0.21942 ± 0.00003 0.1984 ± 0.0003 (0.244−0.245)′

C8 2.22 ± 0.01 1.36 ± 0.02 ′(1.3−1.5)
%9 0.20594 ± 0.00005 0.13572 ± 0.00002 ′(0.1681−0.1683)
C9 3.7 ± 0.3 1.82 ± 0.08 2.7 ± 0.8
%10 0.3024 ± 0.0004 0.13129 ± 0.00002 0.1634 ± 0.0002
C10 1.01 ± 0.04 3.3 ± 0.6 2.4 ± 0.2
%11 0.1574 ± 0.0001 0.12342 ± 0.00007 (0.145−0.146)′

C11 1.22 ± 0.03 1.8 ± 0.2 (1.5−1.9)′

%12 (0.12156−0.12158)′ 0.1200±0.0006 0.098683±0.000003
C12

′(1.89−1.92) 2.4±1.0 2.5±0.1
%13 0.11538±0.00005 0.1148±0.0002 0.09734±0.00001
C13 2.26±0.06 2.3±0.5 (1.29−1.38)′

%14 0.1014±0.0006 0.08963±0.00001
C14 2.3±1.4 2.40±0.03
%15 0.08844±0.00003 0.08876±0.00005
C15 2.1±0.3 1.5±0.1

According to Table 12.2, the periods of the unstable oscillations in model 1 are
from %1 ≃345 Myr to %17 ≃5.3 Myr. %1 > %� ≃ 222.1 Myr where %� is the period
of a revolution of the cluster model around the Galactic center (see, for example,
Table 3 for models 1, 6 from Danilov (2010)). Probably, in the development of the
oscillations of model 1 with periods %1 and %2, an important role is played by the
external force field of the Galaxy. In the development of the large-scale oscillations
with the periods %3 − %6, a larger role is played by the regular force field of the
cluster. The oscillations with the periods %7−%8 may be due to the non-homological
nature of the oscillations of model 1 and its core (see estimates of the frequencies of
the homological and non-homological oscillations of the ellipsoidal halo models in
Danilov (2008)). The oscillations with the small amplitudes and the periods %9−%17

may be due to the formation of the polarisation clouds that arise as a response of the
system to the passage of a star in it, as well as due to the occurrence of the resonances
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between the 5 oscillations at different frequencies (see above) or a turbulence in the
stellar motions in the cluster model 1 (Danilov and Putkov, 2012b).

We note that the phases A:a of the unstable 5 oscillations in fig. 12.4 are distributed
fairly evenly along the axis :a . The multiple changes of a sign of :a in the considered
frequency range in fig. 12.4 indicate the formation in model 1 of a number of the
counter-propagating running radial waves of the 5 oscillations. The similar changes
of a sign of :a are also observed on the dispersion curves of the cluster models 2−6.

Figs. 12.5a,b show the histograms of the distributions # (:a) of the values :a ,
used in the construction of fig. 12.4a,b, respectively. The dashed lines in fig. 12.5a,b
indicate the histograms in the case a ≤ 7.72 (in this case, we exclude from a
consideration the sections of the dispersion curves that are strongly distorted by
the influence of a random noise in : (0)a , caused by the random oscillations of the
mean �12 (g, A) values). The histograms # (:a) for the OSC models 1−6 show a
sufficiently uniform distribution of the phases of the 5 oscillations, which also
indicates the formation of a number of the counter-propagating running radial waves
of the 5 oscillations in the models, and provides the small mean values of the
phase velocities of such waves in OSC models. The presence of a large number of
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Fig. 12.5 The histograms of the distribution # (:a) for the OSC model 1 at A = 1 pc, =BC = 30:
(a) was obtained at =? = 27; (b) was obtained at =? = 483. The dot-and-dash lines indicate the
histograms at a ≤ 7.72

the unstable oscillations and the increased power and intensity of an excitation of
such oscillations in model 1 (see above, as well as in Volkov et al. (1983)) can be
considered as arguments in a favor of a turbulence developing in the core of this
cluster model.
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The collective motions in the OSCs and their instabilities determine the irregu-
larity of the structure of such clusters. A number of features of the OSC structure
indicating the non-stationarynature of these clusters in a regular field are well known
(an irregular shape of the cores, which does not correspond to the equilibrium state
of the OSCs; a presence of the step-like structures in the radial density profiles,
etc. (Barkhatova, 1956; Seleznev, 1994; Binney and Tremaine, 2008; Danilov and
Putkov, 2012a)). The instabilities of the collective motions in the OSCs make it
possible to explain the structures and the dynamic processes observed in the OSCs
and their models (see the discussion of the dynamic evolution of such clusters in
Danilov and Putkov (2012b); Danilov (2011); Danilov and Putkov (2012a)).

In the last few years, the phenomena of an incomplete violent relaxation and
a meta-stable equilibrium (the so called quasi-stationary states, QSS) observed in
the models of the systems with the long-range interactions are actively discussed
(Chavanis, 2008a,b, 2006b; Bouchet et al., 2010). According to these papers, the
reasons for the occurrence of such states in these systems are not completely clear.
In the case of the OSCs, one of the possible causes for the formation of the meta-
stable equilibrium states is a temporary suppression of the instability of the radial
oscillations in the core of the system due to its "heating" by the oscillations of the
regular cluster field. The following temporary expansion of the core and of the whole
cluster (after the decay of the collective oscillations and the transition of the kinetic
energy of the cluster oscillations to the thermal energy of a stellar motion) leads
to a cooling of the core and the development of a gravitational instability in time
C ≤ gBC , where gBC is the relaxation time of the cluster due to the stellar encounters
(see Danilov (2011) on the stages of a temporary virilization during up to 108 years
in the OSC models with a subsequent development of the oscillations of the cluster
core). The existence and instability of such oscillations in the OSC models have been
theoretically considered by Danilov (2011) and Danilov (2008), see an introduction
to this chapter, and are confirmed by one more method in this part of the book.

12.5 Conclusions

1. In this chapter, we have considered the estimates of the correlation time g ( 5 )2 in
the space of the 5 values in the OSC models 1−6. Correlations in the space of the 5
values are most rapidly destroyed during the evolution of model 6. Comparison with

the results of Danilov and Putkov (2012b) on g (A)2 (a correlation time in the space

of A) showed that g ( 5 )2 < g
(A)
2 in the OSC models 1−6. The ratio g (A)2 /g ( 5 )2 = @

increases from @ ≃2.1 in model 1 to @ ≃17.0 in model 6.
2. We have considered the estimates of the mean phase velocities E 5 , EA , EE of

the oscillations of 5 , A, E in the OSC models 1−6. The values E 5 and EE in models
1−4 are 5−20 times smaller than E 5 and EE in models 5, 6. Possibly, it is due to the
greater wavelengths of the oscillations of 5 and E in models 5, 6. The small values
of E 5 and EE in models 1−4 can be the result of the formation and superposition
of the several counter-propagating running radial waves in these models. The values
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E 5 are 10−20 times smaller than the mean square velocities E2 of a stellar motion in
the cores of models 1−4 and approximately 2 times smaller than E2 in model 5, 6.

3. We have discussed the cross-correlation functions of the phase-density 5

oscillations in the OSC models. We have noted a number of the local extremums of
the function�12 (g, A), exceeding the limits of the errors of the�12 (g, A) values at the
points g9 = % 9 . It indicates the existence of the increased cross correlations (with the
different signs) between the 5 oscillations with periods % 9 in the cluster center and
at the distance A from its center. We have also considered the frequency spectrum of
the 5 oscillations corresponding to the function �12 (g, A). The largest contribution
to the average power of the 5 oscillations is made by low frequencies a ∈ [0.5, 2.4],
corresponding to the oscillations of the core and of the entire cluster. A number
of the local maxima of the frequency spectrum that go beyond the limits of the
errors of the calculation of the spectrum are noted. It indicates the increased power
and intensity of an excitation of the 5 oscillations with the frequencies a from the
neighborhoods of the local maxima points of (a. The possible role of the resonances
in the formation of the different parts of the frequency spectrum have been noted.
A comparative analysis of the spectra of models 1−6 allows us to assume that the
greater degree of a non-stationarity of model 1 in comparison with other models is
provided by the larger values (

′
a , by a greater number of the local maxima of the

function (a, and by the greater density of the maxima location in the low-frequency
region of the spectrum.

4. We have considered the dispersion curves for the phase-density 5 oscillations in
the numerical dynamic OSC models. We have confirmed the presence of the known
unstable phase-density oscillations in the cores of the cluster models associated
with the homologous oscillations of the cores. A few dozens of the new unstable
phase-density oscillations have been detected in each of these models. The number
of such oscillations decrease not monotonically with the increasing distance A from
the cluster center. The possible mechanisms for the development of such oscillations
in the OSC models have been discussed. The high-frequency unstable 5 oscillations
may well be because of the development of the polarisation clouds due to the passage
of stars in the OSC models, the effect of resonances between the 5 oscillations at the
different frequencies or the turbulence in the stellar motions in the cluster model 1.

5. The phases A:a of the unstable 5 oscillations are fairly evenly distributed along
the :a axis. The histograms # (:a) also show a fairly uniform distribution of :a . The
multiple changes of the :a sign in the considered frequency range on the dispersion
curves indicate a formation of a number of the counter-propagating running radial
waves of the 5 oscillations in models 1−6.

6. The presence of a large number of the unstable 5 oscillations, as well as the
increased power and, consequently, the intensity of an excitation of such oscillations
in model 1 are considered as arguments in favor of the turbulence developing in the
cluster model 1.

7. An investigation of the velocities of the stellar motion in a number of the OSCs
from the list of Danilov and Seleznev (1994) can provide the additional data (to
the data obtained in Danilov and Putkov (2012a,c)) on the non-stationarity of these
clusters, on the instability of the 5 oscillations in the clusters, the parameters of which
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are indicated in Table 12.2 by the sign "∗" . To do this, the radial dependencies of
the velocity dispersion of the cluster stars, the dispersion of the tangential velocities
obtained from the data on the proper motion of stars, the dispersion of the radial
stellar velocities in the wide vicinities of these clusters can be used. An increase of
the dispersion of the stellar velocities with a distance from the cluster center is an
important kinematic sign of the OSC non-stationarity (Danilov, 2011).

References

Aarseth, S.J.: Dynamical evolution of simulated star clusters. I - Isolated models.
Astron. Astrophys. 35, 237-250 (1974).

Baertschiger, T., Labini, F.S.: Growth of correlations in gravitational N-body simu-
lations. Physical Rev. D. 69, 123001 (2004). doi:10.1103/PhysRevD.69.123001

Barkhatova, K.A.: An open star cluster NGC 7086. Astronomicheskii Zhurnal, 34,
556-562 (1956) (In Russian).

Bendat, J.S., Piersol, A.G.: Engineering Applications of Correlation and Spectral
Analysis. Wiley-Interscience, New York (1980).

Bernar, M., Briffo, J., Bussac, J., et al.: Correlation methods of analysis of plasma
experiments. In: Diagnostics of plasma, Isssue 3. Atomizdat, Moscow (1973),
449-460.

Binney, J., Tremaine, S.: Galactic Dynamics, Second edition. Princeton University
Press, Princeton, Oxford (2008). ISBN: 9780691130279

Boccaletti, D., Pucacco, G., Ruffini, R.: Multiple relaxation time-scales in stellar
dynamics. Astron. Astrophys. 244, 48-51 (1991).

Bottaccio, M., Montuori, M., Pietronero, L., et al.: N-body simulations for structure
formation from random initial conditions. Memorie della Societá Astronomica
Italiana Suppl. 1, 120-129 (2003).

Bottaccio, M., Pietronero, L., Amici, A. et al.: Clustering in N-body gravitating
systems. Physica A. 305, 247-252 (2002). doi:10.1016/S0378-4371(01)00670-7

Bouchet, F., Gupta, S., Mukamel, D.: Thermodynamics and dynamics of
systems with long-range interactions. Physica A. 389, 4389-4405 (2010).
doi:10.1016/j.physa.2010.02.024

Chavanis, P.H.: Hamiltonian and Brownian systems with long-range interactions:
II. Kinetic equations and stability analysis. Physica A. 361, 81-123 (2006a).
doi:10.1016/j.physa.2005.06.088

Chavanis, P.H.: Quasi-stationary states and incomplete violent relaxation in
systems with long-range interactions. Physica A. 365, 102-107 (2006b).
doi:10.1016/j.physa.2006.01.006

Chavanis, P.H.: Hamiltonian and Brownian systems with long-range interactions:
III. The BBGKY hierarchy for spatially inhomogeneous systems. Physica A. 387,
787-805 (2008a). doi:10.1016/j.physa.2007.10.026



260 12 Correlations, Spectra, and Instability of Phase-Density Oscillations

Chavanis, P.H.: Hamiltonian and Brownian systems with long-range interactions: IV.
General kinetic equations from the quasilinear theory. Physica A. 387, 1504-1528
(2008b). doi:10.1016/j.physa.2007.10.034

Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression
analysis by local fitting. Journal of the American Statistical Association. 83, 596-
610 (1988). doi:10.1080/01621459.1988.10478639

Danilov, V.M.: Statistical analysis of dynamical open-cluster models with small
differences in their initial stellar phase coordinates. Astron. Letters, 23, 322-326
(1997b).

Danilov, V.M.: Stellar Fluxes in Numerical Dynamical Models of Open Clusters.
Astron. Reports 46, 887-899 (2002b). doi:10.1134/1.1522077

Danilov, V.M.: Analysis of density fluctuations in models of open clusters. Astron.
Reports 52, 888-899 (2008). doi:10.1134/S1063772908110036

Danilov, V.M.: Phase-Density Fluctuations at the Centers of Six Open Clusters.
Astron. Reports 54, 514-527 (2010). doi:10.1134/S1063772910060053

Danilov, V.M.: On the dynamics of open clusters, Astron. Reports 55, 473-486
(2011). doi:10.1134/S1063772911060035

Danilov, V.M., Dorogavtseva, L.V.: Estimates of Relaxation Times in Numerical
Dynamical Models of Open Star Clusters. Astron. Reports 47, 483-491 (2003).
doi:10.1134/1.1583775

Danilov, V.M., Dorogavtseva, L.V.: Timescales for mechanisms for the dynam-
ical evolution of open star clusters. Astron. Reports 52, 467-478 (2008).
doi:10.1134/S1063772908060048

Danilov, V.M., Leskov, E.V.: Properties of Stellar Trajectories in Numerical Dy-
namical Models of Open Star Clusters. Astron. Reports 49, 190-200 (2005).
doi:10.1134/1.1882777

Danilov, V.M., Putkov, S.I.: Non-stationarity parameters of open clusters. Astron.
Reports 56, 609-622 (2012a). doi:10.1134/S106377291208001X

Danilov, V.M., Putkov, S.I.: The dynamics of correlations in open-star cluster models.
Astron. Reports 56, 623-637 (2012b). doi:10.1134/S1063772912080021

Danilov, V.M., Putkov, S.I.: VizieR Online Data Catalog: Dynamical parameters of
open clusters (Danilov+,2012) (2012c).

Danilov, V.M., Putkov, S.I.: Correlations, spectra and instability of phase-space
density fluctuations in open-cluster models. Astrophys. Bull. 68, 154-168 (2013b).
doi:10.1134/S199034131302003X

Danilov, V.M., Ryazanov, A.P.: On modelling spherical instationary collisionless
stellar systems. In: Barkahatova, K.A. (ed.) Astronomical-geodetical investiga-
tions. Ural State Univ. Publ., Sverdlovsk (1985), 19-47 (In Russian).

Danilov, V.M., Ryazanov, A.P.: On a dynamics of spherical non-stationary stellar
systems. Astronomicheskii Tsirkulyar. No.1487, 3-4 (1987). (In Russian).

Danilov, V.M., Seleznev, A.F.: The catalogue of structural and dynamical charac-
teristics of 103 OCl and the first results of its investigations. Astron. Astrophys.
Trans. 6, 85-156 (1994). doi:10.1080/10556799408232061

Gilbert, I.H.: Collisional Relaxation in Stellar Systems. Astrophys. J. 152, 1043-1056
(1968). doi:10.1086/149616



References 261

Gilbert, I.H.: Gravitational Polarization in Spherical Stellar Systems. Astrophys. J.
159, 239-246 (1970). doi:10.1086/150306

Goodman, J., Heggie, D.C., Hut, P.: On the Exponential Instability of N-Body
Systems. Astrophys. J. 415, 715-733 (1993). doi:10.1086/173196

Gray, D.F.: The observation and analysis of stellar photospheres. Wiley, New York
(1976). ISBN:0471323802 9780471323808

Gurzadyan, V.G., Savvidy G.K.: Collective relaxation of stellar systems. Astron.
Astrophys. 160, 203-210 (1986).

Kandrup H.E.: The time scale for “mixing” in a stellar dynamical system. Phys. Lett.
A. 140 97-100 (1989). doi:10.1016/0375-9601(89)90497-0

Kandrup H.E.: How fast can a galaxy “mix”? Physica A. 169, 73-94, (1990a).
doi:10.1016/0378-4371(90)90217-G

Kandrup H.E.: Divergence of nearby trajectories for the gravitational N-body prob-
lem. Astrophys. J. 364, 420-425 (1990b). doi:10.1086/169425

Kandrup H.E.: Violent Relaxation, Phase Mixing, and Gravitational Landau Damp-
ing. Astrophys. J. 500, 120-128 (1998). doi:10.1086/305721

Kandrup, H.E., Magon, M.E., Smith, H.C.: On the sensitivity of the N-body problem
toward small changes in initial conditions. 4. Astrophys. J. 428, 458-465 (1994).
doi:10.1086/174259

Kandrup, H.E., Smith, H.Jr.: On the sensitivity of the N-body problem to
small changes in initial conditions. Astrophys. J. 374, 255-265 (1991).
doi:10.1086/170114

Kandrup, H.E., Smith, H.Jr., Willmes, D.E.: On the sensitivity of the N-body problem
to small changes in initial conditions. III. Astrophys. J. 399, 627-633 (1992).
doi:10.1086/171954

King, I.R.: The structure of star clusters. I. An empirical density law. Astron. J. 67,
471-485 (1962). doi:10.1086/108756

Klimontovich, Yu.L.: Statistical Physics. Nauka, Moscow (1982). (In Russian).
Klimontovich,Yu.L.: Statistical Theory of Open Systems. Yanus-K, Moscow (1995).

(In Russian).
Komatsu, N., Kiwata, T., Kimura, S.: Numerical irreversibility in self-gravitating

small N-body systems. Physica A: Statistical Mechanics and its Applications.
387, 2267-2278 (2008). doi:10.1016/j.physa.2007.12.012

Miller R.H.: Irreversibility in Small Stellar Dynamical Systems. Astrophys. J. 140,
250-256 (1964). doi:10.1086/147911

Nardini, C., Gupta, S., Ruffo, S., et al.: Kinetic theory of nonequilibrium stochastic
long-range systems: phase transition and bistability. J. Stat. Mech.: Theory and
Experiment 12, P12010 (2012). doi:10.1088/1742-5468/2012/12/P12010

Polyachenko, V.L., Fridman, A.M.: Equilibrium and stability of gravitating systems.
Nauka, Moscow (1976). (In Russian).

Seleznev, A.F.: Stellar surface density distributions in ten open clusters. Astron.
Astrophys. Trans. 4, 167-177 (1994). doi:10.1080/10556799408205373

Severne, G., Haggerty, M.J.: Kinetic theory for finite inhomogeneous gravitational
systems. Astrophys. Space Sci. 45, 287-302 (1976). doi:10.1007/BF00642666



262 12 Correlations, Spectra, and Instability of Phase-Density Oscillations

Volkov, Ya.F., Dyatlov V.G., Mitina, R.I.: Diagnostics of turbulent plasma. Naukova
Dumka, Kiev (1983). (In Russian).

Zaslavsky, G.M., Sagdeev R.Z.: Introduction to non-linear physics: from pendulum
to turbulence and chaos. Gl.Red.Fiz.Mat.Lit., Moscow (1988). (In Russian).



Chapter 13

Smoothing of Force Functions and Oscillation
Spectra of Open Star Cluster Model

Abstract In this chapter, we consider the cross-correlation functions for the fluctu-
ations of the potential * and the phase density 5 of the OSC model for different
distances from its center at the different values of the smoothing parameter n of the
force functions in the equations of the cluster stars’ motion. We discuss the power
spectra and the dispersion curves of * and 5 . The spectrum of the * oscillations
has a simpler form in comparison with the spectrum of the 5 oscillations. The most
powerful * oscillations are related to the 5 oscillations and are located at the low
frequencies a < 3/gEA ; at the medium and high frequencies (a > 3/gEA ), the contri-
bution of the * oscillations to the formation of the 5 oscillations is small or equal
to zero (here, gEA is the time of a violent relaxation of the cluster). A number of the
unstable* oscillations in the core of the cluster model are noted (up to 30 pairs of the
oscillations with the different complex conjugate frequencies). The dependencies of
the spectra and the dispersion curves of the 5 and* oscillations on n are discussed.
We note a "repeatability" (a significant correlation) of the spectra for certain values
of n and the instability of the shape of the dispersion curve to small changes of n .
The astrophysical applications of the results are discussed (the decay of the wave of
the 5 oscillations running from the periphery of the cluster to its center into several
waves with the frequencies commensurate with the frequency of the external (tidal)
impact; radiation and reflection of the waves of the 5 and * oscillations near the
boundary of the cluster core; a possible discreteness of the wavelengths and phases
of the 5 and* oscillations in the cluster model).

13.1 Introduction

A smoothing of the force functions in the equations of the stellar motion is often
used in modeling the dynamics of the gravitating systems, see, for example, Binney
and Tremaine (2008); Kandrup and Haywood (1991, 1992); Kandrup et al. (1992);
El-Zant (1998); Goodman et al. (1993); Danilov (1997a). Such an approach greatly
facilitates the numerical integration of the equations of a stellar motion, but does not

263
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consider the closest encounters of stars with the mutual distances A8 9 < n , and the
potential of the system is most often considered in the form

* (r) =
#∑
9=1

�< 9/
√
(r − r 9 )2 + n2

(here, n is a smoothing parameter, r is the radius vector of the point, # is the star
number, < 9 is the mass of the star with number 9 ∈ [1, #]; in this case, the point
potential of an individual star is replaced by the potential of the Plummer sphere).
As a justification for such smoothing, the following argument is usually used: for
a sufficiently small n , the close encounters of the stars with the mutual distances
A8 9 < n are quite rare, and the estimates of the contribution of such encounters to the
relaxation of the system due to the pair encounters are negligible (see, for example,
Dehnen (2001)). Using a smoothing of the force functions, the exponential instability
of the #-body problem was studied in the papers of Kandrup and Haywood (1991,
1992); Kandrup et al. (1992); El-Zant (1998); Goodman et al. (1993) (for the first
time, the exponential instability of such systems was recognized in the work of Miller
(1964)). According to Kandrup and Haywood (1991, 1992); Kandrup et al. (1992);
El-Zant (1998), the time C4 of an increase of the initial perturbations of the stellar
trajectories in 4-times is comparable with the crossing time C2A (the time of the
star’s intersection of the system) or slightly less than C2A . The value C4/C2A weakly
decreases with the increasing # , if smoothing is sufficiently small. According to the
estimates of Goodman et al. (1993); Hemsendorf and Merritt (2002), performed at
# < 103 and at # . 105, C4/C2A ∼ 1/ln(#) or ∼ 1/ln(ln(#)). An increase of n leads
to the increasing C4/C2A and decreasing rate of growth of perturbations in the system
(Kandrup et al., 1992; El-Zant, 1998; Goodman et al., 1993).

Dehnen (2001); Merritt (1996); Athanassoula et al. (2000); Hernquist and Katz
(1989); Rodionov and Sotnikova (2005) discussed and applied the optimal values of
n = n>?C (first obtained by Merritt (1996) from the condition of the minimum of the
mean irregular force impact on the star) in order to model the collisionless stellar
systems. According to Merritt (1996), at large n > n>?C , the potential of the system
is significantly distorted and the spatial resolution and a "graininess" of the potential
are reduced. When n < n>?C , the fluctuations of the forces in the system increase, and
it ceases to be collisionless. According to Merritt (1996); Athanassoula et al. (2000),
n>?C depends on the density distribution in the system model and decreases with
an increasing # in the system. Athanassoula et al. (2000) considered three different
models of the mass density distribution in the system and showed that in the systems
with a higher mass concentration to the center, n>?C can be reduced. Athanassoula et
al. (2000) also discuss two different types of smoothing of the point mass potential
via a Plummer’s generalized potential (see formula (11) from Athanassoula et al.
(2000)) and a cubic spline proposed by Hernquist and Katz (1989). According to
Athanassoula et al. (2000), these types of smoothing can in some cases give a better
representation for the forces in the system than a smoothing according to the potential
of the Plummer’s standard sphere.
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Dehnen (2001), when modeling the collisionless systems, proposed to use an
adaptively varying n depending on the average distance between the stars at a given
point in the system (this approach allows us to construct a much better approximation
of the many-body systems to the models of the collisionless systems obtained with
the help of the corresponding Boltzmann equation (Dehnen, 2001)). According to
Rodionov and Sotnikova (2005), this approach in the numerical experiments leads to
a change of the total energy of the many-body systems with the time C. Rodionov and
Sotnikova (2005), for the spherically symmetric equilibrium stable models of gravi-
tating systems, proposed to obtain n>?C from the analysis of the time evolution of the
distribution functions of the many-body systems for the various n . Price and Mon-
aghan (2007) considered the changes in the Lagrange function of the system leading
to a conservation of an energy (and an angular momentum) in the many-body prob-
lem. In order to do this, Price and Monaghan (2007) proposed to introduce a small
addition to the interaction force of two stars, related to the gradient of the smoothing
parameter with respect to the spatial coordinates (a similar idea was also considered
by Hernquist and Barnes (1990)). According to the calculations performed by Price
and Monaghan (2007) (see fig. 13.7, 13.6 from Price and Monaghan (2007)), this
approach leads to the changes in the density distribution and in the energy constant
of the system in comparison with the case of the non-adaptive n = 2>=BC.

It is of interest to study the dependencies on n of the parameters of the OSC
models of Danilov and Dorogavtseva (2008) with the significantly lower values of
n = 0.012A8 9 used by Danilov (1997a); Danilov and Dorogavtseva (2008). Here, A8 9
is the distance between two stars with the numbers 8 and 9 in the cluster, 8, 9 ∈ [1, #],
A8 9 is the the initial mean A8 9 for all pairs of the stars in the cluster model. In this
case, the value of n averaged by six cluster models of Danilov and Dorogavtseva
(2008) is n ≃ 0.084± 0.005 pc, which is much less than the average impact distance
?2 ≃ '/#1/2 ≃ 0.45 pc of the dominant pair encounter of the stars, and the average
distance between the stars ?1 ≃ '/#1/3 ≃ 1.32 pc (here, ' is the cluster radius).
According to the estimates of Binney and Tremaine (2008); Goodman et al. (1993),
the conditions ?1 > n > ?2 allow to smooth the forces of the pair interactions
between the stars without an appreciable weakening of the spatial resolution of the
potential and the exponential instability (Miller, 1964) in the many-body system.

According to Table 2 from Danilov (2010), it is possible to obtain the average
(over a period of the regular field oscillations) distance XA between the stars located
near the cluster model center. On average over the OSC models of Danilov and
Dorogavtseva (2008), XA ≃ 1.11 ± 0.10 pc. In this case, XA/n ≃ 13.2 ± 1.4. Thus, n
in the OSC models of Danilov and Dorogavtseva (2008) is significantly smaller than
?8 and XA , which indicates a quite "collisional" character of these models (only the
fairly rare close encounters of the stars with A8 9 < n in the OSC models of Danilov
and Dorogavtseva (2008) are not considered). We note that Price and Monaghan
(2007) considered only the changes in the radial distributions of a density and in a
total energy of an isolated gravitating system under the changes of n . It is also of
interest to analyze the effect of the changes in n on the degree of non-stationarity of
the OSC model, the density of the star number, and the kinetic energy of the cluster
core in the presence of the external field of the Galaxy. These cluster characteristics
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can influence the formation of the oscillation spectra of the phase density 5 and the
potential * of the cluster, as well as the dispersion curves of these oscillations and
the estimates of the parameters of such oscillations. An analysis of the changes in
the spectra and the dispersion curves of the 5 and* oscillations as a function of the
n changes for the OSC models has not been carried out previously. Such an analysis
is of considerable interest, since it gives an additional information on the character,
parameters, and reasons for the formation of the standing and running waves of the
5 and* oscillations in the OSC models with the different n .

The spectra and the dispersion curves of the 5 oscillations in the framework of
the numerical experiments on the modeling of an OSC dynamics were first obtained
by Danilov and Putkov (2013b,a). For this purpose, the methods of a diagnostics
of a turbulent plasma considered by Volkov et al. (1983); Bernar et al. (1973) were
used. According to Volkov et al. (1983); Bernar et al. (1973), the cross-correlation
functions of the fluctuations of a number of the plasma characteristics at two points
at a distance A from each other can be used to construct the dispersion curves
and to analyze the instabilities of the oscillations in a plasma. The use of such
a method by Danilov and Putkov (2013b,a) for the construction of the frequency
spectra (power spectra) and the study of a number of the 5 oscillation instabilities
in the OSC models of Danilov and Dorogavtseva (2008) made it possible to detect a
number of the new unstable phase density oscillations in these models (up to 32−41
pairs of the oscillations with the different complex conjugate frequencies in each
model) and to estimate the parameters of these oscillations. For model 1, the most
complicated 5 oscillation spectrum was obtained, which, according to Danilov and
Putkov (2013b,a), is one of the signs of a weak turbulence in the stellar motions in
this cluster model. Since n appears in the equations of the stellar motion due to the
potential* (see above) it is also of interest to analyze the* oscillations in this cluster
model. Comparison of the spectra of the 5 and * oscillations in the OSC model 1
of Danilov and Dorogavtseva (2008) allows us to study the question of the degree
of coupling between the 5 and * oscillations with the different cyclic frequencies
a (in the following, the frequencies a are given in the units of g−1

EA and are equal to
the number of the 5 (or*) oscillations during the violent relaxation time gEA of the
cluster model).

According to Danilov and Putkov (2013b), the smallest phase-density 5 oscilla-
tions (and closest to them) near the centers of the OSC models are not equal to the
frequency a� of the OSC rotation around the Galactic center, but are approximately
in a rational ratio with it. For example, in model 1, the frequencies of three such
oscillations are approximately 3/5, 20/13 and 12/5 of a� ≃ 0.225. A similar situ-
ation exists in other OSC models of Danilov and Dorogavtseva (2008). Therefore,
Danilov and Putkov (2013b,a) made a conclusion about a possible influence of the
external field of the Galaxy onto this part of the 5 oscillations spectrum. a� to a
greater extent characterizes the frequency of the tide, i.e. it is associated with the
changes in the density at the periphery of the OSC models. The frequencies of the
phase-density oscillations corresponding to the external effect on the cluster at the
different distances from the model centers may differ from a� . The waves of the 5
oscillations with a frequency a� or close to it, which run towards the cluster center
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(:a < 0, :a is a wave number), are observed at all distances A from the cluster center
considered in Danilov and Putkov (2013b). Apparently, when such waves pass to the
cluster center, the characteristics of the waves change, the wave decays into several
components with the commensurate frequencies. In model 1, the oscillations with
the frequency a� are stable at A = 3 − 9 pc and, probably, at A>9 pc. The instability,
and then the decay of such oscillations, into the frequency-commensurate unstable
oscillations takes place when A<3 pc.

In the OSC models of Danilov and Dorogavtseva (2008), the motion of the waves
of the 5 oscillations with certain frequencies a close to certain distances A from the
cluster center has an unusual character. For example, in model 1 near the distance A
= 3 pc (approximately at the core boundary) at frequencies close to a = 0.34, 1.81,
the standing waves of the phase density oscillations are observed (:a = 0). At A
= 2.7 pc, the waves at frequencies a=0.34, 1.81 become to be running toward the
cluster center, see fig.13.1a. At A>3.3 pc, at these frequencies, the waves running
from the cluster center are formed (fig. 13.1b, :a > 0). A similar phenomenon can
be observed near the distances from the center A = 3.3 − 3.4 pc at the frequency
a ≃ 3.6, see fig. 13.1b.
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Fig. 13.1 The dependencies of :a on a for the 5 oscillations in the OSC model 1 at =? = 483,
=BC = 30: (a) the curve is obtained at A = 2.7 pc; (b) the same at A = 3.3 pc
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Perhaps, there is a reflection of the running waves from the boundary of the
cluster center, with three standing waves form one running wave. The mean (by the
frequency a) standing wave at A = 3 pc is located in a region with an anomalous
dispersion (where :a decreases with an increasing a; the value :a is obtained using
the programs of the calculating of the dispersion curves :a = : (a) from Danilov
and Putkov (2013b)). We note that the running waves can sometimes be represented
as a superposition of the standing waves with the same wavelength as in the running
wave (Crawford, 1968).

A probable reason for such changes in the characteristics of the phase-density
waves near A = 3 pc in model 1, also, can be a radiation of such waves in the opposite by
A directions from the boundary of the cluster core experiencing the radial oscillations
and determining the degree of the model’s non-stationarity (Danilov, 2008; Danilov
and Putkov, 2012a).

Probably, in the OSC models, both reflection and emission of the waves at the
frequencies a corresponding to these waves at the certain distances A from the
cluster center can exist. This suggests a possible quantisation of such waves and the
existence of certain relationships between the dimensions of the clusters and possible
wavelengths _ of the standing waves in the cluster, since in the finite-size systems
(with respect to A) only an integer number of the values of _/2 can be placed, see,
for example, Crawford (1968). It is of interest to study the observed manifestations
of the discreteness of the emerging wavelengths and phases of the 5 oscillations in
the OSC models with the different n values.

The objectives of this part of the work are: 1) to consider a number of the
structural and dynamic characteristics of the core of the OSC model 1 of Danilov
and Dorogavtseva (2008) for the different values of the smoothing parameter n; 2)
to discuss the cross-correlation functions, the frequency spectra and the dispersion
curves for the phase-density 5 fluctuations and the potential * fluctuations in this
cluster model for the different n values; 3) to use the reviewed results in order to
analyse the dynamics of the OSCs and their models.

13.2 On a Connection Between the Parameters of the OSC Model

and &

Danilov and Dorogavtseva (2008) consider a cluster model consisting of # = 500

stars with the masses equal to the solar one and moving along a circular orbit
with the radius of '� = 8200 pc in the plane of the Galaxy around its center
(the Galaxy potential model of Kutuzov and Osipkov (1980) was used). The nitial
parameters of these numerical dynamic OSC models are given in Table 1 from
Danilov and Dorogavtseva (2003); a description of the cluster models 1−6 (Danilov
and Dorogavtseva, 2008, 2003) is given in Section 16.1. One can find there the
discussion of the difference schemes of the 10th and 11th accuracy orders, the
statistical criterion for the accuracy of the calculation of the phase density (Danilov,
1997b) used for the construction of the OSC models, and an introduction of the time
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interval C0 of the dynamic evolution of the OSC model, during which the statistical
accuracy criterion is fulfilled. At C ∈ [0, C0], an accuracy of the distributions of
the correlations obtained in Danilov and Putkov (2012b) proves to be sufficient for
the conclusions about the properties of these distributions. According to Danilov
and Putkov (2013b), a comparison of the cross-correlation functions, the oscillation
spectra or the dispersion curves obtained by the 10th and 11th accuracy orders also
provides an effective method for a controlling of the results of the calculations.

Following to Danilov and Putkov (2014), we consider the effect of a smoothing
of the force functions at the right-hand sides of the equations of a stellar motion
on the evolution of the OSC model 1 (Danilov and Dorogavtseva, 2008). Let n =

n1 = 0.012A8 9 (the OSC models in are obtained by Danilov and Dorogavtseva (2008)
using the values of n = n1). Let U = 2�/, be a virial coefficient of the cluster model
at the time C, where � and , are the total and potential energy of the cluster (the
influence of the external field of the Galaxy on the cluster is not taken into account in
the formulas for � and,). In what follows, we shall use the value U, obtained by the
stars with the distances A ≤ 'C from the cluster center, where 'C is a tidal radius of
the cluster in the field of the Galaxy (Hemsendorf and Merritt, 2002). Let us consider
the evolution of the cluster model at n = n1 and at n = 2n1 = n2 for a period of
time C ∈ [0, 3gEA ]. The values of U averaged over C are: Un1 = 0.410 ± 0.002 and
Un2 = 0.401 ± 0.002 for n1 and n2, respectively.

Let f′(Un ) be a standard deviation of U from the average values of U (over
C ∈ [C′, C′ + %A ]) for a given n , where C′ ∈ [0, (3gEA − %A )]; %A is a period of the
oscillations of a regular field in the cluster model. The average (over all C′) values
of f′(Un ) are: f(Un1 ) = 0.122 ± 0.026 and f(Un2 ) = 0.116 ± 0.035 for n1 and n2,
respectively. Consideringf(Un ) as an estimate of XU, which is an amplitude of the U
oscillations, we find XUn1/XUn2 = 1.06 ± 0.39. The values of XU in the OSC models
of Danilov and Dorogavtseva (2008) characterize the degree of a non-stationarity of
the models in a regular field. Thus, an increase of n by a factor of two does not lead
to a statistically significant change in the degree of non-stationarity of the cluster
model 1.

Let )8, n be an average (by C ∈ [0, 3gEA ]) square of the star’s velocity obtained
from stars with the distances A ≤ 8 pc from the cluster center at 8 = 1, 2, 5 for a
given n . According to the data on the phase coordinates of the stars of the cluster
model at C ∈ [0, 3gEA ], we find )1, n1/)1, n2 = 1.13 ± 0.06, )2, n1/)2, n2 = 1.07 ± 0.02,
)5, n1/)5, n2 = 1.05±0.01. Consequently, with a two-time increase in n , )8, n decreases
significantly (by ∼ 13 − 7 %) in the cluster core (at 8 = 1, 2).

Let #8, n , d8, n , '8, n be the average (by C ∈ [0, 3gEA ]) number of stars, concentra-
tion, and mean radius of a group of stars with the distances A ≤ 8 pc from the center
of the cluster model for a given n . According to the stellar coordinates of the cluster
model at C ∈ [0, 3gEA ], we find #1, n1/#1, n2 = 1.40±0.14,#2, n1/#2, n2 = 1.12±0.03,
#5, n1/#5, n2 = 1.013 ± 0.005. Thus, when n increases by two times, the number of
stars #8, n decreases significantly (by ∼ 40 − 12 %) in the cluster core. At the same
time, the average radius '8, n varies very little (in the core of the cluster model, the
changes of '8, n are within the errors of '8, n ). Moreover, d1, n1/d1, n2 = 1.35 ± 0.16,
d2, n1/d2, n2 = 1.14 ± 0.04, d5, n1/d5, n2 = 1.08 ± 0.02. Consequently, as n increases
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by two times, the concentration of stars d8, n in the cluster core also decreases sig-
nificantly (by ∼ 35 − 14 %); part of the stars moves from the core to the cluster
periphery.

Let 8, n be a total kinetic energy of stars with distances A ≤ 8 pc from the center of
the cluster model for a given n . During the evolution of the cluster model, the values
 8, n oscillate around its average (by C) values 8, n . According to the data on the phase
coordinates of stars, we find  1, n1/ 1, n2 = 1.8 ± 0.3,  2, n1/ 2, n2 = 1.21 ± 0.04,
 5, n1/ 5, n2 = 1.07 ± 0.01. Thus, a total kinetic energy of the stellar motion in the
core of the cluster model decreases noticeably with the two-fold increase of n .

Let f( 8, n ) be a standard deviation of  8, n from  8, n at C ∈ [0, 3gEA ]. The value
of f( 8, n ) can be considered as an estimate of the oscillation amplitude of  8, n
at the interval C ∈ [0, 3gEA ]. Let I8 = (f( 8, n2 )/ 8, n2 )/(f( 8n1 )/ 8, n1 ). From the
data on the phase coordinates of the stars, we find I1 = 1.1 ± 0.5, I2 = 1.3 ± 0.7,
I5 = 1.1 ± 0.7. Probably, with a two-fold increase in n , the values of f( 8, n )/ 8, n
on average increase in the cluster core. However, the errors of I8 are large enough,
which does not allow us to reliably isolate this effect.

Thus, with a two-fold increase in n , the degree of non-stationarity of the cluster
model 1 (Danilov and Dorogavtseva, 2008) practically does not change. In the core
of the model, there is a significant decrease in a total kinetic energy of the stars  8, n ,
a star number #8, n , a stellar concentration d8, n , and the mean square of the stellar
velocity )8, n ; the mean radii of stellar groups '8, n and the f( 8, n )/ 8, n values vary
only within the limits of the errors. Consequently, a two-fold change in n significantly
changes the structure and some important dynamic parameters of the cluster model.
Therefore, such a change in n for this OSC model can be considered significant.

13.3 Cross-Correlation Functions

Let X(C, r) = (-1, -2) = y(C, r) − y(C, r), where y = (H1, H2) = ( 5 ,*), the value of
5 is obtained by =BC stars from the neighborhoods of a point with the coordinate r

in the cluster model, and the bar above denotes an averaging over time C ∈ [0, C<]
(an origin of the coordinate system r coincides with the mass center of the cluster,
C< is the largest value of C used to calculate the correlations). For the sake of a
brevity, the argument v of the functions 5 and -1 is not written here. X is usually
called the deviation or fluctuation of y (Volkov et al., 1983; Bernar et al., 1973;
Danilov and Putkov, 2013b) and is assumed to be a random variable that forms a
stationary random process. Unlike to 5 and -1, the * and -2 values at the point
r are determined by all cluster stars. Following to Volkov et al. (1983); Bernar et
al. (1973); Danilov and Putkov (2013b), we denote the cross-correlation function
of the y fluctuations as C(g, r,Δr), where the components of the vector C have the
following form:

� 9 (g, r,Δr) = 1

C<

∫ C<

0
- 9 (C, r)- 9 (C + g, r + Δr)3C, 9 = 1, 2. (13.1)



13.3 Cross-Correlation Functions 271

Here, g is a time delay. Let r1 = r and r2 = r + Δr be the coordinates of the points 1
and 2, in which the fluctuations - 9 are considered. In a general case, the functions
� 9 (g, r,Δr) can be written in the form of the limits on C< as C< → ∞ from the
expressions in the right-hand sides of the relations (13.1).

Let r = 0, |Δr| = A. In this case, the distances of two points 1 and 2 from the
cluster center are equal to 0 and A, respectively. Following to Bernar et al. (1973),
we denote the functions (13.1) as � 9 ,12 (g, A) and consider the fluctuation - 9 in the
form of a wave packet propagating in a radial direction relative to the cluster center:

- 9 (C, A) =
∫ ∞

0
� 9 (l) exp[8(A: 9 (l) − lC)]3l, 9 = 1, 2. (13.2)

Here, the amplitude � 9 (l) and the wave number : 9 (l) of the waves composing

the packet depend on the frequency of these waves l, 8 =
√
−1. In case of (13.2), a

Fourier transform of the function � 9 ,12 (g, A) can be written in the following form:

�1, 9 (l) = �9 (l) exp(8A: 9 (l)),

see also formulas (3.41) or (4.8)−(4.11) from the book of Bendat and Piersol (1980);
�9 (l) is a Fourier transform for the autocorrelation function of the fluctuations
- 9 at point 1 (or 2), written with the help of (13.1) at Δr = 0 (see (2) from
Danilov and Putkov (2013b)). Thus, considering the Fourier transformation of the
function � 9 ,12 (g, A), we can find |�1, 9 (l) | = �9 (l) (a frequency spectrum) and
1
A �A6(�1, 9 (l)) = : 9 (l) (a dispersion relation); A: 9 (l) ∈ [−c/2, c/2] is the
phase of the oscillation H 9 with the frequency l.

Danilov and Putkov (2014) considered a number of the positions of point 2 on
a sphere of radius A with the center at the mass center of the cluster. For this, in
a spherical coordinate system (A, \, q) with the step Δ\ = Δq = c/(4:), the
coordinates of these points at : = 1, 2, 4 were set. Then, the transition to the right
Cartesian rectangular coordinate system (b, [, Z ) with the origin at the mass center
of the cluster was performed (Z axis is perpendicular to the plane of the Galaxy, b
axis is directed from the center of the Galaxy in the plane of the Galaxy, and axis
[ is directed towards the cluster motion in the plane of the Galaxy). Together with
point 1, the total number of points =? (in the vicinity of which the fluctuations X are
considered) is =? = 27, 115, 483 at : = 1, 2, 4, respectively.

The plot of the mean values of the function � (* )
12 = �2,12 (g, A) built by Danilov

and Putkov (2014) for model 1 at A = 1 pc, =? = 483 in the case C< = C0, where

C0 ≃ 3gEA , is given in fig. 13.2. The values � (* )
12 were averaged over 482 values

of � (* )
12 , corresponding to different positions of point 2 on the sphere of the radius

A = 1 pc. The vertical bars in fig. 13.2 show the errors of the corresponding mean

�
(* )
12 values. When constructing fig. 13.2, the PCS of the 11th accuracy order were

used. In the calculation of the curve in fig. 13.2 only the PCS obtained at C ≤ C0
were used; the * and -2 values were averaged over C on the intervals C ∈ [0, C0 − g]
at g > 0 and C ∈ [−g, C0] at g < 0. We should note the asymmetry of the function
�

(* )
12 with respect to g = 0; therefore, the frequency spectrum is specified not only



272 13 Smoothing of Force Functions and Oscillation Spectra of Open Star Cluster Model

by the real part of the Fourier transform of the function � (* )
12 (Bendat and Piersol,

1980). In comparison with � ( 5 )
12 = �1,12 (g, A), see fig. 2a from Danilov and Putkov

(2013b), the function � (* )
12 is noticeably more symmetric, which leads to a much

larger contribution of the real part of the Fourier transform of the � (* )
12 function to

the spectrum of the* oscillations.
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Fig. 13.2 The cross-correlation function of the * potential oscillations for the OSC model 1 at
A = 1 pc, =? = 483

In fig. 13.2, we note a number of the local extremums of the� (* )
12 function that go

beyond the limits of the errors of� (* )
12 at points g9 = % 9 . It indicates the existence of

the increased cross correlations (with the different signs) between the* oscillations
with the periods % 9 in the vicinity of points 1 and 2.

13.4 Frequency Spectra and Dispersion Curves

In order to calculate the frequency spectra and the dispersion curves of the y fluc-
tuations in the OSC model 1, we used the fast Fourier transform (FFT) program
from the book of Gray (1976). Here, instead of the circular frequencies l, it is
more convenient to use the cyclic frequencies a = l/(2c). The Fourier transforms
F1, 9 (a) and fF, 9 (a) for the average values of � 9 ,12 (g, A) and their errors f�, 9 (g, A)
were calculated separately. Then the relative phases (the wave numbers) of the H 9
fluctuations were calculated:
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:
(0)
a, 9

=
1

A
�A6(F1, 9 (a)) and :

(1,2)
a, 9

=
1

A
�A6(F1, 9 (a) ± fF, 9 (a))

at j = 1, 2. The complex conjugate pairs of the roots a; = aA4,; ± 8a8<,; of the equation

:
(0)
a,;

= 0 allow us to determine the period %; = 1/aA4,; and the time C; = 1/(2ca8<,;)
of a growth of the instability of the H 9 oscillations. The functions : (0,1,2)a, 9 were used
to estimate the frequencies a and their errors.

Fig. 13.3a shows the plot of the function (a = (
(* )
a = |F1,2(a) |/gEA , obtained

for model 1 from the data on the mean values of the function � (* )
12 and the errors

of these mean values. For a brevity, in the names of the ordinates in figs.13.3, 13.4,
13.7 the superscript ((*) or ( 5 )) is omitted when the functions (a are denoted. Also,
in figs. 13.3, 13.7, the second subscript 9 is omitted when denoting the dispersion
curves. However, the figure captions indicate which oscillations (* or 5 ) correspond
to the functions (a and :a shown in the figures. The values ( (* )

a in fig. 13.3 are given

in (pc/Myr)2. A number of the local maxima of the function ( (* )
a that go beyond

the limits of the errors of ( (* )
a and are connected with the local extremums of the

function � (* )
12 can be seen on the dependency of ( (* )

a on a.
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Fig. 13.3 The spectrum (a (a) and the dispersion curve :a of the* oscillations for the OSC model
1 at A = 1 pc, =? = 483 (b)
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At a < 2.5 (a low frequency region), the values of ( (* )
a are noticeably larger than

at a > 3. At a ∈ [5, 7.5], the values of ( (* )
a slightly increase in comparison with

(
(* )
a at a ∈ [3, 5] or a > 7.5. As in the case of the 5 oscillations (see fig. 3 from

Danilov and Putkov (2013b)), the largest contribution to the average power of the*
oscillations is made by the low frequencies corresponding to the oscillations of the
core and the entire cluster.

Fig. 13.3b shows the dispersion curve :a = :a,2 of the * oscillations for the
OSC model 1 at A = 1 pc, =? = 483, =BC = 30, n = n1. According to this curve
at distances A ≤ 1 pc from the cluster center, it is easy to note up to 30 unstable
* oscillations, which is (71 − 75) % of the number of the unstable 5 oscillations
in this model (Danilov and Putkov, 2013b). Among these 30 unstable oscillations,
only 10 ones have the frequencies a < 3 and, consequently, the largest powers. Thus,
in the central parts of the OSC model 1, the amount of the unstable * oscillations
is less than ∼ 3/4 of the number of the unstable 5 oscillations. In this case, the
fraction of the unstable * oscillations with the sufficiently large values of ( (* )

a is
only approximately 24 % of the total number of the unstable* oscillations.

The dependencies of (a on a, for a brevity, we will call as spectra. To compare
the spectra (a of the * and 5 oscillations in the OSC model 1 in fig. 13.4, we give

the spectrum (
(* )
a (solid line) and the spectrum (

( 5 )
a of the 5 oscillations multiplied

by the constant value of V = 1/80 (pc14/Myr8) for the convenience of comparison

(the dependency of V( ( 5 )a on a is shown in fig. 13.4 by dotted line). The spectra

shown in fig. 13.4 were calculated for A = 1 pc, =? = 483; the spectrum (
( 5 )
a was

calculated by Danilov and Putkov (2013b) at =BC = 30. According to fig. 13.4, the

frequencies of the * and 5 oscillations corresponding to the local maxima of ( (* )
a

and ( ( 5 )a , are basically in a good agreement with each other at a . 2.5, and only
slightly agree (or disagree) at a > 2.5. Moreover, at a > 2.5, the relative contribution

of the * oscillations to the average (over the entire spectrum (
(* )
a ) power of the *

oscillations is noticeably smaller than in the case of the 5 oscillations. Apparently,
the low-frequency 5 oscillations are closely related to the * oscillations, and at
a > 2.5, the contribution of the* oscillations to the formation of the 5 oscillations
can be small or zero. In this case, the high-frequency 5 oscillations can be more
the result of the instability development only in the space of velocities, rather than
coordinates (for example, the developmentof a weak turbulence in the stellar motions
of the OSC model 1 (Danilov and Putkov, 2012b)).

It is convenient to estimate the "slope" of the H8 oscillation spectrum to the axis
a by means of the difference ratio @ = ((a,1 − (a,0)/(a1 − a0), where a0 = 1.5 and
a1 = 7.5 are the mean a values on the intervals a ∈ [1, 2] ≡ N0 and a ∈ [7, 8] ≡ N1 ,
respectively; (a,0 and (a,1 are the mean (a values at the intervals N0 and N1 ,
respectively. The oscillations with the frequencies from the interval N0 to a greater
extent characterize the oscillations of the cluster core, and have a greater power. The
high-frequency oscillations with a ∈ N1 and a > 8 have a small power, which varies
a little with the increasing a in the * and 5 oscillation spectra, see fig. 13.4. The
parameter @ describes quite well the average "slopes" of the H8 oscillation spectra.
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Fig. 13.4 The spectra (a of the* and 5 oscillations for the OSC model 1 at A = 1 pc, =? = 483.

The spectrum (
(* )
a is shown by a solid line, V( ( 5 )

a is shown by a dotted line (V = 2>=BC , the

spectrum (
( 5 )
a was obtained by Danilov and Putkov (2013b) with =BC = 30)

The calculations of the parameter @ by Danilov and Putkov (2014)were performed
for a number of the n values from the interval n/n1 ∈ [0.8, 2.2]). In the calculation
of the spectra and @, the PCS of the 11th accuracy order and values A = 1, 3, 5 pc,
=? = 483 were used. Fig. 13.5a shows the dependency of @ on n for the 5 oscillations
in the cluster model 1 at A = 1 pc, =BC = 30. The vertical bars in fig. 13.5a indicate

the errors of @, caused by the errors of the spectra ( ( 5 )a . According to fig. 13.5a for
most values of n , the values of @ are close to zero, which corresponds to the small
slopes of the 5 oscillation spectra. However, several local minima are seen on the
plot of the @ dependency on n , the deepest of which is the @ minimum at n = n1. Such

local minima are due to the changes in the form of the spectra ( ( 5 )a in the interval of
the frequencies a ∈ N0 for small changes of n near the points of the local minima of

the @ dependency on n . To a greater extent, the values of ( ( 5 )a change at the points

of the local maxima (the frequencies of the local maxima of the spectra ( ( 5 )a change
not so significantly for the small changes in n). In addition, we observe a number
of the n values, for which the shape of the spectra, the frequencies, and the values

of the ( ( 5 )a local maxima, and sometimes the slope of the spectra, are in a good

agreement with these characteristics of the spectrum (
( 5 )
a at n = n1. Apparently,

there is a "repeatability" or a proximity (a matching) of the spectra shape for some
fixed n values, for example, n/n1 = 1.0, 1.5, 2.0 (in this sequence of spectra, the @
slope decreases with the increasing n) or n/n1 = 1.15, 1.25, 1.55, 1.7, 1.8, 2.2, in this
case, @ varies much less than at n/n1 = 1.0, 1.5, 2.0.
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Fig. 13.5 The dependencies on n of @ (a) and ^1,2 (b) for the 5 oscillations in the OSC model 1
at A = 1 pc, =? = 483, =BC = 30

Fig. 13.5b shows the dependency on n of the correlation coefficient ^1,2 of the

spectrum (
( 5 )
a obtained at n = n1, and the spectrum (

( 5 )
a obtained at an arbitrary

n . It is easy to see that the points of the deeper local minima on the dependency
@ = @(n) coincide (or agree well) with the points of the corresponding local max-
ima on the dependency ^1,2 = ^1,2 (n). The presence of the local maxima on the

dependency^1,2 = ^1,2 (n) also indicates the "repeatability" of the spectra ( ( 5 )a for
some fixed values of n . A decrease in ^1,2 (n) at n/n1 < 1 and n/n1 → 0.8 is due to

an increase in the differences between the spectra ( ( 5 )a , obtained by the PCS of the
11th and 10th accuracy orders at n/n1 < 1, see below.

We should note that the total number of the unstable 5 oscillations in the OSC
model 1 decreases on average with the increasing n . For example, at A = 1 pc, a
number of pairs =2 of the 5 oscillations with the complex conjugate frequencies
varies from 41−42 at n = n1 to =2 = 12 at n = 2.2n1, which indicates a decrease
of the degree of an instability of the 5 oscillations with the increasing n . However,
near the values n/n1 = 1.0, 1.05, 1.25, 1.5, 2.0, the value of =2 is on average close
to 40 and is =2 = 41–42, 42, 40–41, 40, 38–39, respectively. Near the values of
n/n1 = 1.15, 1.55, 1.7, 1.8, the value of =2 is on average close to 30 and varies in the
interval =2 ∈ [24, 34].
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The total number of the pairs of the unstable 5 oscillations at A = 1 pc in the OSC
model 1 is sufficiently large (=2 = 34 − 42) for the values of n close to n1.

Fig. 13.6a shows the dependencies @ = @(n) obtained from the spectra ( ( 5 )a of the
OSC model 1 at A = 3 pc (a solid line) and A = 5 pc (a dotted line). The dependencies
@ = @(n) in fig. 13.6a have generally the same form as in fig. 13.5a. According to
fig. 13.6a with the increasing A, the values of @ approach zero, and the slope of the

spectra ( ( 5 )a decreases.
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Fig. 13.6 The dependencies on Y of @ (a) and b (b) for the 5 oscillations in the OSC model 1 at
=? = 483, =BC = 30; the curves at A = 3 pc are indicated by solid line and by dotted line at A = 5
pc, the curve at A = 1 pc (b) is shown with the dot-and-dash line

Let
b = |( (10)

a,1 − ( (11)
a,1 |/(( (10)

a,1 + ( (11)
a,1 ).

Fig. 13.6b shows the dependencies b = b (n) obtained by Danilov and Putkov (2014)

from the spectra ( ( 5 )a of the OSC model 1 at A = 1 pc (the dot-and-dash line), A = 3

pc (the solid line) and A = 5 pc (the dotted line). The values of ( (10)
a,1 and ( (11)

a,1 were
obtained using the PCS of the 10th and 11th accuracy orders, respectively. It is easy

to see that the use of n < n1 when calculating the spectra ( ( 5 )a is unacceptable, since
it leads to the significant changes in the spectra due to the errors in the computation
of the PCS.
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We should note that the smallest values of @ (and the large slopes) in the spectra
of the OSC model 1 with the different n values are realised when all running waves
of the 5 oscillations in the frequency interval a ∈ N0 have the same sign of the
wave number :a, 9 and, therefore, move in the same direction along A (in this case,
the total power of the oscillations in the frequency interval a ∈ N0 and the slope of
the spectrum are the largest), see figs. 13.7a,c. If two or more counter-propagating
running waves of a comparable total power are observed in this frequency interval,
then the total power of all oscillations with the frequencies a ∈ N0 becomes small,
and close to zero @ values and small slopes of the spectrum are generated, see figs.
13.7b,d. The same result can be easily obtained for the mean (over a sufficiently
large time interval) amplitude of the sum of two sinusoidal waves with the close
wavelengths and frequencies, but with the markedly different amplitudes and the
different directions of the motion along A (with a counter motion of two sinusoidal
waves, the time-averaged amplitude of the combined wave is the smallest; when
these waves goes in the same direction, the average amplitude increases).
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Fig. 13.7 The spectra and the dispersion curves of the 5 oscillations for the OSC model 1 at A = 1
pc, =BC = 30, =? = 483, a ∈ N0 : (a, c) are obtained at n = n1; (b, d) are obtained at n = 1.05n1

The @ values for the spectra ( (* )
a are also due to the presence or absence of

the counter-propagating running waves of the oscillations of a potential * in the
frequency interval a ∈ N0. The dependencies @ = @(n) for the spectra ( (* )

a have a

similar nature with @ = @(n) for the spectra ( ( 5 )a (fig. 13.5a and 13.6a) and, therefore,
are not given here.
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Evidently, not all running (and standing) waves can form in the OSC models with
the close values of n , but only those satisfying to the certain relations between the
wavelength and the size of the system in the direction of the wave propagation. A
standing wave can be easily represented as the sum of two counter-propagatingwaves
with the equal amplitudes and frequencies running in the radial direction (Crawford,
1968). It puts into a correlation the length of these waves and the size of the system
in the radial direction. If the wavelengths in the OSC model 1 are subject to the
quantization conditions, this also applies to the phases A:a, 9 of the oscillations with
such wavelengths. Since A:a, 9 ∈ [−c/2, c/2], then even the small phase changes
near the values A:a, 9 = 0,±c/2 can change the direction of a motion of the waves
and the form of the dispersion curves for the small changes in n . In our opinion, the
quantum nature of the phase density and potential waves formed in the OSC models
may well be the reason that the spectra of the 5 and * oscillations in the models
with different n can be noticeably different even with the slightly different n .

13.5 Conclusions

1. In this part of the study, we have considered the results of the correlation and
spectral analysis of the phase density and potential oscillations in the OSC model 1
of Danilov and Dorogavtseva (2008) for different distances A from the cluster center
and for different values of the smoothing parameter n of the force functions in the
equations of the cluster stars’ motion.

2. In the case of n = n1, we have noted a passage of the 5 oscillation waves
with the frequency of an external influence (a tide) a� from the periphery to the
center of a cluster. At the same time, the parameters of such wave change, the wave
decays into several components with the frequencies commensurate with a� . In
model 1, the oscillations with the frequency a� are unstable at A ∈ [3, 9] pc, and,
probably, at A > 9 pc. The instability and, then, the decay of such oscillations into
the frequency-commensurate unstable oscillations takes place at A < 3 pc.

3. In the case of n = n1 at the distances A ≃ 3 pc from the cluster center (near the
boundary of the cluster core) in the OSC model 1, the waves of the 5 oscillations
at certain frequencies (for example, a = 0.34, 1.81) move either toward the cluster
center (at A < 3 pc), or from the center of the cluster (at A > 3 pc). It is possible in
the presence of the reflections of the waves from the core boundary or when waves
radiate from the core boundary in the directions opposite relative to A (according to
Danilov and Putkov (2012a), the radial oscillations of the core determine the degree
of a non-stationarity of the cluster model).

4. We have noted that with a two-fold increase in n in comparison with n1, the
degree of non-stationarity of the cluster model 1 (Danilov and Dorogavtseva, 2008)
practically does not change. In the core of the model, there is a significant decrease
of the total kinetic energy of stars  8, n (in 1.2−1.8 times), of the star number #8, n
(in 1.1−1.4 times), of the star concentration d8, n (in 1.14−1.35 times) and of the
mean square of the stellar velocity )8, n (in 1.07−1.13 times). The mean radii of the
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star groups '8, n and the values of f( 8, n )/ 8, n vary only within the limits of their
errors.

5. We have discussed the cross-correlation function� (* )
12 , the frequency spectrum

(
(* )
a and a dispersion curve for the * oscillations in the cluster model. It has been

shown that the function � (* )
12 (g, A) is significantly more symmetrical with respect

to g = 0, than � ( 5 )
12 (g, A). The spectrum (

(* )
a is much simpler in comparison with

(
( 5 )
a (the power-most-significant * oscillations are located in the low-frequency

region a < 2.5). In the core of the cluster model 1, up to 30 unstable* oscillations
are found, which is (71 − 75) % of the number of the unstable 5 oscillations. The
low-frequency * and 5 oscillations in the core of the cluster model have the local
maxima at the coinciding frequencies and are, probably, closely related each other.
The contribution of the* oscillations to the formation of the 5 oscillations at a > 3

can be small or zero.
6. We have discussed the "slope" of the @ spectrum and its dependency on n ,

as well as the correlation coefficients between the spectra of the 5 oscillations in
the cluster model 1 with different n . The main reason for the sharp changes of @ at
the small changes in n is the change of the counter-propagating running waves of
the 5 (and *) oscillations in the frequency interval a ∈ [1, 2] to the waves with
the frequencies from the same interval but running in the same direction along A (it
indicates the instability of the shape of the dispersion curve to the small changes
of n). The "repeatability" of spectra has been noted (at some fixed values of n , the
spectra are significantly correlated). The features of the spectra and the dispersion
curves of the 5 oscillations noted here (and in point 3 of this Section) can be related
to the existence of certain relations between the dimensions of the cluster and the
wavelengths of the standing and running waves in the cluster, and be determined by
the discreteness of the wavelengths (and the oscillation phases in the waves) formed
in the cluster with the finite dimensions in the direction of the wave propagation.

7. A detailed study of the radial profiles of the stellar density and the stellar
velocities of a number of OSCs from the list of Danilov and Seleznev (1994) is able
to provide the necessary data on the wavelengths of a density and a phase density in
these clusters, and will also allow us to estimate the relationships between the lengths
of these waves and the cluster sizes (and sizes of the cluster cores). A comparison
of these estimates with the results of the numerical modelling of the OSC dynamics
will make it possible to draw the conclusions about the possibility of a quantisation
of the density and the phase density waves in the observed star clusters.
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Chapter 14

Spectra of Wave Numbers of Oscillations in OSC
Models

Abstract In this chapter, we discuss the cross-correlation functions for the phase
density 5 fluctuations and the velocity moduli E of the stars in six OSC models (for
cluster model 1, we consider the different values of the smoothing parameter n of the
force functions in the equations of a stellar motion). We discuss the use of the spatial
Fourier transform of the cross-correlation functions with a zero time shift in order to
calculate the spectra of the wave numbers of the 5 and E oscillations. The spectrum
of the wave numbers of the 5 oscillations is simpler in comparison with the spectrum
of the wave numbers of the E oscillations. The most powerful 5 and E oscillations
are located in the region of the small values of the wave number : (and the large
wavelengths _ > (0.91−1.25) pc). A significant contribution to the average power
of the 5 and E oscillations is made by the homologous oscillations of the clusters.
The dependencies of the spectra of the wave numbers of the 5 and E oscillations on
n in the cluster model 1 are discussed. Such spectra change noticeably less when n
is changed than the frequency spectra of the 5 oscillations. With an increasing n ,
the slope of the wave number spectrum on average increases, which is caused by a
change in the structure of the cluster model along the distance from its center. The
astrophysical applications of the obtained results are discussed (the difference of the
obtained spectra from the Kolmogorov spectrum; the discreteness of the wavelengths
of the E oscillations in five cluster models; the widths of the spectra of the power-
most-significant oscillations of the models; the estimates of the tidal radii of the
clusters, etc.).

14.1 Introduction

Louis and Gerhard (1988); Mathur (1990); Weinberg (1994); Vandervoort (2003),
as well as Binney and Tremaine (2008) in chapter 5 of their book discuss the features
of the oscillation spectra formation in the models of the spherical collisionless
isolated star systems, as well as the features of the distributions of the phase density
and the energy of the stars in such models. Louis and Gerhard (1988) constructed

283
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a self-consistent model of an isochronous spherical system undergoing the radial
oscillations of the small finite amplitudes (Henon, 1959) (in the isochronous model,
the orbital period of the star’s motion depends only on the star’s energy and does
not depend on the angular momentum of the star’s motion). In order to describe
and analyze the oscillations of such a model, an extended (8-dimensional) phase
space was used by Louis and Gerhard (1988), in which such a system is stationary
(Lichtenberg and Lieberman, 1983); the invariants of the stellar motion in a system
with an extended phase space are determined; the Poincaré sections (Lichtenberg
and Lieberman, 1983) for a number of stellar trajectories are constructed; a Fourier
analysis of these trajectories is carried out, and the frequency spectra of these
trajectories are constructed. With the help of the Poincaré sections, for the oscillation
amplitude of the model considered by Louis and Gerhard (1988), the resonance orbits
of the stars with the real frequenciesl= of the oscillations of the values of the phase
coordinates of the stars have been found. Wherein, Ω : l= = = : 1, where Ω is a
frequency of the radial oscillations of the system model; = is an integer. A large
number of the stellar trajectories in this model have been captured in the resonant
families with the frequencies close to or equal to l=.

According to Louis and Gerhard (1988), a self-consistent distribution of the phase
density by energies has the local minima ("hollows" ) at the energies of stars with
trajectories located near the stable closed resonant orbits (according to Louis and
Gerhard (1988), the stellar motions along such orbits contribute to a damping of
the model’s oscillations), as well as the local maxima near the positions of the non-
resonant and some resonant unstable closed orbits that "support" the oscillations
of the system model. In the "gaps" of the phase density distribution by energy, the
phase density perturbation caused by the oscillations of the system, is comparable in
magnitude with the value of the unperturbed equilibrium phase density (Louis and
Gerhard, 1988).

Mathur (1990), using the Vlasov and Poisson equations for a spherical collision-
less isolated system, wrote a linearized equation for a small perturbation Y 5 of the
phase density function 5 , which contains on the right-hand side the sum " + # of
operators " and # (see formulas (1.3a) and (1.3b) from Mathur (1990)), acting on
5 function. The " operator is used by Mathur (1990) to describe changes in the 5
function as a result of the motion of the stars along their phase trajectories in the
equilibrium unperturbed system. The action of this operator in the equation for the
perturbations of the 5 function ensures damping of the oscillations in the system and
its tendency to an equilibrium as a result of a phase mixing. The # operator takes
into account the self-consistency of the system and the action on it of the force field
produced by a small perturbation of the phase density. The spectrum of eigenvalues
l of the " operator is continuous, but there may be the the gaps, caused by the joint
action of the " and # operators; here,l is the eigenfrequencies of the 5 oscillations
in the system. According to Mathur (1990), in these gaps, there might exist one or
more modes of the stable oscillations with the real frequencies, which prevents the
damping of oscillations in the system and its tendency to equilibrium.

According to Weinberg (1994), even the weakly damped density (and phase
density) oscillations exist and can persist for a long time in the models of the
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spherical collisionless isolated star systems. In order to show this, Weinberg (1994)
developed and applied to the King’s models (King, 1966) the method for an analysis
of the dispersion relation (see references, section 2 and appendix B in Weinberg
(1994)). For four models of star clusters (King, 1966) with the different values of the
concentration parameter and the potential at the center, the estimates of a damping
time were obtained by Weinberg (1994). This damping time exceeds 20 average
times of a crossing by the star of the distance equal to the radius of the sphere (with
the center at the cluster mass center) containing a half of the cluster mass.

Vandervoort (2003) carried out a general investigation of the stationary oscil-
lations of the collisionless systems with a constant frequency and amplitude, and
with a continuous spectrum of the real frequencies. The only significant limitation
in Vandervoort (2003) was the assumption of the integrability of the stellar mo-
tion equations in the force field of the unperturbed potential of the system with the
stationary oscillations. However, the results obtained by Vandervoort (2003) can
be used to describe the oscillations of the spherical isolated systems. Such steady-
state oscillation waves are the gravitational analogue of the Van Kampen waves
in a plasma. It is a particle stream (modulated, for example, by density) moving
with a velocity equal to the phase velocity of the wave and accompanied by the
polarization cloud resulting from the action of the beam on the plasma electrons;
see a review of Kadomtsev (1968) and in the case of the gravitating systems see
Binney and Tremaine (2008, p. 413−415)). According to Vandervoort (2003), the
isolated frequencies in the oscillation spectrum of the considered systems can also
be complex.

Binney and Tremaine (2008) (see chapter 5, p. 438) discussed the oscillations
of the spherical collisionless isolated systems with a continuous resonant frequency
spectrum of the damping oscillations containing the gaps in the vicinity of the
real frequencies of non-damping oscillations. The resonant spectrum in Binney and
Tremaine (2008) is determined by the stars, the radial velocities of which coincide
with the phase velocity of the wave of a potential, and satisfy to the resonance relation
(5.149) between the real frequencies l of the radial oscillations of the potential and
=ΩA , where = is an integer; ΩA is a frequency of the oscillations of the star’s orbit
radius.

We note that Louis and Gerhard (1988); Mathur (1990); Weinberg (1994); Van-
dervoort (2003); Binney and Tremaine (2008) call a set of the oscillation frequencies
that satisfy the certain conditions and relationships as the frequency spectrum of a
system (powers of these oscillations, as a rule, are not calculated). In addition, the
models of the stellar systems considered by Louis and Gerhard (1988); Mathur
(1990); Weinberg (1994); Vandervoort (2003); Binney and Tremaine (2008) are too
simple in comparison with the observed OSCs, in which the matter densities are
sufficiently small, and the influence of the external force field of the Galaxy is very
significant, which leads to the development of the numerous unstable oscillations
and to the maintenance of a non-stationarity in such clusters in time intervals com-
parable with their average lifetime (Wielen, 1971). At the same time, the certain
features of the OSC oscillation spectra quite can be explained in the framework of
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the mechanisms considered by Louis and Gerhard (1988); Mathur (1990); Weinberg
(1994); Vandervoort (2003); Binney and Tremaine (2008).

A study of the frequency spectra of the oscillations of the numerical dynamic OSC
models (Danilov and Dorogavtseva, 2008) was carried out in the recent papers of
Danilov and Putkov (2013b,a); Putkov (2013); Danilov and Putkov (2014). Danilov
and Putkov (2013b,a) considered the phase density 5 oscillations in six OSC models
at the different distances A from the cluster center. The spectra of the 5 oscillation
were obtained by Danilov and Putkov (2013b,a); Putkov (2013); Danilov and Putkov
(2014) using the cross-correlation functions corresponding to these oscillations and
the Fourier transforms of these functions. Danilov and Putkov (2013b) confirmed
the existence of the known unstable 5 oscillations associated with the homologous
oscillations of the cluster cores (Danilov, 2008, 2010) in the OSC models and a
number of the new unstable oscillations (up to 32−41 pairs of the 5 oscillations with
the different complex conjugate frequencies in each cluster model); they obtained
the estimates of the rise time of the amplitudes of such oscillations in 4 times to
be (0.4−10)gEA , where gEA is the time of a violent relaxation of the cluster model.
Danilov and Putkov (2013b) shows the plots of the cross-correlation function and
the frequency spectrum of the oscillations in the OSC model 1, which has the lowest
density among the six models considered by Danilov and Dorogavtseva (2008).
Danilov and Putkov (2013a) gave the frequency spectra of six OSC models.

Putkov (2013) investigated the 5th and 6th models, which have the most extensive
massive cores among all models considered by Danilov and Dorogavtseva (2008).
The initial parameters of the OSC models are given in Table 1 of Danilov and
Dorogavtseva (2008). The every cluster model consists of 500 stars with the masses
equal to the solar mass; the cluster moves along a circular orbit of the radius '� =

8200 pc in the plane of the Galaxy around its center in the force field of the potential
of Kutuzov and Osipkov (1980); at the initial moment, the every OSC model consists
of two homogeneous spherical subsystems (core and halo) with the coinciding mass
centers; the OSC models of Danilov and Dorogavtseva (2008) are numbered in an
order of the decreasing cluster non-stationarity. Putkov (2013) considered the waves
of the 5 oscillations propagating from the central regions of the cluster along its
equatorial plane coinciding with the Galactic plane. According to Putkov (2013),
the 5 oscillation frequencies in these models are in the rational relations with each
other (the points of the neighboring local maxima at the oscillation spectra are at
the equal distances from one another by a frequency). Perhaps, such an arrangement
of the local maxima at the spectra of the 5 oscillations is due to the action of the
resonances in these models.

Danilov and Putkov (2014) studied the oscillations of the phase density and the
potential* in the cluster model 1 for the different values of the smoothing parameter
n of the force functions in the equations of a stellar motion. According to Danilov
and Putkov (2014), the power-most-significant * oscillations are related to the 5

oscillations and are located in the spectrum at the low frequencies a < 3/gEA .
Danilov and Putkov (2014) detected a number of the unstable * oscillations in
the core of cluster model 1 (up to 30 pairs of the oscillations with the different
complex conjugate frequencies). They noted the passage of the radial waves of the
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5 oscillations with the frequency of an external influence (tide) from the periphery
to the cluster center, as well as the decay of such waves into several components
with the commensurate frequencies in the cluster core. Danilov and Putkov (2014)
discussed the possibilities of a reflection and emission of the 5 oscillation waves
from the cluster core boundary. The analysis of the changes in the spectra of the
5 and * oscillations with the change of the smoothing parameter n performed by
Danilov and Putkov (2014) leads to the conclusion that the spectra are "repetitive"
for some fixed n values. This point, according to Danilov and Putkov (2014), may
be due to the existence of certain relationships between the size of the cluster and
the wavelengths in the cluster and, possibly, due to the discreteness of the oscillation
wavelengths and phases in the waves.

According to Bernar et al. (1973); Volkov et al. (1983), the spatial Fourier trans-
form of the cross-correlation functions of the fluctuations of a number of the plasma
characteristics with a zero time shift can be used to construct the spectra of the
wave numbers of the oscillations in a plasma. It is of interest to use this method for
constructing the spectra of the wave numbers of the oscillations in the OSC models
of Danilov and Dorogavtseva (2008), and to study in details the wavelengths and the
power of the oscillations formed in such models.

Danilov and Putkov (2012b) noted a weak turbulence in the stellar motions in
the core of the OSC model 1. In order to discuss the dynamic state of the cluster
models and the turbulence parameters in this model, it is necessary to investigate the
oscillations of the moduli of the stellar velocity E and the 5 values (since 5 at each
time depends not only on the coordinates but also on the velocities of the stars). We
note that the conclusion made by Danilov and Putkov (2012b) about a turbulence in
the OSC model 1 was obtained in the study of the dynamics of the pair correlations
in the 5 -space, but was illustrated using the distributions of the velocity moduli of
the cluster core stars, as well as the velocity moduli of the stars participating in the
formation of such correlations. In this case, the phase density 5 was calculated by
the stellar groups with a small number of stars =BC = 6 closest to any arbitrarily
point in the cluster. Such values of =BC correspond more to the local and random
character of the E and 5 oscillations. Oscillations of such groups can be used in
analyzing the effect of the stellar encounters (in the case of small relative velocities
of the stars comprising the group) or in describing a turbulence (in the case of larger
relative velocities of the stars in the group). Danilov and Putkov (2013b,a); Putkov
(2013); Danilov and Putkov (2014) used the value =BC = 30 for a computation of the
cross-correlation functions. In this case, the dispersion curves of the wave number
dependencies on the frequency are released from a random noise; the oscillations of
such groups become more large-scale, they remarkably repeat the oscillations of the
entire cluster, and can be used with an analyzing of the degree of a non-stationarity of
the system. Since the cases =BC = 6 and =BC = 30 can describe the different dynamic
processes, it is of interest to use both values when plotting the wave number spectra
for the value of =BC .

According to Danilov and Putkov (2014), the change of n results in the change of
some structural and dynamic characteristics of the cluster model and in the changes
in the frequency spectra. Therefore, the changes of n can also affect the formation of
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the wave number spectra. In this connection, it is of interest to construct the spectra
of the wave numbers of the oscillations in the OSC models for the different values
of the smoothing parameter n .

The objectives of this chapter are: 1) to discuss the spatial cross-correlation func-
tions (with a zero time shift) and the spectra of the wave numbers of the oscillations
of the phase-density 5 and the modulus of the stellar velocity E in the OSC models
of Danilov and Dorogavtseva (2008); 2) to discuss such correlation functions and
spectra for the 5 and E oscillations in the cluster model 1 for the different values of
n; 3) to apply the obtained spectra to the analysis of the dynamics of the OSCs and
their models.

14.2 Cross-Correlation Functions

Let X(C, r) = (-1, -2) = y(C, r) − y(C, r), where y = (H1, H2) = (E, 5 ); E = |v|; v

is a vector of the star speed; the E and 5 values are obtained by =BC stars from the
neighborhoods of the point with coordinate r in the cluster model, and the bar above
denotes an averaging over time C ∈ [0, C<] (the origin of the coordinate system r

coincides with the cluster mass center, C< is the largest C values used for calculation
of the correlations). For a brevity, the argument v for the functions 5 and -2 is not
written here. The value X is usually called the deviation or fluctuation of y (Danilov
and Putkov, 2014; Bernar et al., 1973; Volkov et al., 1983) and is assumed to be
a random variable that forms a stationary random process. Following to Danilov
and Putkov (2014); Bernar et al. (1973); Volkov et al. (1983), we denote the cross-
correlation function of the y fluctuations as C(g, r,Δr), where the coordinates of the
vector C have the form

� 9 (g, r,Δr) = 1

C<

∫ C<

0
- 9 (C, r)- 9 (C + g, r + Δr)3C, 9 = 1, 2. (14.1)

Here, g is a temporal delay. Let r1 = r and r2 = r + Δr be the coordinates of points
1 and 2, in which fluctuations - 9 are considered. In a general case, the functions
� 9 (g, r,Δr) can be written in the form of the limits on C< as C< → ∞ from the
expressions in the right-hand sides of the relations similar to (14.1).

Let g = 0, r = 0, |Δr| = A. In this case, the distances of two points 1 and 2 from
the cluster center are 0 and A, respectively. Averaging� 9 from (14.1) by two angular

coordinates of the vector Δr, we find the functions  9 (A) = � 9 (0, 0,Δr) of a spatial
cross-correlation (Bernar et al., 1973; Volkov et al., 1983), which are symmetric
relatively to the permutations of points 1 and 2 with each other (here, the upper
line means the averaging of � 9 over the angular coordinates of the vector Δr). The
properties of the cross-correlation functions are described in Volkov et al. (1983,
p. 23) and in Bendat and Piersol (1980), formula (3.28).

Danilov and Putkov (2015) considered a number of positions of point 2 on a sphere
of radius A with a center at the cluster mass center. In order to do so, in a spherical
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coordinate system (A,\,q) with the step Δ\ = Δq = c/(4B), the coordinates of
these points were specified with B = 1, 2, 4. Then the transition to the right Cartesian
rectangular coordinate system (b, [, Z ) with the beginning at the cluster mass center
was performed. Z axis is perpendicular to the plane of the Galaxy, b axis is directed
from the center of the Galaxy in the Galactic plane, and axis [ is aimed in the
direction of the cluster motion in the Galactic plane. Together with point 1, the total
number of points =? in the vicinity of which the fluctuations X are considered, is
=? = 27, 115, 483 at B = 1, 2, 4, respectively.

0 4 8 12

0.000

0.001

0.002

0.003

0.004

K
1
(r

)

r

(a)

0 4 8 12

0.0000

0.0003

0.0006

0.0009

0.0012

K
1
(r

)

(b)

r

0 4 8 12

-10

40

90

140

K
2
(r

)

(c)

r
0 4 8 12

0.00

0.15

0.30

0.45

0.60

K
2
(r

)

(d)

r

Fig. 14.1 The plots of the cross-correlation functions of the E (a, b) and 5 (c, d) oscillations in the
OSC model 1 at =BC = 6 (a, c) and =BC = 30 (b, d)

The plots of the  9 (A) functions from the paper of Danilov and Putkov (2015) for
model 1 at =? = 483 in the case C< = 3gEA are shown in fig. 14.1. The A,  1 (A) and
 2 (A) values in fig. 14.1 are given in pc, (pc/Myr)2 and (Myr3/pc6), respectively.
An averaging of � 9 in Danilov and Putkov (2015) was performed over 482 values
of � 9 corresponding to different positions of point 2 on the spheres of radius A with
A ≤ 'C , where 'C is a tidal radius of the cluster (King, 1962). The vertical bars in fig.
14.1 show the errors of the corresponding mean values of � 9 . When constructing
fig. 14.1, the phase coordinates of stars (PCS) of the 11th accuracy order were used
(Danilov and Dorogavtseva, 2008). According to fig. 14.1, the dependencies on A of
the  1 (A) values have a more complex form in comparison with  2 (A), which leads
to the more complex spectra of the wave numbers of the E oscillations in comparison
with the spectra of the wave numbers of the 5 oscillations, see below. In fig. 14.1b
the correlations of the oscillations at A close to 4 pc stand out noticeably. Also, in
fig. 14.1a we can observe a noticeable increase of the correlations with an increase
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of A, which indicates an increasing role of the oscillations with such wavelengths
in the dynamic evolution of the cluster model 1. For the OSC models 2−6, the
dependencies  9 =  9 (A) have qualitatively the same character as in fig. 14.1.

14.3 Spectra of Wave Numbers

In order to calculate the spectra of the wave numbers of the y fluctuations in the OSC
models, Danilov and Putkov (2015) used the Fast Fourier Transform (FFT) program
from Gray (1976). The value of : = 1/_ was considered as the wave number, where
_ is the wavelength of the E and 5 oscillations. The Fourier transforms of F9 (:) and
fF9

(:) were calculated separately for the values of  9 (A) and their errors f 9
(A).
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Fig. 14.2 The spectra of the wave numbers of the E (a,b) and 5 (c,d) oscillations for the OSC
model 1 at =BC = 6 (a,c) and =BC = 30 (b,d)

Fig. 14.2a,b show the plots of the spectra of the wave numbers (E (:) = |F1(:) |
of the E oscillations obtained by Danilov and Putkov (2015) for model 1 at =? = 483

by the data on the values of the function  1 (A) and its errors f 1 (A) at =BC = 6 and
=BC = 30. The values : and (E (:) in fig. 14.2 are given in pc−1 and (pc3/Myr2),
respectively. The plots of the spectra of the wave numbers ( 5 (:) = |F2(:) | of the
5 oscillations obtained for model 1 at =? = 483 by the data on the  2 (A) function
and its errors f 2 (A) at =BC = 6 and =BC = 30, are shown in fig. 14.2c,d. The values
of ( 5 (:) are given in (Myr3/pc5).
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At all the spectra of fig. 14.2, the local maxima are observed at : ≤ 0.0056

pc−1, which corresponds to the wavelengths _ ≥ 178.7 pc and the oscillations in
the cluster close to the homological ones (in this case, the E and 5 oscillations at
different distances A ≤ 'C ≃ 10.468 pc from the center occur in the same phase).
The power of such oscillations is large, their contribution to the average power of
the oscillations is considerable. We can note the local maxima ( 5 (:) in fig. 14.2
near the values : ≃ 0.134, 0190 pc−1 which corresponds to the wavelengths _ ≃
7.44, 9.17 pc < 'C . At the E oscillation spectra, we can note the numerous local
maxima that are repeating with an equal step by : till the values : > 1 pc−1 (_ < 1

pc), see fig. 14.2a,b. We denote the distance between the points of two adjacent
local maxima as Δ:. In this case, the wavelengths for such maxima are related to
each other by the ratio Δ: = 1/_8+1 − 1/_8 = 2>=BC. These relations can be easily
generalized to the case of the local maxima separated from each other by the value
9Δ:: _8+ 9 = _8/(1 + 9Δ:_8 ), 9 = 0, 1, 2, ..., =.

It should be noted that most often, in the spectra of all considered OSC models,
except for the fourth one (which is the densest at C = 0), the same Δ: values
are observed, such that 'CΔ: ≃ 1, see Table 14.1. The values 'CΔ: ≃ 3/5, 2
are significantly less frequent in the OSC models (mainly in the region of small
: ≃ 0.062, 0.056; for a brevity, here and below, we do not give the dimension of
pc−1 for :). Let 'CΔ: = 1, 2 < 1, 2 = 2>=BC, _8 = 2'C . Then, _8+ 9 = 2'C/(1 + 92),
and the wavelengths of a sufficiently large number of the oscillations in the OSC
models are related to the dimensions of the cluster; it agrees with the conclusion of
Danilov and Putkov (2014) on the discreteness of the wavelengths of the oscillations
in the OSC models and on the relationship of these wavelengths to the cluster sizes.

We note that the spectrum of the E oscillations obtained for the OSC model 1
differs strongly from the Kolmogorov spectrum ((E (:) = �:−5/3, � = 2>=BC) by
the presence of a large number of the local maxima. Varying the value of �, we can
approximate the upper envelope of some sections of the spectrum observed in model
1 (fig. 14.2a) with the function �:−5/3 at : > 0.1. In figs. 14.2a,b, we see the spectra
of much younger (in the dynamic aspect) system than in the case of (E (:) = �:−5/3,
that corresponds to the locally isotropic, homogeneous and stationary turbulence
with a sustained flow of an energy from small : to large ones (see Tsytovich (1971,
p. 9, 16) and Fortov (2000, section I, subsection 7.1, p. 215)). In the case of fig. 14.2a,
the action of the instabilities of the E oscillations on the spectrum is large, the energy
flux across the spectrum is non-stationary, and the interaction of the vortices has not
yet had time to bring the spectrum to a monotonically decreasing form. The reason
for the formation of the numerous local maxima on the spectra of fig. 14.2a,b may
well be the resonances between the oscillation frequencies with the corresponding
wavelengths to such maxima in the cluster model 1.

The shape of the spectra of the 5 oscillations varies a little during the transition
from one model to another. Therefore, we do not give the plots of such spectra for
the models 2−6 here.

Figs. 14.3, 14.4 show the plots of the spectra (E (:) of the E oscillations obtained
by Danilov and Putkov (2015) for models 2−6 at =? = 483 and : < 1 by the data on
the  1 (A) values and its errors f 1 (A) at =BC = 6 and =BC = 30. The spectra (E (:) of
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Fig. 14.3 The spectra of the wave numbers of the E oscillations for the OSC models 2 and 3 at
=BC = 6 (a) and =BC = 30 (b). Numbers 2 and 3 on the plots indicate the spectra of models 2 and 3,
respectively

these models at : ≥ 1 differ a little from each other and from the spectrum of model
1, see fig. 14.2a, and, therefore, are not given here.

According to fig. 14.3, in models 2 and 3, the homologous oscillations of model 2
are most powerful ones (model 2 has a higher degree of non-stationarity than model
3 (Danilov and Dorogavtseva, 2008)). In the spectra of models 2 and 3 (as in the
spectrum of model 1), we observe a series of the E oscillations with the local maxima
equidistant by :. At =BC = 30, the power of the E oscillations in model 2 in the region
of values : < 0.25 is greater than in model 3, see fig. 14.3b.

At =BC = 6, the power of the E oscillations in model 3 near the values of : ≃ 0.118

is even greater than in model 2, see fig. 14.3b. However, the contribution of the
homologous (and close to homologous) cluster oscillations to the mean power of the
E oscillations (and to a non-stationarity) of model 2 is greater than in model 3 at
: ≃ 0, 0.118.

According to fig. 14.4, only the oscillation spectrum of the densest model 4 does
not contain the oscillations of the E values that are noticeable by the power with the
local maxima equidistant by :, which indicates the suppression of the mechanisms of
the unstable E oscillations’ development in the clusters with such a density (an initial
radius R(0) of this model is equal to 0.7'C (Danilov and Dorogavtseva, 2008)). At
=BC = 30, the homologous (and close to them) oscillations in models 6 and 4 are of
the greatest power. At =BC = 6, such oscillations in models 5 and 4 have the greatest
power.

When discussing the general characteristics of spectra (E (:) and ( 5 (:) of the
E and 5 oscillations, for a brevity, the spectra are further denoted as ((:). As
a characteristic of the spectrum section widths with the most powerful 5 and E
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oscillations, we use the value of : = :4, which is determined from the conditions
((:4) = 4−1((:<) and :4 > :<, where 4 is the base of a natural logarithm; ((:<)
is the largest of the values of the ((:) spectrum at the points of the local maxima
at : > 0.1. In this case, when estimating the spectral width, the highest local
maximum in the spectrum for : close to zero is often not taken into account. This
maximum characterizes to a greater extent the initial conditions and the homology
of the oscillations at the stage of the first compression of the cluster model. The non-
homologous oscillations of the clusters at : > 0.1 and the parameters of the resulting
"final" spectrum generated by the initial conditions from Danilov and Dorogavtseva
(2008) are of greater interest. However, in the cases when at : > 0.1, the local
maximum close in height to the highest one is absent in the spectrum (for example,
in the case of ( 5 (:) at =BC = 30 in models 1, 3−6), the point of the highest local
maximum at : < 0.1 is used as :<. If in the neighborhood of the point : = :4 two
local maxima of the spectrum at the points :1 < :4 and :2 > :4 are observed, then,
to estimate : = :4, we use a straight line close to an upper envelope and connecting
the "vertices" of these local maxima (the points with coordinates (:; , ((:;)), ; = 1, 2)
and the intersection of this line with the line ((:) = ((:4) = 2>=BC. The :4 and :<
values for the every OSC model are listed in Tables 14.1 and 14.2. For spectra (E (:)
in Table 14.1, the values : = :8= are listed, which correspond to the point of the first
local maximum in a series of such maxima located in the : ≥ :8= region, with the
constant distance Δ: between the points of the neighbour local maxima.

According to Table 14.1, in models 1−4, 6, the values of :4 decrease when moving
from =BC = 6 to =BC = 30. Consequently, the spectrum of the wave numbers of the E
oscillations with (E (:) ≥ (E (:4) becomes narrower with this transition. In model
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Table 14.1 The parameters of the waves of the velocity modulus E oscillations in the OSC models,
N is the number of the cluster model

N :8= , pc−1 :<, pc−1

=BC = 6 =BC = 30 =BC = 6 =BC = 30
1 0.123±0.003 0.123±0.003 0.123±0.003 0.213±0.003
2 0.224±0.003 0.112±0.003 0.313±0.003 0.112±0.003
3 0.118±0.003 0.106±0.003 0.118±0.03 0.106±0.003
4 − − 0.235±0.003 0.343±0.003
5 0.498±0.003 0.168±0.003 0.213±0.003 0.168±0.003
6 0.252±0.005 0.123±0.003 0.252±0.003 0.123±0.003

N :4, pc−1 'CΔ:

=BC =6 =BC =30 =BC =6 =BC =30
1 0.51 ± 0.02 0.38±0.04 1.01±0.02 1.00±0.02
2 0.759±0.008 0.288±0.003 0.98 ± 0.03 1.03±0.01
3 0.60±0.02 0.45±0.01 1.006 ± 0.024 1.03±0.04
4 0.83±0.03 0.343±0.003 − −
5 0.414±0.005 0.496±0.007 1.02 ± 0.03 1.02±0.02
6 0.615±0.003 0.421±0.005 1.00 ± 0.07 1.00±0.02

Table 14.2 Parameters of oscillation wave of phase density 5 in OSC models, N is the number of
cluster model

N :<, pc−1 :4 , pc−1

=BC =6 =BC =30 =BC =6 =BC =30
1 0.134±0.003 0.000±0.003 0.80±0.02 0.292±0.005
2 0.134±0.003 0.101±0.003 1.01±0.03 0.310±0.003
3 0.235±0.003 0.000±0.003 0.922±0.005 0.371±0.006
4 0.302±0.003 0.000±0.003 1.129±0.008 0.45±0.01
5 0.146±0.003 0.000±0.003 0.73±0.01 0.290±0.003
6 0.090±0.003 0.000±0.003 0.67±0.01 0.199±0.003

5, with this transition, the spectrum of : becomes wider. The :8= values do not
increase with this transition (in models 2−5, the :8= values decrease). Consequently,
the beginning of a series of the local maxima with Δ: = 2>=BC at such transition
basically comes nearer to : = 0 (to the large _ values). According to Table 14.2,
for the spectra of the 5 oscillations in the OSC models 1−6 at the transition from
=BC = 6 to =BC = 30, the values of :4 and :< decrease. In this case, the spectrum of
the 5 oscillations with ( 5 (:) ≥ ( 5 (:4) becomes narrower with respect to :.
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Thus, the larger =BC values more often allow us to study the oscillations of a larger
scale with the larger wavelengths in the OSC models (Danilov and Dorogavtseva,
2008).

In the case =BC = 6 in models 1, 2, 4, with an increasing density of the cluster
model, :4 increases for the E and 5 oscillations. The spectra of such oscillations
become wider by :. In models 2, 3, 5, 6, with the increasing mass and size of the
cluster core, :4 decreases for the 5 oscillations (in the case of the E oscillations, the
:4 values decrease in the sequence of models 2, 3, 5, and then significantly increase
in model 6 with the largest number of stars in the cluster core). In the case =BC = 30,
in models 1, 2, 4, with an increasing density of the cluster model, :4 grows for the 5
oscillations and decreases for the E oscillations with the transition from model 1 to
model 2, and then increases with the transition from model 2 to model 4. In models
2, 3, 5, 6, with an increase of the mass and size of the core, :4 increases for the 5
oscillations with a transition from model 2 to model 3, and then decreases in the
sequence of models 3, 5, 6 (in the case of the E oscillations, the values of :4 increase
in the sequence of models 2, 3, 5, and then decrease with a transition to model 6
with the largest number of stars in the cluster core).

Thus, the following most simple dependencies of the :4 values on the parameters
of the OSC models are observed at =BC = 6:

• 1) :4 increases with an increasing density of the cluster model for the E and 5

oscillations;
• 2) :4 decreases with the increasing size and mass of the core of the model for the

5 oscillations;
• 3) at =BC = 30, :4 increases with an increase of the density of the cluster model

for the 5 oscillations.

We note that the small :4 values in the low-density OSC models correspond to
the larger wavelengths _4 = 1/:4 and to the larger scale of the oscillations. Such
oscillations in time usually occur at lower frequencies, which agrees with a decrease
in the frequency of the radial oscillations with the decreasing cluster density, see,
for example, formula (9) from Lynden-Bell (1967). The smaller values of :4 in the
OSC models with the more massive and extended cores correspond to the larger
wavelengths _4, which is quite in an agreement with the increase of the scale of
the oscillations, since the non-stationarity of the OSCs is mainly provided by the
oscillations of the cluster cores (Danilov and Putkov, 2012b).

Table 14.3 lists the average (over : . 2.86) values of

j = |( (10) (:) − ( (11) (:) |/(( (10) (:) + ( (11) (:)),

for six OSC models (Danilov and Dorogavtseva, 2008), where ( (10) (:) and ( (11) (:)
are spectra of the wave numbers of the oscillations in the OSC models obtained
by Danilov and Putkov (2015) from the data on the PCS of the 10th and 11th
accuracy orders at =BC = 6, 30 (j = jE and j = j 5 in the case of the E and 5

oscillations, respectively). The j values characterize the mean (with respect to :)
relative error of the computation of the ((:) spectra in the considered OSC models.
According to Table 14.3, an increase of the =BC values from 6 to 30 often leads to
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Table 14.3 The errors j of the ( (:) spectra in the OSC models, N is the number of the cluster
model

N jE
=BC =6 =BC =30

1 0.036±0.004 0.149±0.010
2 0.060±0.005 0.042±0.004
3 0.00060±0.00004 0.000183±0.000009
4 0.031±0.002 0.0100±0.0004
5 0.000157±0.000007 0.00018±0.00001
6 0.000±0.000 0.000007±0.000001
N j 5

=BC =6 =BC =30
1 0.0030±0.0001 0.0161±0.0006
2 0.00140±0.00003 0.0104±0.0005
3 0.000046±0.000002 0.000023±0.000001
4 0.0067±0.0003 0.0035±0.0002
5 0.0000025±0.0000003 0.000067±0.000003
6 0.000±0.000 0.0000006±0.0000001

an increase of j. The largest values of j are reached in the case j = jE for the
OSC model 1 (jE = 0.149 ± 0.010), which is caused mainly by the errors of the
calculations of (E (:) at : > 1 (in the case : ≤ 1, at =BC = 30 for model 1, we find
jE = 0.051 ± 0.006). According to Table 14.3, jE > j 5 .

Thus, the accuracy of the PCS from Danilov and Dorogavtseva (2008) used in
the calculation of the ((:) spectra in this work is quite sufficient for the conclusions
about the parameters and properties of the ((:) spectra.

14.4 Dependencies of Y(k) Spectra of OSC Model 1 on &

According to Danilov and Putkov (2014, 2015), the estimate of the "slope" of the
((:) spectra of the wave numbers of the E and 5 oscillations in the cluster model 1
is convenient to carry out using the difference ratio

@ = (1((:) −0 ((:))/(:1 − :0),

where :0 = 1.55; :1 = 1.95; 0((:) and 1((:) are the mean ((:) values in the
following intervals of :, respectively: : ∈ [0.1, 1.0] ≡ N0 and : ∈ [1.5, 2.4] ≡ N1 .
The wave numbers : from the interval N0 correspond to the wavelengths _ from 1
to 10 pc (such an interval of the E and 5 oscillations is comparable with the distance
interval from the average distance between the stars near the center of the cluster
model (Danilov and Putkov, 2014) to a distance close to the tidal radius 'C of the
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cluster). Such oscillations, on average, have a greater power than the oscillations
with : ∈ N1 , corresponding to the wavelengths _ from 0.42 to 0.67 pc.

0.5 1.0 1.5 2.0 2.5
-0.0020

-0.0016

-0.0012

-0.0008

-0.0004

q

e e⁄
1

(a)

0.5 1.0 1.5 2.0 2.5
-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

q

(b)

0.5 1.0 1.5 2.0 2.5
0.4

0.6

0.8

1.0

1.2

k
1

,2

(c)

0.5 1.0 1.5 2.0 2.5

0.7

0.8

0.9

1.0

1.1
(d)

k
1

,2

e e⁄
1

e e⁄
1

e e⁄
1

Fig. 14.5 The dependencies on n of @ and ^1,2 for the E oscillations in the OSC model 1 at =BC = 6
(a,c) and =BC = 30 (b,d)

Figs. 14.5a,b and figs. 14.6a,b show the plots of the dependencies of @ = @(n)
for the spectra (E (:) and ( 5 (:) at =BC = 6, 30. As in Danilov and Putkov (2014),
the n1 value is assumed equal to n1 = 0.012A8 9 (A8 9 is the initial distance between the
stars in the cluster model 1, averaged over all different pairs of stars in the cluster).
According to fig. 14.5a,b, the values of @(n) on average decrease slightly with an
increasing n . Consequently, the slopes of the spectra (E (:) on average increase with
an increasing n . At =BC = 30, such an increase in the slope is quite small (comparable
with the largest of the errors of @ shown in fig. 14.5b). At =BC = 6, such an increase in
the slope of (E (:) with an increasing n is more noticeable. We can mark the values
of n/n1 = 1.1, 1.5, 2.1, at which the dependencies @ = @(n) have the local maxima
(at such n values, the slopes of (E (:) noticeably increase in comparison with the
slope of the (E (:) spectrum at n = n1). According to fig. 14.6a,b, the values of @(n)
on average increase slightly with an increasing n . Consequently, the slopes of the
( 5 (:) spectra on average decrease with an increasing n .

We note that an increase of the slope of the (E (:) spectrum is due to an increase
of the E oscillation power with small : ∈ N0 (the large _) in comparison with the
power of the E oscillations with the larger : ∈ N1 in the cluster model. According
to Danilov and Putkov (2014), with an increasing n/n1 from 1 to 2, a part of the
core stars moves to the halo (to the cluster periphery); the total kinetic energy of the
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Fig. 14.6 The dependencies on n of @ and ^1,2 for the 5 oscillations in the OSC model 1 at =BC = 6
(a,c) and =BC = 30 (b,d)

motion of the core stars decreases noticeably with the practically unchanged degree
of non-stationarity of the cluster model. Consequently, in this case, the role (and
power) of the halo oscillations with the larger scales and wavelengths increases in
the dynamics of the cluster model.

Figs. 14.5c,d and figs. 14.6c,d show the dependencies on n of the correlation
coefficient ^1,2 (n) between the ((:) spectrum obtained at n = n1, and the ((:)
spectrum obtained at an arbitrary value of n . The dependencies ^1,2 = ^1,2 (n) in fig.
14.5c,d were obtained by comparing the spectra (E (:) with each other. According
to fig. 14.5c, at =BC = 6, the dependency ^1,2 = ^1,2 (n) has two local minima at
n/n1 = 1.25, 1.55. At =BC = 30, (fig. 14.5d) the dependency ^1,2 = ^1,2 (n) has two
most prominent local minima at n/n1 = 1.1, 1.25. At n < n1, the values ^1,2 (n)
decrease in comparison with ^1,2 (n1), which is associated with an increase of the
errors of the PCS used for the calculation of the ((:) spectra in this work (see also
Danilov and Putkov (2014)). According to fig. 14.6c,d, the values of ^1,2 (n) obtained
by comparing of the ( 5 (:) spectra with each other at n = n1 and n ≠ n1 are close
to 1 and, on average, decrease weakly with an increasing n at n > n1. Consequently,
on average, with an increasing n , the differences in the ( 5 (:) spectra obtained at
n = n1 and n > n1 increase, which, apparently, is due to the marked above changes in
the mean slopes of the ( 5 (:) spectra at an increasing n/n1 from 1 to 2. Comparison
between the dependencies ^1,2 = ^1,2 (n) in figs. 14.6c,d of this work and fig. 5(b)
from Danilov and Putkov (2014) indicates that the spectra of the wave numbers of
the 5 (and E) oscillations at n = n1 and n ≠ n1 differ significantly less than the spectra
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of the 5 oscillations. In the case of the (E (:) spectra, the notable differences of ^1,2

from the unity are attained only near the marked above points of the local minima
of the dependencies ^1,2 = ^1,2 (n) in figs. 14.5c,d of this work.

14.5 Conclusions

1. In this part of the work, we have considered the results of the correlation and
spectral analysis of the oscillations of the phase density and the velocity moduli of
stars in six OSC models of Danilov and Dorogavtseva (2008).

2. We have discussed the spatial cross-correlation functions for the fluctuations
of the phase-density 5 and the modulus of the stellar velocity E of the OSC models,
as well as the spectra of the wave numbers of the 5 and E oscillations in the clusters
models. In order to calculate the spectra, we used the spatial Fourier transform of
the cross-correlation functions with a zero time shift.

3. The spectrum of the wave numbers of the 5 oscillations turned out to be
simpler in comparison with the spectrum of the wave numbers of the E oscillations.
The power-most 5 and E oscillations in the considered OSC models are located in
the region of the small values of the wave number : (and the large wavelengths
_ > (0.91−1.25) pc). A significant contribution to the average power of the 5 and E
oscillations is made by the homologous oscillations of the clusters. We have defined
the widths :4 and the points : = :< of the highest local maxima of the considered
spectra for each OSC model (see Tables 14.1 and 14.2). We have discussed the
dependency of the spectra width on the parameters of the cluster models and on the
number of stars =BC , from which the 5 and E values were determined.

4. In five cluster models, we have noted the E oscillations repetitive with an equal
step over :. We have defined the points : = :8= of the 1st local maximum in a
series of the local maxima points equidistant relative to : in the spectra of the E
oscillations (Table 14.1). We have written the formula that relates the wavelengths
of the E oscillations, which are most common in the wave numbers’ spectra of the
OSC models. The assumption of Danilov and Putkov (2014) on the discrete nature
of the wavelengths of the oscillations formed in the OSC models and the relationship
of these wavelengths with the dimensions of the models has been substantiated. The
spectrum of the wave numbers of the E oscillations in the OSC model 1 corresponds
to the spectrum of the system, which is much younger dynamically than the system
with the Kolmogorov spectrum. Some of the waves of the 5 and E oscillations found
in the OSC models in this work and in the works of Danilov and Putkov (2013b);
Putkov (2013) may well be a gravitational analog of the Van Kampen waves (Van
Kampen, 1955) in plasma.

5. For the cluster model 1, we have considered the different values of the smoothing
parameter n of the force functions in the equations of a stellar motion. We have
calculated the "slopes" @ of the wave numbers’ spectra of the 5 and E oscillations and
their dependency on n , as well as the coefficients of a correlation between the spectra
of the 5 and E oscillations in the cluster model 1 with the different n . The spectra
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of the wave numbers of the 5 and E oscillations in this model change significantly
less with the changing n than the frequency spectrum of the 5 oscillations obtained
for this model by Danilov and Putkov (2014). An increase of the slope of the (E (:)
spectrum with an increasing n is due to a change in the structure of the OSC model
(since in this case the part of the core stars move to the halo, and the total kinetic
energy of the core stars decreases with the practically unchanged degree of a non-
stationarity of the cluster model (Danilov and Putkov, 2014)). An increasing n affects
the ( 5 (:) spectra less than the (E (:) spectra.

6. An investigation (the Fourier analysis) of the autocorrelation functions of the
radial dependencies of the average velocity moduli (and the moduli of the average
values of the velocity vector components) of the stellar motion in the series of
the OSCs from the list of Danilov and Seleznev (1994) can allow us to obtain the
necessary data on the wavelengths of the stellar velocity oscillations in the clusters,
as well as to estimate a relationship between the lengths of these waves and the tidal
radii of the clusters. A comparisonof these estimates with the results of the numerical
modeling of the OSC dynamics will make it possible to draw the conclusions about
the dynamic state and the parameters of the observed stellar clusters. Since 'CΔ: ≃ 1

(see Table 14.1 and Section 14.3) the wavelengths of two or more neighbor (with
respect to :) oscillations in the clusters can be used to estimate 'C and the total
masses of the OSCs.
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Chapter 15

Dynamics of the Coronas of Open Star Clusters

Abstract In this chapter, we consider the method of the corona separation in the
OSC models. The method uses the stellar trajectories that do not escape the limits
of the coronas at the time intervals C, comparable to the average lifetime g of such
clusters. For six numerical cluster models, we consider the corona models and
discuss the direction and nature of their dynamic evolution. The retrograde stellar
motions dominate in the coronas. In the interval of the stellar distances from the
cluster center from 1 to 3 cluster tidal radii, a formation of the density and the phase
density distributions close to the equilibrium ones is noted. We approximate the
phase density of the corona and the cluster by the distributions depending on three
arguments. This temporal equilibrium of the corona is due to the balance of the
number of stars that move to the corona from the central regions of the cluster and
escape to the corona periphery or beyond it. We note the signs of the gravitational
coupling of the corona stars up to the distances of four cluster tidal radii from the
cluster center (the presence of a large number of the corona stars with the retrograde
mean motion close to the periodic one in the Galactic plane; (91−99) % of the corona
stars at the time intervals of the cluster lifetime satisfy the criterion of a gravitational
coupling). We estimates the rate of the corona stars’ dissipation from 0.03 to 0.23 of
the number of the corona stars during the time of a violent relaxation of the cluster
at C ≥ g.

15.1 Introduction

A density increase in the number of stars in the wide vicinity of the OSCs was
first noted by Shapley and Trumpler (Kholopov, 1981, p. 314). In more detail, the
structure of a number of OSCs and globular clusters (core, corona, intermediate
region) was studied in the works of Kholopov and Artyukhina (Kholopov, 1981).
According to Kholopov (1981), the extended regions of an increased density of the
number of stars (coronas) and the denser cluster cores are the characteristic structural
features of any cluster. More certain and reliably, the parameters of the OSC coronas
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can be obtained after an identifying the stars which can possibly belong to clusters,
taking into account the data on the proper motions of these stars (Kholopov, 1981).
The conclusions about the presence of the extended halos or coronas around the
well-studied OSCs formed by the stars located at the large distances from the cluster
center, including the stars beyond the King’s tidal radius 'C (King, 1962), can be
found in the papers of Pels et al. (1975); Van Leeuwen (1985). According to the
estimates of Kholopov (1981), the coronas of the clusters considered by Kholopov
(1981) are dynamically stable in the gravitational field of the Galaxy.

The radial distributions of the apparent density of stars and other associated
distributions for a number of OSCs at sufficiently large distances A from the centers
of these clusters have been studied in a number of papers (see, for example, Oort
(1979); Raboud and Mermilliod (1998a,b); Adams et al. (2001, 2002); Chen et al.
(2004); Kharchenko et al. (2009),etc.). In these papers, the changes of the shape of
the OSCs (flattening, ellipticity) with an increasing A are discussed. Danilov et al.
(1985) proposed a method for an estimating the sizes and numbers of stars in the
OSCs based on the comparison of the number of stars # (A) in a circle of the radius
A in the projection onto the tangent plane in the region of the cluster (#0(A)) and
in several neighbor fields (#8 (A), 8 = 1, ..., :, : = 4−6) surrounding the cluster.
Comparison of the #0 (A) value and the mean number of field stars # (A) averaged
over all 8 ∈ [1, :] allows us to determine more accurately the cluster parameters than
with the method of the apparent densities of stars � (A). The use of the normalized
deviations of #0 (A) from # (A) makes it possible to isolate statistically the coronal
areas of the cluster against the surrounding stellar field at significantly larger distances
from the cluster center than using the � (A) curves, and to confirm the conclusions
of Kholopov (1981) about the existence of the extended coronas with an extremely
low stellar density in the OSCs (Danilov et al., 1985).

Stone investigated young open star clusters NGC 654 (Stone, 1980) and NGC
6823 (Stone, 1988). He found the outer regions in these clusters inhabited by the
cluster member stars with the radius of these regions of about four cluster core
radius. Herewith, the corona stars of NGC 6823 are younger than the cluster core
stars. Nilakshi (2002) investigated 38 rich OSCs and concluded that all clusters,
including the youngest ones, have a corona. Corona is the outer region of the cluster
which exists since its formation. Despite the low density of stars in the corona region,
it contains∼ 75 % cluster members (Nilakshi, 2002). Röser et al. (2011) investigated
the structure of the Hyades cluster by the data on the proper motions of stars up to
the distance of 30 pc from the cluster center. They found that the interval of distances
from 'C to 30 pc contains 37 % members of the cluster (by a mass). Davenport and
Sandquist (2010); Balaguer-Nùñez et al. (2013) studied the structure of the M67
cluster by the photometric data (Davenport and Sandquist, 2010) and by the data on
the proper motion of stars (Balaguer-Nùñez et al., 2013); they found an extended
elongated halo of the probable member stars up to the distance of about one degree
from the cluster center.

Fellhauer and Heggie (2005) constructed and investigated an equilibrium ellip-
soidal model of a gravitationally unbound star cluster in the tidal field of the Galaxy.
They used the following considerations. Star clusters are gradually destroyed when
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they move in the gravitational field of the Galaxy. As soon as the cluster density
becomes lower than the critical one, it is often assumed that the cluster evolution
has completed with this. However, the remnants of such system continue the motion
along the similar trajectories, which allows Fellhauer and Heggie (2005) to construct
a density-homogeneous model in a state of unstable equilibrium. At the initial time
point, the stars in this model move according to the epicyclic theory, corrected taking
into account the self-gravitation of the system; the initial dispersions of the veloc-
ities of the stars along G and H axes (in the Galactic plane) are zero at each point
(G, H) of the system, the motion of all stars is retrograde. The numerical experiments
performed by Fellhauer and Heggie (2005) show that the systems with a low density
(∼ 1 % from the field density) and an initial value of the major semiaxis 0 of the
system ellipsoid 0 = 50 pc moving along a circular orbit with a radius of 10 kpc in the
Galaxy can survive during ∼ 20 revolutions around the Galactic center (in this case,
the decay time is estimated as the time of an increase by 50 % of the radius Aℎ of the
sphere containing a half of the mass of the system). Danilov et al. (2014) considered
the numerical dynamic OSC models with the corona radii less than 40 pc. Therefore,
Danilov et al. (2014) constructed the corona models close to the equilibrium ones
for the sufficiently large time intervals comparable to the lifetime g of the OSCs.
According to Danilov et al. (2014), it is of interest to use the more realistic initial
conditions for the stellar motion in the cluster corona in comparison with those used
by Fellhauer and Heggie (2005).

At present, various methods for estimating the tidal dimensions of OSCs in the
field of forces of the Galaxy are known and used. King (1962); von Hoerner (1957);
Innanen (1979); Innanen et al. (1983); Merritt (1984); Allen and Richstone (1988)
determine the tidal radius 'C of the cluster from the condition of the balance of the
forces acting on the test cluster star along the line connecting the mass centers of
the cluster and the Galaxy. Often the 'C value is defined as the radius of the stability
region of the orbits of the cluster stars in the field of the external forces. In this case,
an analysis of the stability of the solutions of the stellar motion equation system is
performed (Chandrasekhar, 1942; Angeletti et al., 1983; Angeletti and Giannone,
1983, 1984; Angeletti et al., 1984), or a qualitative analysis of the first integral of
this system (if it is known) is performed without a preliminary integrating of the
equations of a stellar motion (Rein, 1936). In the second case, the region of the
possible motion of the star is determined, where the square of the relative velocity
of the star in the coordinate system associated with the mass center of the cluster
is positive. Among the early works on the stability of the clusters moving along
the circular orbits around the Galactic center, we can mention the works of Bok
(1934) and Mineur (1939). The earlier studies on this problem are discussed in the
review of Rein (1936). The later works of Angeletti et al. (1983); Angeletti and
Giannone (1983, 1984); Angeletti et al. (1984) can be attributed to this direction of a
research. They use the calculation of the multipliers of the matrix of the fundamental
solution of the equations of motion of the test star in the frameworkof Floquet theory.
Keenan et al. (1973); Jefferys (1976); Keenan (1981a,b), with the different methods
that use the numerical integration of the test star motion in the field of forces of
the cluster and the Galaxy, showed that the stars with the retrograde trajectories in
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the cluster (sign(;I)=-sign(!/ )) are weakly influenced by the Galaxy field to the
greater distances from the cluster center than the stars with "prograde" trajectories
(sign(;I)=sign(!/ )). Here, ;I and !/ are the I and / components of the vectors l

and L of the angular momenta of the star motion relative to the cluster center and
of the cluster motion relative to the center of the Galaxy, respectively; I and / axes
are perpendicular to the Galactic plane. Jefferys (1976) ascribed this property of the
trajectories to the existence of a second quasi-integral of motion complementary to
the Jacobi integral. Jefferys (1976); Fukushige and Heggie (2000) used the secant
surface method for an approximate analysis of the cluster stability.

For the system of equations of a stellar motion in the cluster model with a plane
circular orbit in the linearised force field of the Galaxy, Aarseth (1973) introduced
the integral �8 per unit of the star mass, analogous to the Jacobi constant (see (35)
from Aarseth (1973)). The critical value �∞ < 0 of �8 for a star that is immobile
in the Lagrangian equilibrium points is often used as a criterion for the dissipation
of a star from a cluster, although the condition �8 > �∞ does not guarantee a
fast dissipation of the star (Aarseth, 1973). According to Terlevich (1987), the tidal
field of the Galaxy reduces the energy barrier for the dissipation of stars from 0 to
�! = �∞ < 0 and, therefore, accelerates the evolution of the cluster in the direction
of a decay.

Fukushige and Heggie (2000) performed a theoretical analysis of the motion of a
dissipating star in the vicinity of the Lagrangian points and estimated the dissipation
time as a function of the energy of the stellar motion (formula (9) from Fukushige
and Heggie (2000)). The smoothed potential of the cluster was used. For a number of
cluster models, Fukushige and Heggie (2000) showed by the numerical experiments
that stars with energies above the critical one can remain gravitationally bound in
the cluster for a very long time (much longer than the dynamic time).

Takahashi and Baumgardt (2012) used the energy and the apo-centric criteria to
describe the dissipation of stars in the globular cluster models (see (17), (18) from
Takahashi and Baumgardt (2012); in this case, the star energy is above the critical one
and the apo-centric distance of the star is larger than 2/3 of the tidal radius 'C ). For
stars that satisfy these criteria (the "potential dissipators" , see the term in Takahashi
and Baumgardt (2012)), it was shown that such stars quite can be captured again by
the cluster due to the stellar encounters. In an earlier paper Ross et al. (1997), for
the cluster model in the form of a point mass moving along a circular orbit in the
linearised force field of the Galaxy, obtained the conditions for the star’s dissipation
(the conditions of a removing of the star to an infinite distance from the cluster). It
is of interest to use such conditions to study the dissipation of stars from the OSC
coronas.

The results of such study can be used in a discussing the dynamics of the OSCs
and their models. It is also of interest to discuss the applicability of some convenient
phase-density models for the cluster and its corona in the case of the more realistic
initial conditions for the phase coordinates of stars than in Fellhauer and Heggie
(2005). Such phase density models can be useful for an estimation of the masses
of the OSCs and their coronas from observations (by the data on the coordinates
and velocities of stars in the OSCs and in the cluster coronas). In addition, such
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phase-density models can be used to compare the observed and the model velocity
distributions of stars in the core and at the periphery of the OSCs, when discussing
the mechanisms of the formation of the stellar velocity distributions in the OSCs.

The objectives of this part of the work are: 1) to describe the method for separation
of the coronas in the OSC models; 2) to discuss the models of the coronas for six
numerical cluster models; to describe the parameters of the coronas; to discuss the
kinematics of the stellar motions in the coronas; to analyse the dynamic evolution
of the coronas; 3) to discuss the signs of the gravitational coupling of the corona
stars at the distances of several tidal radii 'C from the cluster center; 4) to analyse
the rate of the corona stars’ dissipation using the criterion of Ross et al. (1997) of
the gravitational coupling of the cluster stars.

15.2 Constructing Coronas of OSC models

Following to Danilov et al. (2014), we consider two ways of constructing the coronas
of the OSC models. If we regard the corona as a long-lived object, then the rapidly
disappearing cluster stars are not members of the corona. Energy is not a very
reliable indicator of the star’s belonging to the corona (see above). In the non-
stationary systems, all the parameters of a star change with time (in the OSC models
of Danilov and Dorogavtseva (2008), only the number of the star conserves). The
main parameters that really characterize the belonging of the star to the corona (and,
consequently, the composition and structure of the corona) are the distance A of the
star from the cluster center and the time interval g during which the value A does
not exceed the radius of the corona A2. Let g = 3gEA , that for the OSC models of
Danilov and Dorogavtseva (2008) approximately corresponds to g ≃ 1.5× 108 years
and is comparable with the average lifetime of the OSCs (Wielen, 1987), and A1 is
a radius of the sphere containing some auxiliary group of stars (stars of the core
and the intermediate region of increased density (Kholopov, 1981)), A1 < A2, A1 = 5

pc ≃ 0.5'C . For a brevity, we will further call the subsystem corresponding to this
group of stars as the core. Let N1 and N2 be a sets of numbers of stars 8 with the
distances from the center A < A1 and A < A2, respectively, at C ≤ g. In this case,
N1 ⊂ N2. Eliminating from the set N2 all the numbers of the stars from N1, we
find the set of numbers of the corona stars Nℎ . Using these numbers and the results
of the numerical integration of the equations of a stellar motion, it is possible to
construct all the necessary characteristics of the corona for the different time points.
We denote this model of the corona as model 1 with the constant numbers of stars.
This model can be improved if we use a smaller value for g (for example, gEA = g/3,
which is 2.6 times greater than C2A , see above) and define the set Nℎ at the times
C′ ∈ [C, C + gEA ]. It is the second model of the corona with the variable numbers of
stars; in this case, the set N1 will differ from N1 for the first model of a corona.
Let A2 = 40 pc ≃ 4'C (for the OSC models of Danilov and Dorogavtseva (2008)).
According to the criterion of the gravitational coupling of stars in the cluster (Ross
et al., 1997) and the calculation performed by Danilov et al. (2014), at this value of
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A2, the number of the corona stars in the OSC models varies only by a few percent
over the time g, see below.

15.3 Parameters of Coronas of the OSC Models. Mechanisms

of Corona Formation and Rate of Dissipation of Stars

from Coronas of the OSC Models

Let BI = 〈|Z |〉, BA = 〈A〉 and BI,A = 〈|Z |/A〉 be the average values of |Z |, A and
|Z |/A, respectively. In order to study the dynamic evolution of the OSC coronas and
cores, Danilov et al. (2014) constructs the time C dependencies of BI , BA , BI,A for
the corona and core stars of the OSC models 1−6 at C ∈ [0, g]. The corona models
with the constant and variable numbers of stars were considered. Fig. 15.1 shows
the dependencies obtained by Danilov et al. (2014) for the OSC model 1 in the
case of the cluster subsystem (corona and core) models with the constant numbers
of stars. The BI and BA values are given in parsecs, the vertical bars in fig.15.1
show the errors of the mean values; here and further in the figures, the letters ℎ
and 2 mark the corona and the core curves, respectively. For other OSC models,
these dependencies have a similar form, and, therefore, are not shown here. These
dependencies for the corona contain oscillations that damp with time with a period
close to the period of the oscillations of the regular field of this model %A ≃ 0.6gEA
(Danilov and Dorogavtseva, 2008). The corona expands with an acceleration along
the plane (b, [) and, at C ≃ g, forms the "ellipsoid" flattened along the Z axis with
an average ratio |Z |/A equal to BI,A ≃ 0.24 ± 0.02.

At C/gEA ∈ [2.5, 3.0], the average Z2/b2 value for the corona is 〈Z2/b2〉ℎ =

0.200±0.023, and for the core, it is 〈Z2/b2〉2 = 0.929±0.060. At C/gEA ∈ [2.5, 3.0],
both the corona and the core of the cluster model 1 have a shape elongated along
the [ axis with the ratio of the semiaxes of the "ellipsoid" 6.8 : 5.0 : 1.0 for the
corona and 1.21 : 1.08 : 1.00 for the core, respectively (the shape of the core differs
a little from the spherical). The results obtained by Danilov et al. (2014) are quite
in agreement with the results of Chumak et al. (2010), according to which the
ellipticities (4 = 1 − 〈Z2/b2〉) of the cluster shape in the space (b, [, Z ) are small in
the central regions of the clusters, and increase with the distance from the center up
to 2−3 tidal radii 'C .

According to fig. 15.1c, the average |Z |/A value for the core changes a little with
time (in comparison with the corona) near the characteristic value of BI,A ≃ 0.5.
The values of BG = 〈|b |〉 and BH = 〈|[ |〉 for the corona stars in fig. 15.2a,b are given
in parsecs and mostly grow with time (most rapidly at C ≃ 3gEA ). According to fig.
15.2c, the relation B = BH/BG changes from 0.82 ± 0.05 to 1.23 ± 0.10, which is due
to the rotation of the corona’s "ellipsoid" in the coordinate system (b, [, Z ) in the
direction opposite to the cluster motion around the Galactic center with a period of
2.54gEA ≃ 126.6 Myr. In this work, the rotation of the corona was studied in two
ways: 1) using the two-dimensional maps of the surface density distribution of the
cluster model constructed for a number of close time points; 2) with the help of
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Fig. 15.1 The dependencies on a time C of BI , BA , BI,A for the corona and core stars of the OSC
model 1. Letters ℎ and 2 indicate the curves for the corona and the core, respectively

the time dependencies of the mean tangential velocities EC of the core stars and the
corona stars (see below).

1. For the stars composing the coronas of the cluster models, Danilov et al. (2014)
plotted the maps of the distribution of the surface density in the projection onto the
Galactic plane and the surface density profiles. Herewith, the kernel density estimator
(KDE) method was used (Silverman, 1986) and the development of the corona
structure of the OSC models in the projection onto the Galactic plane was analyzed.
During the evolution of the OSC model, the corona expands and the inhomogeneous
spatial structure is formed. The stars go to the periphery approximately at an angle
@ ≃ 45◦ to the b axis (Chumak et al. (2010) detected the values @ ≃ (30−40)◦ for
their OSC models,). The outer parts of the corona have a specific curved shape,
which was noted when studying the formation of the tidal tails of the cluster (see,
for example, Chumak et al. (2010)). The tidal tails stretch along the orbit of the
cluster (see, for example, Odenkirchen et al. (2003)). A near-periodic change in the
elongation direction of the central denser part of the corona has been observed on
the density maps with a higher resolution (Danilov et al., 2014).

2. Danilov et al. (2014) plotted the dependencies on time C of the average values
of E, Y and EC for the stars of the corona and the core of the OSC models 1−6 at
C ∈ [0, g]. Here, E is the stellar velocity module;
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model 1

Y = (E2 + U1b
2 + U3Z

2)/2 −*

is the "energy" per unit of the star mass. U1 and U3 are the constants characterizing
the force field of the Galaxy in the neighborhood of the circular orbit of the cluster;
the numerical values of these constants were defined by Danilov and Dorogavtseva
(2008) using the Galactic potential model of Kutuzov and Osipkov (1980); U1 < 0

and U3 > 0.* = * (b, [, Z ) is the cluster gravitational potential at the point (b, [, Z ).

EC = (b ¤[ − [ ¤b)/'

is a projection of the tangential velocity of the star onto the plane (b, [), ' =√
b2 + [2). Fig. 15.3 shows the dependencies on C of the values BE = 〈E〉, BY = 〈Y〉,

and BEC = 〈EC 〉 in the case of the subsystems of the cluster model with the constant
numbers of stars (fig. 15.3a−c) and of the BEC values in the case of the subsystems
with the variable numbers of stars (fig. 15.3d) for the cluster model 1. The values BE
and BEC in fig. 15.3 are given in pc/Myr (1 pc/Myr ≃ 1 km/s), the values BY are given
in (pc/Myr)2.

According to fig. 15.3, the dependencies on time of BE for the corona and BY for
the corona and the core of the cluster model contain the oscillations with a period
close to the period of the oscillations of the regular field of this model %A , see
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Fig. 15.3 The dependencies of BE , BY , and BEC on time C for the stars of the corona and the core
of the OSC model 1. Letters ℎ and 2 indicate the curves for the corona and the core, respectively.
Fig. c and d were constructed for the corona models with the constant and variable number of stars,
respectively

above. The values of 〈E〉2 in fig. 15.3a decrease slightly with an increasing C, which
indicates a slight expansion of the core, which also is weakly noticeable in fig. 15.1b
(the time-dependent 〈A〉2 in fig. 15.1b is easily approximated by a linear function of
a time 〈A〉2 ≃ W0 + W1C/gEA , where W0 = 1.735± 0.033 pc, W1 = 0.0931± 0.0187 pc).
For all considered points of time, 〈E〉2 < 〈E〉ℎ, 〈EC 〉2 < 〈EC 〉ℎ and 〈Y〉2 < 〈Y〉ℎ . The
values of 〈Y〉2 and 〈Y〉ℎ on average increase with an increasing C, while the value of
〈Y〉ℎ is close to zero, which indicates the presence of a large number of the corona
stars with the energies Y > 0. Fig. 15.3c,d show the time dependencies of the values
〈EC 〉 for the corona (and the core) models with the constant and variable numbers
of stars. The dependencies for an every subsystem shown in fig. 15.3c,d differ only
slightly. We note that other time dependencies of the parameters of the subsystems
with the constant and variable numbers of stars differ even less. Therefore, we will
use further a simpler model of the subsystems with the constant numbers of stars.
According to fig. 15.3c,d, the retrograde stellar motions predominate in the corona.
This result quite agrees with the results of a comparative analysis of the stability of
the "prograde" and "retrograde" stellar motions in the cluster models performed by
Keenan et al. (1973); Jefferys (1976); Keenan (1981a,b).

Fig. 15.4 shows the time dependencies of the number of stars #2 in the core and
#ℎ in the corona of model 1 for the case of the subsystems with the variable numbers
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Fig. 15.4 The dependencies of #ℎ and #2 on time C for the stars of the corona and the core of the
OSC model 1 (the corona model with the variable number of stars)

of stars. Fig. 15.4a shows the time dependency of the number of stars in the core and
the corona. Figs. 15.4b,c show these dependencies separately with an increased scale
along the ordinate axis. By the time C = 2gEA , the values #2 and #ℎ are obtained
equal to #2 = 109 and #ℎ = 295 (in the model of the subsystems with the constant
numbers of stars #2 = 93 and #ℎ = 307; 100 stars of model 1 of the cluster in time
g move away from its center for a distance greater than A2=40 pc; these stars form
the tidal tails of the cluster).

Fig. 15.5 shows the logarithms of the spatial density profiles in the corona of
model 1 for several time points C8 = 8 × gEA (8 = 0, 1, 2, 3); the numbers 8 in fig.
15.5 indicate the curves corresponding to the time points C8 , d =

√
b2 + [2. With

an increasing C, there is an increase of the sizes of the A, d and |Z | regions, where
the density profiles coincide or are close to each other (including the curve with the
number 3). Although, the largest values of A, d and |Z | at the boundaries of these
regions already correspond to the points located far beyond the surface of the zero
velocities corresponding to the critical value of the Jacobi constant. Best of all this
can be seen on a motion picture or with the density profiles plotted for the time
points with a small step by C. The dimensions of the region with the small changes
in the corona density profiles with an increasing C reach the values of A ≃ 3'C .

Danilov et al. (2014) performed an estimation of the phase density � of the
cluster in the neighbourhoods of each star, taking into account the data on the phase
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corona stars in the OSC model 1)

coordinates of this star and the five cluster stars closest to this one. The same estimates
of the phase density of the cluster corona were obtained by Danilov et al. (2014) for
the vicinity of the corona stars. Fig. 15.6 shows the logarithms of the mean values
of � as a function of the specific energies Y of the stars for the neighbourhoods of
which the values � were obtained, for two time points C1 = 2.5gEA and C2 = 3gEA .
The vertical bars in fig. 15.6 indicate the errors of the logarithms of the mean �
values; the numbers 1 and 2 indicate the curves corresponding to the time points C1
and C2. According to fig. 15.6, the curves of the dependencies of ln(�) on Y for the
time points C1 and C2 are close to each other in a wide range of the Y values both for
the cluster (fig. 15.6a), and its corona (fig. 15.6b).

Thus, despite the indications of a dynamical instability of the corona (small
densities in comparison with the critical one, A2 ≃ 4'C , and an accelerated expansion
of the corona), in the interval of the distances from the center A/'C ∈ [1, 3], we can
note the formation of the density and the phase density distributions close to an
equilibrium in the OSC models 1−6. This temporal equilibrium of the corona is due
to the balance between the number of stars that come to the corona from the central
regions of the cluster and escape to the corona periphery or beyond it.

Fig 15.7a shows the dependencies of the phase density logarithms for the corona
and the cluster on Y. The upper broken line corresponds to the phase density function
of the cluster, the lower one corresponds to the cluster corona PDF. The dot-and-dash
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Table 15.1 The values V: at : = 1, 2, 3 and � = −1/V4 in the OSC models at C = 3gEA

№ Object V1 V2 V3 �

of the model (Myr/pc)2 (1/Myr)
1 Cluster −4.94 ± 0.12 −9.98 ± 0.60 0.013 ± 0.001 2.59 ± 0.33

Corona −4.85 ± 0.11 −7.63 ± 0.54 0.017 ± 0.002 3.12 ± 0.56
2 Cluster −4.92 ± 0.11 −8.87 ± 0.47 0.012 ± 0.001 4.65 ± 0.81

Corona −4.83 ± 0.10 −7.34 ± 0.43 0.015 ± 0.002 7.10 ± 2.13
3 Cluster −5.73 ± 0.15 −10.10 ± 0.57 0.019 ± 0.002 3.26 ± 0.36

Corona −5.21 ± 0.13 −5.81 ± 0.52 0.031 ± 0.004 4.89 ± 1.33
4 Cluster −4.67 ± 0.12 −7.52 ± 0.43 0.030 ± 0.002 6.10 ± 1.66

Corona −4.19 ± 0.12 −4.79 ± 0.42 0.044 ± 0.005 68.4 ± 333.9
Cluster −4.43 ± 0.10 −7.07 ± 0.41 0.032 ± 0.003 ∞
Corona −4.18 ± 0.10 −4.76 ± 0.40 0.044 ± 0.005 ∞

5 Cluster −5.62 ± 0.14 −10.13 ± 0.50 0.021 ± 0.002 3.77 ± 0.55
Corona −5.35 ± 0.12 −6.56 ± 0.42 0.031 ± 0.003 10.61 ± 5.66
Cluster −5.11 ± 0.13 −9.27 ± 0.53 0.024 ± 0.002 ∞
Corona −5.23 ± 0.10 −6.37 ± 0.41 0.032 ± 0.003 ∞

6 Cluster −5.05 ± 0.15 −9.53 ± 0.45 0.029 ± 0.002 5.35 ± 0.93
Corona −4.84 ± 0.15 −7.86 ± 0.46 0.033 ± 0.003 10.23 ± 4.27
Cluster −4.60 ± 0.13 −8.68 ± 0.44 0.032 ± 0.003 ∞
Corona −4.65 ± 0.13 −7.50 ± 0.43 0.035 ± 0.003 ∞

lines show a linear regression for each of the broken lines. According to fig. 15.7a,
the curves of the ln(�) dependencies on Y for the cluster and the corona approach
each other with an increasing Y and practically coincide at Y > 0. The distribution
of the stellar velocities in the case of the PDF shown in fig. 15.7a is spherically
symmetric.

Let us consider the function ln(�) in the following form:

ln(�) = V1 + V2 · G, G = Y + V3 · ;Z + V4 · ¤Z2, (15.1)

where V8 are the constant values (8 = 1, ..., 4);

;Z = b ¤[ − [ ¤b + l(b2 + [2)

is the specific angular momentum of a stellar motion relative to the Z axis.
Such a model for the PDF of the cluster was obtained by Danilov (2000) in the

collision-less approach with the maximisation of the cluster entropy and with some
constraints (a constancy of the mass, the energy, and the angular momentum with
respect to Z axis and of the kinetic energy of the motion of the cluster stars along Z
coordinate in the process of a dynamic evolution of the OSC in the gravitational field
of the Galaxy). Fig. 15.7b shows the dependencies of the logarithms of the cluster
and the corona phase density on G for the OSC model 1 at C = 3gEA . The coefficients
V8 were determined by the Marquardt method (Marquardt, 1963) approximating the
value of ln(�) by the function (15.1). Table 15.1 gives the values of V: at : = 1, 2, 3



316 15 Dynamics of the Coronas of Open Star Clusters

and � = −1/V4 for the OSC models 1−6 at C = 3gEA (V2 are given in (Myr/pc)2, V3

in (1/Myr), V1, V4 and � are dimensionless values). According to Table 15.1, the
function (15.1) describes well enough the structure of the cluster and the corona of
the OSC models 1−3 in the phase space, and also the cluster structure in models 4−6
(the error of the coefficients V: and� in these cases are small in comparison with the
values of these coefficients). However, when describing the structure of the corona of
the OSC models 4−6, the values of� and their errors increase noticeably (especially
in model 4), which can be caused either by the spherisation of the velocity distribution
of the corona stars, or by the non-conservation with time of the total kinetic energy
)Z of the corona stars motion along Z -coordinate in these models (Danilov, 2000).
Therefore, for the OSC models 4−6, we also used the approximation of ln(�) by the
function (15.1) with V4 = 0 (in this case, � = ∞). The corresponding values V8 are
also listed in Table 15.1. According to Table 15.1, at V4 = 0, other coefficients V:
(: = 1, 2, 3) for the OSC models 4−6 change a little in a comparison with the case
V4 ≠ 0 and, apparently, depend weakly on V4. The values of V: and � for the cluster
(V (2)
:

and � (2) ) and its corona (V (ℎ)
:

and � (ℎ) ) satisfy the following inequalities:

|V (2)1 | & |V (ℎ)1 |, |V (2)2 | > |V (ℎ)2 |, V (2)3 < V
(ℎ)
3 , � (2) < � (ℎ) . The numerical values

of V (2)
:

/V (ℎ)
:

and � (2)/� (ℎ) for the OSC models can be obtained easily from Table

15.1 and used as approximate values of V (2)
:

/V (ℎ)
:

and � (2)/� (ℎ) for construction
of the phase OSC’s models (15.1) by the data on the phase coordinates of stars
obtained from observations. Here, we should note that the regression lines of the
ln(�) dependencies on Y for the corona and the cluster of the OSC models 1−6
usually intersect near the value of Y ≃ 0, and for the ln(�) dependencies on G they
intersect near G ≃ 0 (for model 1, see fig. 15.7), which can also be used in the
construction of the phase OSC models from the observational data.

There are several ways to determine the coefficients V8 (8 = 1, ..., 4) for the PDF
of the observed OSC:

• 1) if the data on the phase coordinates of a sufficiently large number of cluster
stars (# ≃ 100 − 1000) are known, in order to estimate ln(�) in the vicinity of
these stars, one can find the coefficients V8 as in this work (by approximating the
data on ln(�) by the functions (15.1));

• 2) an integration of the � (G) function by the stellar velocities makes it possible
to obtain a formula for the spatial density distribution of the number of stars that
depends on the coefficients V8 . After the transition from the spatial densities to
the apparent one, the coefficients V8 can be found by an approximation of the
distributions of the apparent densities obtained from the observational data by the
theoretical distributions of apparent densities obtained using (15.1);

• 3) an integration of the� (G) function by the stellar coordinates makes it possible to
obtain a formula for the stellar velocity distribution that depends on the coefficients
V8. After the transition from the spatial stellar velocities to the radial velocities
and the proper motions of stars, and after the approximation of the radial velocity
and the proper motion distributions obtained from the observational data by the
theoretical ones according to (15.1), one can find the coefficients V8 .
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We should note that the OSC models 5, 6 have the most massive and extended
cores at C = 0, and model 4 is the densest among the models considered here. The
general velocity distribution of corona stars in models 4−6 at C = 3gEA is somewhat
closer to spherical one than in the models 1−3. Let 31 = fEZ /fEb and 32 = fEZ /fE[ ,
wherefEb ,fE[ ,fEZ are the sample standard deviations of the velocities E b , E[, EZ of
the corona stars from their mean values, respectively. By the time C = 3gEA , the values
of 38 (8 = 1, 2) in models 4−6 are the following: 31 ≃ 1.12−1.17, 32 ≃ 0.95−1.15.
In the case of models 1−3, we find 31 ≃ 1.19−1.29, 32 ≃ 0.90−1.05, see Table 15.2.
Danilov and Dorogavtseva (2008) also detected in models 1−6 a tendency to the
formation of a spherical distribution of the stellar velocities; at '2 < A ≤ 'C , they
obtained the estimates of the spherisation time of the stellar velocity distributions
for the cluster halos Cf ≃ (9 − 25)gEA , see Table 3 from Danilov and Dorogavtseva
(2008). The radius of the core '2 was determined by Danilov and Dorogavtseva
(2008) for each time point by the radial density profile of the cluster model (as the
position of the outer by A boundary of the region of the maximum modulus of the
density gradient, '2 . 0.5'C). According to Table 15.1, the V3 value is positive,
and is much less than unity for all models. In addition, the |Y | and |V3;Z | values for
the corona stars are basically comparable to each other. It indicates a comparable
contribution of the angular momenta Z and the energy Y to the value G from (15.1) at
C = 3gEA . Apparently, in the OSC models 1−6, there is a gradual transition from the
dependency � = � (G) to � = � (Y) (at C = 3gEA it is more noticeable in the coronas
of the OSC models 4−6).

We note that the distribution of the stellar velocities in the case of the PDF
� = � (G) to a greater extent corresponds to that observed in the numerical dynamic
OSC models of Danilov and Dorogavtseva (2008), than in the case of the PDF
� = � (Y) (for model 1, see fig. 15.7). The corona stars in the OSC models 1−6 at
C = 3gEA are characterised by the motions from the cluster center along the b axis near
the points b = ±'C , [ = Z = 0, as well as by the stellar motions corresponding to the
rotation of the corona in the direction opposite to the motion of the cluster relative
to the Galactic center. Such motions are most noticeable for the corona stars located
near the [ axis in the vicinity of points b = Z = 0, [ = ±0.5'C , and gradually decrease
with a distance from the cluster center along [ axis. The average velocities of such
motions are ∼ (0.1 − 0.2) pc/Myr. The sample standard deviations of the velocities
of the corona stars from their mean values are ∼ (0.2−0.3) pc/Myr, and slightly
change (decrease) with a distance from the cluster center. The velocity distributions
of the corona stars near the cluster center have a symmetry close to circular in the
plane (E b , E[) and are stretched along the EZ axis (38 ≃ 1.26−1.48). The values 38
tend to unity with a distance from the cluster center along the b axis. For example,
for the corona of model 1 in the vicinity of points b = ±'C , [ = Z = 0, we find
38 ≃ 1.03−1.08 (8 = 1, 2). When moving away from the cluster center along the [
axis, 31 is slightly changed and 32 decreases reaching the values of 32 = 1.06± 0.10

at b = Z = 0, [ = ±'C in model 1.
We can ascribe the presence of a large number of the corona stars with the

retrograde mean motion close to the periodic one in the Galactic plane (b, [) to
the number of signs of the gravitational coupling of the OSC corona stars up to the



318 15 Dynamics of the Coronas of Open Star Clusters

-3 -2 -1 -0 1
-2

-1

0

1

2

t=0
η

c

ξ
c

(a)

-2 -1 -0 1 2
-3

-1

1

3

t=0

(b)

ξ
c

-5 -3 -1 1 3 5 7

-11

-7

-3

1

5

9

t=0

(c)

ξ
c

η
c

η
c

Fig. 15.8 The average trajectories of three groups of the corona stars in the OSC model 1: (a)
#B = 36, A ∈ [3.5, 30] pc; (b) #B = 27, A ∈ [4, 40] pc; (c) #B = 6, A ∈ [5, 40] pc

distances of ∼ 4'C from the cluster center. Fig. 15.8 shows the average trajectories
of three groups of the corona stars for model 1: a) #B = 36, A ∈ [3.5, 30] pc; b)
#B = 27, A ∈ [4, 40] pc; c) #B = 6, A ∈ [5, 40] pc, where #B is the number of stars
in the group. b2 and [2 are the average coordinates b and [ of stars in the groups in
parsecs. It is clearly seen that the retrograde stellar motions dominate in the corona,
in agreement with the results of the studies of the trajectories of the cluster stars by
Keenan et al. (1973); Jefferys (1976); Keenan (1981a,b); Takahashi and Baumgardt
(2012); Ross et al. (1997).

Danilov et al. (2014) used the conditions of the dissipation of stars found by Ross
et al. (1997) for the analysis of the gravitational coupling of the corona of the OSC
models 1−6 on the time intervals g. Using these conditions, the cluster mass for each
star at the time C was assumed equal to the total mass of all stars located at distances
A, which are smaller than the distance of the given star from the cluster center. For
an every star, the time interval ΔC was calculated during which the conditions for the
dissipation of a star from the cluster (Ross et al., 1997) are satisfied (they usually are
satisfied for the large C at the end of the considered interval of the dynamic cluster
evolution). For the OSC models 1−6, the mean value of ΔC/g for the corona stars is
in the range from ΔC/g = 0.0004± 0.0003 in model 4 to ΔC/g = 0.0017± 0.0006 in
model 1. For the 4-stars moving away in time g beyond the distance A > A2 from the
cluster center, in models 1−6, ΔC/g is in the range from ΔC/g = 0.0933 ± 0.0251 in
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Table 15.2 The values #ℎ, #3, #5, ^, 3, 31 and 32 in the OSC models

№ #ℎ, #3, #5, ^, 3, 31, 32,
model C ≤ 3gEA C ≤ 3gEA C ≤ 5gEA C/gEA ∈ [3, 5] % C = 3gEA C = 3gEA

1 307 11 (0) 142 (132) 0.23 (0.21) 96.4 1.19 ± 0.02 0.90± 0.02
2 357 31 (0) 99 (90) 0.14 (0.13) 91.3 1.29 ± 0.12 0.94± 0.10
3 291 15 (0) 47 (43) 0.10 (0.09) 94.8 1.25± 0.06 1.05± 0.06
4 374 5 (0) 44 (41) 0.06 (0.05) 98.7 1.12 ± 0.04 0.95± 0.01
5 245 7 (0) 26 (23) 0.075 (0.066) 97.1 1.15 ± 0.01 1.00± 0.14
6 369 5 (0) 15 (14) 0.026 (0.025) 98.6 1.17 ± 0.14 1.15± 0.13

model 4 to Δ/g = 0.283 ± 0.015 in model 1. Thus, ΔC/g increases sharply with the
transition from the corona stars to the 4-stars, which can be considered as one of the
arguments in favor of the gravitational coupling of the coronas of the OSC models
1−6.

Table 15.2 lists for OSC models 1−6 the following parameters: #ℎ is the number
of stars in the corona; #3 and #5 are the numbers of the corona stars satisfying
the conditions of Ross et al. (1997) of a dissipation from the cluster at C ≤ 3gEA
and C ≤ 5gEA , respectively. The values of #3 and #5 indicated in the parentheses
correspond to the stars that escape to a distance A > A2 from the cluster center at
C ≤ 3gEA and C ≤ 5gEA , respectively. Let @ = #5/#ℎ be a fraction of the dissipating
corona stars in time 2gEA at C/gEA ∈ [3, 5] (since the number of the corona stars
with distances A < A2 from the cluster center is #ℎ at C = 3gEA ). Then we can be
regard ¤#ℎ ≃ − ^#ℎ/gEA as an estimate of the average rate of the dissipation of
stars from the corona at C/gEA ∈ [3, 5], where ^ = @/2. Table 15.2 lists the value
of ^ for the coronas of the OSC models 1−6, obtained using the criterion of Ross
et al. (1997). The values ^ indicated in parentheses are determined by the stars that
escape to a distance A > A2 from the cluster center at C/gEA ∈ [3, 5]. According
to Table 15.2, the values #5 and ^ obtained using the criterion of a gravitational
coupling of stars (Ross et al., 1997) and the criterion (A < A2 at C < g) considered
in our work, are in a good agreement with each other. According to Table 15.2,
the values of #5 and ^ decrease with an increasing number of the cluster model
and with a decrease of the degree of the model’s non-stationarity. Consequently, the
stability of the corona of the OSC models 1−6 to the decay in the Galactic force field
increases with an increasing number of the cluster model and a decreasing degree
of its non-stationarity. We note that the same dependency was obtained for these
cluster models by Danilov and Dorogavtseva (2008) (the number = of the stars with
the distances A= < 'C from the cluster center by the moment C ≃ g increases with the
growing number of the model, see Table 3 from Danilov and Dorogavtseva (2008)).

According to Table 15.2, the estimates of the dissipation rate of the corona stars
range from 0.03 to 0.23 of the number of corona stars during the cluster’s violent
relaxation time at C/gEA ∈ [3, 5]. The value of 3 = (#ℎ − #3)/#ℎ (the proportion of
corona stars that are gravitationally related to the cluster according to the criterion
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of Ross et al. (1997) at C ≤ g) in percent for models 1−6 is also given in Table
15.2. According to this table, the value 3 ≃ (91−99) % and slightly changes from
one model to another, which also confirms the gravitational coupling of the corona
of the OSC models considered in this work. The reason for the slow disintegration
of the cluster coronas at A > 'C and C ∈ [0, g] can be an existence in the clusters
of conditions for the formation of a large number of periodic orbits and the stellar
trajectories close to the periodic ones with the retrograde motion and the long periods
% of a revolution around the cluster center % & g at the energies Y & 0.

In the case of the two-point OSC model (Danilov and Chernova, 2008), such
periodic orbits can be easily detected. In this model, one point corresponds to a star
with the mass <1 = 1<⊙, and the second point corresponds to the cluster with the
mass <2 = 499<⊙; the mass center of such a model moves along a circular orbit
with the radius '� = 8200 pc around the Galactic center, as well as the OSC models
1−6. The region of the possible stellar motions in the phase space for the model
of Danilov and Chernova (2008) is limited by the Jacobi integral (Y = 2>=BC) and,
apparently, by an additional quasi-integral that ensures the existence of such orbits
(see also Jefferys (1976)). Fig. 15.9 shows three periodic orbits of stars with the
specific energies (per unit of the star mass) Y = 0.1 (pc/Myr)2 (this is much greater
than the critical energy YC , which for the model of Danilov and Chernova (2008) is
YC ≃ −0.3236327). The arrows in fig. 15.9 indicate the initial direction of the stellar
motion; b and [ values are given in fig. 15.9 in parsecs.
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Fig. 15.9 Three periodic orbits of the star with Y = 0.1 in the two-point OSC model: (a) b0 =

−1.28635'C ; (b) b0 = −1.448'C ; (c) b0 = −1.6925398'C
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For all three orbits, the initial velocities ( ¤b0, ¤[0) of the stellar motion satisfy the
following conditions: ¤b0 = 0, ¤[0 > 0 ( ¤[0 is obtained from the condition Y = 2>=BC,
see Danilov and Chernova (2008)). The initial coordinates (b0, [0) of the star are
assumed by Danilov et al. (2014) equal: for the first orbit b0 = −1.28635'C, for the
second orbit b0 = −1.448'C , and for the third orbit b0 = −1.6925398'C; [0 = 0 for all
three orbits. The equations of a stellar motion in the model of Danilov and Chernova
(2008) were integrated by the Runge−Kutta method of the 4th accuracy order; the
maximum relative errorsfY of Y for orbits 1 and 2 did not exceedfY = 0.19×10−12,
and for the third orbit fY = 0.46 × 10−7. Such error for orbit 3 was realized only
near one point corresponding to the closest encounter of the masses <1 and <2 (fig.
15.9), the characteristic values of fY for third orbit are fY = (0.1−0.6) × 10−12.

Thus, according to Danilov et al. (2014), the periodic orbits at the distances
A > 'C form the mass center of the cluster do exist; the same was noted by Ross et
al. (1997). The conditions of a dissipation of stars (Ross et al., 1997) on orbits 1−3
are not fulfilled (the star in these orbits can be considered gravitationally related in
the model of Danilov and Chernova (2008)).

The period of the first orbit is % = 120.9105662 Myr (the Lyapunov time C_ = _−1

for this orbit C_ = 132.079 Myr); for the second orbit, % = 361.6663869 Myr
(C_ = 355.379 Myr); for the third orbit, % = 558.1218966 Myr (C_ = 70.952 Myr);
_ is the maximum Lyapunov characteristic exponent. The _ values were obtained
by Danilov et al. (2014) within the framework of the Floquet theory from the data
on the periods % of the orbits and on the corresponding to these orbits multipliers
of the monodromy matrix (see formula (2.22) from Yakubovich and Starzhinsky
(1972, p. 87) and Demidovich (1967, p.189)) of a system of the linearized equations
in variations written by Danilov and Chernova (2008) for the equations of a stellar
motion in the joint force field of the cluster and the Galaxy. % and C_ for the orbits
shown in fig. 15.9 are quite comparable with g for OSCs. In the vicinity of these
orbits, a large number of the non-closed trajectories quite may exist with a retrograde
motion and with the C_ values close to those found here. The time interval of a stellar
motion with such trajectories near the cluster quite may be comparable with the
periods % for the periodic orbits found here. In the OSC models 1−6, the impact of
the stars with such trajectories on the cluster can be significant. Such stars forming
the OSC corona can influence the stability of the cluster, increasing the time of its
decay in the Galactic force field.

15.4 Conclusions

In this chapter, we have discussed the following main results on the structure and the
dynamic evolution of the models of the OSC coronas.

1. We have considered the method for the corona separation in the OSC models
from the data on the stellar trajectories in these models in the life-time intervals g of
such clusters. The cluster corona includes the stars satisfying the condition A < A2
at C ≤ g; the corona does not contain the stars of the cluster core, which satisfy the
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condition A < A1 at C ≤ g, where A is the star’s distance from the cluster center;
A1 and A2 are the radii of the core and the corona, respectively (in our calculations,
A1 ≃ 0.5'C and A2 ≃ 4'C ).

2. For six numerical OSC models of Danilov and Dorogavtseva (2008), the
corona models have been presented; the parameters of the coronas, the direction
and a nature of their dynamic evolution have been discussed. The retrograde stellar
motions prevail in the corona, which is quite in an agreement with the results of
studies on the cluster stars’ trajectories of Keenan et al. (1973); Jefferys (1976);
Keenan (1981a,b); Takahashi and Baumgardt (2012); Ross et al. (1997).

3. In the interval of the distances from the center A/'C ∈ [1, 3] in the OSC models,
we have found that the close-to-equilibriumdistributions of the density and the phase
density are formed. We have considered the approximations of the phase density of
the corona and the cluster by distributions that depend on the linear combination of
an energy, an angular momentum with respect to the Z axis, and a kinetic energy in
the Z coordinate. The temporal equilibrium of the corona is due to the balance of the
number of stars coming into the corona from the central regions of the cluster and
escaping to the corona periphery or beyond it.

4. We have detected the signs of the gravitational coupling of the corona stars up
to the distances ∼ 4'C from the cluster center (the presence of a large number of
the corona stars with the retrograde mean motion close to the periodic one in the
Galactic plane (b, [); (91 − 99) % of the corona stars at the time intervals g satisfy
the criterion of the gravitational coupling of Ross et al. (1997)).

5. For six OSC models, we have considered the estimates of the corona stars’
dissipation rate: ¤#ℎ = −(0.03−0.23)#ℎ/gEA at C > g. The estimates of ¤#ℎ obtained
by Danilov et al. (2014) using the conditions for the dissipation of a star from the
cluster of Ross et al. (1997) and the conditions for the star to belong to the corona
from point 1 (see above), are in a good agreement with each other.

6. For the two-point OSC model of Danilov and Chernova (2008), we have consid-
ered three unstable periodic orbits of the stars with the energies Y = 0.1 (pc/Myr)2 >

0, the periods % and the Lyapunov times C_ comparable to the lifetime of the OSC g.
The formation of such orbits and a large number of the retrograde non-closed stellar
trajectories close to this orbits in the OSCs and in the OSC models of Danilov and
Dorogavtseva (2008) may well be the reason for the formation of the coronas in such
systems.
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Chapter 16

Appendix

16.1 Description of OSC Models

Danilov and Dorogavtseva (2008) considered the cluster models consisting of # =

500 stars, moving along a circular orbit of radius '� = 8200 pc in the plane of
the Galaxy around its center. We used the model for the potential of the Galaxy of
Kutuzov and Osipkov (1980), as well as the rotating coordinate system (b, [, Z ) with
the origin at the mass center of the cluster; the axis b is directed from the center of
the Galaxy, the axis [ is aimed along the direction of the cluster motion, the axis Z is
perpendicular to the plane of the Galaxy. The masses of the stars <8 were taken each
equal to one solar mass (<8 = 1<⊙, 8 = 1, ..., 500). At the initial point of time, the
cluster was modeled as two homogeneous balls with the coinciding centers of mass,
representing the core and the halo of the cluster (the initial halo radius '2 < 'C , 'C is
the tidal radius of the cluster model). The initial parameters '1/'2 and #1/#2 in all
considered OSC models satisfy the relation '1/'2 ≃ 0.39 × (#1/#2)0.35 obtained
from the observational data by Danilov and Seleznev (1994), where '1 and '2 are
radii of the cluster’s core and halo; #1 and #2 are the numbers of stars of the cluster’s
core and halo.

The initial positions and velocities of the stars in the OSC models have been
specified by a random number generator, so that at C = 0, the cluster does not rotate
with respect to the external galaxies, the initial density of the number of stars at
different points of the subsystems (in the halo and in the core) of the cluster in
the coordinate space (b, [, Z ) are approximately constant; the distribution of stellar
velocities is spherically symmetric. The moduli of the initial velocities of the stars
of the j-th cluster subsystem were calculated by formulas E 9 =

√
� 9* (r), 9 =

1, 2, where r = (b, [, Z ) is the radius vector of the star in the cluster; * (r) is the
gravitational potential of the cluster; indices 9 = 1, 2 correspond to the core and the
halo of the cluster, respectively. The constants � 9 were chosen so that at C = 0 the
virial equilibrium conditions for the cluster and its subsystems were fulfilled without
the taking into account the influence of the force field of the Galaxy (Danilov, 1988).
The closest encounters of the stars were excluded from consideration. For this, the
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potential* in the equations of motion of stars was considered in the form

* (r) =
#∑
8=1

�<8/
√
(r − r8)2 + n2

(here, n = 0.012A8: is the smoothing parameter, A8: is the distance between two stars
with numbers 8 and : in the cluster, A8: is the mean initial value of A8: for the cluster
model averaged by all pairs of stars).

In the calculations, the following system of units was used: pc, Myr, "⊙ . The

Table 16.1 The parameters of the OSC models

N '1/'2 #1/#2 #1 '2/'C < ' > /'C < XU/U >
1 0.24 0.25 100 0.9 0.57 0.53±0.09
2 0.24 0.25 100 0.8 0.51 0.28±0.03
3 0.34 0.67 200 0.8 0.44 0.15±0.02
4 0.24 0.25 100 0.7 0.45 0.14±0.02
5 0.45 1.50 300 0.8 0.40 0.07±0.03
6 0.63 4.00 400 0.8 0.42 0.06±0.03

initial parameters of these OSC models are given in Table 16.1 and Table 1 from
Danilov and Dorogavtseva (2008). The OSC models 1−6 are numbered in Danilov
and Dorogavtseva (2008) in the order of the decreasing non-stationarity of the model
in a regular field. Models 1, 2, 4 have the same parameter values '1/'2 and #1/#2,
but the sequentially decreasing radii '2. Models 2, 3, 5, 6 have the same values
of '2, but the sequentially increasing numbers of stars #1 and core radii '1. The
values '2 and the average distance of the star from the center of the model < ' >

in Table 16.1 are given in the units of the tidal radius 'C of the cluster model. The
degree of a non-stationarity of the OSC models in a regular field is determined by the
amplitude of the oscillations of the virial coefficient XU, where the virial coefficient
U = 2�/,; � and, are the total and the potential cluster energies obtained without
taking into account the influence of the force field of the Galaxy on the cluster. The
mean values of the ratio of the amplitudes XU of the U oscillations to the mean
value of U (averaged over the period %A of the regular field oscillations) are given in
column 7 of Table 16.1.

The phase coordinates of the OSC model stars for the different time points were
obtained by Danilov and Dorogavtseva (2008) by integrating the equations of the
stellar motion using the difference schemes of the 10th and 11th accuracy orders on
the time interval C ∈ [0, C<], where C< ≃ 5.1gEA . gEA is the time of a violent relaxation
of the cluster model. It was taken equal to gEA ≃ 2.6C2A according to the estimates of
Aarseth (1974). C2A is the average crossing time. The maximum relative error in the
computation of the cluster energy reached over the period of time C< in the models
of Danilov and Dorogavtseva (2008), was modulo (1−4) × 10−13. Let C0 be the
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time interval of the dynamic evolution of the OSC model, during which a statistical
criterion for the accuracy of the phase density calculations is fulfilled (Danilov,
1997b). At C ≤ C0, the accuracy of calculating the phase density function (PDF) of
the cluster over time interval C0 can be considered sufficient for conclusions about
the statistical properties of the PDF (Danilov, 1997b) (the empirical distribution
functions for the phase coordinates of stars obtained with the 10th and 11th orders
with the probability % ≥ 0.9 by the Kolmogorov criterion are the samples from
the same general population). Near the centers of the OSC models (Danilov and
Dorogavtseva, 2008), the value of C0/gEA is C0/gEA ≃ 3.0−3.9, and at the periphery
of the models, C0/gEA ≃ 3.6−5.1. The specified values of C0 were obtained in the
calculations with ∼ 15−16 decimals.

The initial PCS of the considered OSC models imitate the conditions close to
those that arise in the remaining gravitationally bound part of the cluster in the
Galaxy force field after the expansion of the initial cluster caused by the loss of the
gas from the cluster−cloud system due to the light pressure and the stellar wind of
the brightest O-B stars at the earlier stages of evolution (see, for example, Lada et
al. (1984); Tutukov (1978)). Moreover, Danilov and Seleznev (1994) noted that the
composite "halo-core" OSC model better describes the spatial distribution of stars
in the OSC than, for example, the King model (especially at the periphery). This
was also noted by Danilov and Putkov (2012a), who showed that the use of the King
distribution on average leads to an underestimated number of stars in the cluster
in 0.62 ± 0.02 times compared with the observations. In the modeling of the OSC
dynamics, Danilov and Putkov (2012a) proposed to introduce a homogeneous sphere
(halo) in addition to the King density distribution in order to take into account these
stars.

According to the estimates of Danilov and Seleznev (1994), the decay time of the
OSCs due to the interactions with the standard HI clouds is approximately 30−50
times greater than the time (3 − 5)gEA , at which the OSC models in this book are
usually considered, see also Danilov et al. (2014). Thus, the standard HI clouds
have a little effect on the dynamic evolution of the OSC models discussed here.
According to the estimates of Danilov and Seleznev (1994), the decay time of the
OSCs by the action of the giant molecular clouds (GMC) and the Galaxy is 3.4−5.6
times greater than (3−5)gEA , see also Danilov et al. (2014). Therefore, the close
encounters between the OSCs and GMC are quite rare and may well not occur at the
time intervals (3−5)gEA . This is indicated by the observational data of Kharchenko
(2009) on the kinematic dimensions of the OSCs of the order of (2 − 3)'C and
on the presence of the coronas in the vicinity of OSCs, see also chapter 15 of
this book. Thus, an analysis of the dynamics of the OSCs and their models over
time intervals (3−5)gEA quite can be carried out without taking into account the
interactions between the OSCs and GMC.
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16.2 Statistical comparison of OSC models

In order to control the accuracy of the obtained solutions, as well as to analyze the
stability of the statistical distributions of a number of characteristics obtained in the
simulation of the dynamic evolution of OSCs, a detailed statistical comparison of the
cluster models (Danilov, 1997c,b) can be used. In the process of an integrating the
equations of the cluster stars’ motion for the different time points, we can compare
the versions 0 and 1 of the cluster model obtained by the schemes of the different
accuracy orders. To do this, we divide all stars of the cluster model 0 at the time
point C into 10 groups (50 stars each) in the order of the increasing distances from
the cluster mass center. In this way, we set the dimensions of the phase cells in the
coordinate space (b, [, Z ) and the corresponding intervals ΔA 9 , of the distances A
from the cluster mass center (the Z axis is perpendicular to the plane of the Galaxy;
the plane (b, [) lies in the Galactic plane; 9 = 1, ..., 10).

We divide the region of the space ( ¤b, ¤[, ¤Z) occupied by the stars of the 0 and 1
versions of the cluster models, by the cells (rectangular parallelepipeds), dimensions
of which are so much smaller than the minimum distance between two stars in
the space ( ¤b, ¤[, ¤Z ) for any of versions 0 and 1, that each cell in the velocity space
contains no more than one star in any of the versions 0 and 1 of the cluster models.
We enumerate these cells in a velocity field in a certain order, after which we write
down a simple relation between the number of the cell 8 and the coordinates of the
star in the space ( ¤b, ¤[, ¤Z). A comparison of the integral stellar distributions a0 (8)
and a1 (8) (which correspond to the 0 and 1 OSC model versions) by the numbers 8
of cells containing these stars, for an each interval ΔA 9 of distances from the center,
is convenient to carry out using the Kolmogorov criterion:

_ = �

√
=0=1

=0 + =1
,

where� is the modulus of the maximum deviation of two empirical integral functions
of the distribution of stars in the velocity space: E0 = E0(8) and E1 = E1 (8); =0 = 50

and =1 are the sample sizes.
Using the limit distribution of _ (see, for example, Bolshev and Smirnov (1983))

we can calculate the probability % 9 of the fact that the considered PCS samples
for an each interval ΔA 9 of the star’s distance from the cluster center are samples
from the same general populations (the criterion of a homogeneity of the PCS value
distribution). Thus, % 9 is the probability that the differences between E0 = E0 (8)
and E1 = E1 (8) have a random character, while the PCS of the 0 and 1 versions of
the cluster models have the same distribution functions. A comparison of the sets of
the phase coordinates for the OSC models by the Kolmogorov criterion _ (Danilov,
1997b), unlike a comparison by thew Pearson criterion j2 used by Danilov (1997c),
does not require a fairly arbitrary partition of the stars into the groups in the velocity
space, leading to the loss of a part of the information available in the original PCS. In
addition, Danilov (1997b) used one component of the stellar velocity vectors more
than Danilov (1997c), which allows to take into account an information about the
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stellar motions in the cluster along a Z -coordinate and makes a comparison of the
stellar phase coordinates in the OSC models more objective.

A statistical comparison of the 0 and 1 versions of the cluster models obtained by
Danilov (1997b) according to the schemes, accuracy order of which differs by one,

showed that in the time interval C from 0 to a certain moment C0 − 0.1 × g (0)EA , % 9 is

equal to 0.999−1 for all values of 9 . At (C0−0.1×g (0)EA < C < C0 for the central regions
of the cluster model ( 9 = 1, 2), the possible estimates could be % 9 ≃ 0.93 − 0.98

for the several steps of an integration over time, after which % 9 again becomes equal
to one. Thus, at C ≤ C0, the accuracy of a calculation of the PCS distribution in the
cluster model can be considered sufficient for the conclusions about the physical
properties of the model, and the PCS distributions obtained by Danilov (1997b) with
the neighbor accuracy orders can be considered statistically indistinguishable. For
C > C0, at 9 = 1, 2, the estimates of % 9 < 0.9 appear with the subsequent oscillations
of the % 9 values from one to the minimum achieved values. With an increase of C

up to C0 + (0.1 − 0.2) × g (0)EA , the region of these manifestations of the instability of
the numerical solutions for the PCS distribution expands to the core boundary, the
minimum values of % 9 decrease, the amplitude of the % 9 oscillations increases. With
a further increase of C, the similar manifestations of the instability of the numerical
solutions for the PCS distribution become significant both in the core and near the
tidal boundary of the cluster (Danilov, 1997b). The value of C0 increases with an
increase of the accuracy order of the used difference schemes and with an increase of
the number of the decimal digits in the PCS representation, and also with a decrease
of the integration time step. However, a significant decrease in the integration time
step for the fixed values of the accuracy order of the used difference schemes and
the number of the decimal digits in the calculations may lead to a decrease in C0 due
to the increasing rounding errors during a calculation.

The C0 value may vary by ±0.1 × g (0)EA with the small changes in the initial PCS
(within ±1 % of the PCS values). Therefore, in order to analyze the manifestations
of the OSC models’ instability to the small initial PCS perturbations, it is necessary:
a) to find C0,<8= , the smallest C0 value in the compared versions of the cluster model
with the small differences in the initial PCS and to compare the versions of the OSC
models at C < C0,<8= ; b) at C > C0,<8= , to exclude from a consideration the central
cluster regions, where the PCS distributions can be distorted by the accumulated
computational errors.

A statistical criterion for the integration accuracy of the equations of a stellar
motion in the cluster (0.9 < % 9 < 1, see above), which is used simultaneously
with the dynamic criterion (� = 2>=BC), allows to control the accuracy of the PCS
distribution calculation. It makes it possible (using the finite-difference schemes of
a sufficiently high accuracy order) to divide by a time the moments of the beginning
of the significant manifestations of the actions of the initial PCS perturbations and
the calculation rounding onto the PCS distribution when studying the stability of the
numerical dynamic OSC models.
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16.3 Statistical Control of Calculations

It is convenient to use the calculation technique of Danilov (1999) to study the
properties of the PDF in the OSC models and the features of the statistical method of
the accuracy monitoring of the PDF calculation. We consider two versions (0 and 1)
of the cluster model. As in the previous Section, we divide all stars of the 0 version
at the time point C into 10 groups (by 50 stars in each) in the order of the increasing
distances from the cluster mass center. Let ΔA 9 be an interval of the distances A from
the cluster mass center, within which the 9-th group of stars is located ( 9 = 1, ..., 10).
We divide the region occupied by the cluster stars in the velocity space (EG, EH, EI),
into : similar cells in the form of the rectangular parallelepipeds, the opposite faces of
which are pairwise parallel to one of the coordinate planes in the system (EG, EH, EI).
Let ;G , ;H , ;I be the dimensions of such a cell along the axes EG , EH , EI , respectively.
Then the number of cells in the region occupied by the cluster stars along the axis
EG is

=G =
max(EG) − min(EG)

;G
, (16.1)

where maxEG and minEG (i) are the largest and the smallest values of EG for 500
cluster stars. Let :G be a cell number in the velocity space containing the star with a
given value of EG; :G = 1, .., =G :

:G =

{ [
max(EG) − min(EG)

;G

]
+ 1 at EG < max(EG),

=G at EG = max(EG),
(16.2)

where the square brackets denotes the integer part of the number in brackets. The
expressions similar to (16.1) and (16.2) can be written for =H , =I and :H , :I .

Let 8 be the number of the cell containing the star with the coordinates EG , EH, EI .
Considering (16.1) and (16.2), we find

8 = (:G − 1)=H + :H + (:I − 1)=G=H), (16.3)

where 8 = 1, ..., :, :G = 1, ..., =G , :H = 1, ..., =H , :I = 1, ..., =I . A numbering of
cells 8 = 8(:G , :H , :I ) is performed so that, as 8 increases, the :G values grow faster
than :H , and the :H values grow faster than :I .

Such a partition of the velocity space (EGEH, EI) for the OSC models also was
carried out in the previous section, as well as by Danilov (1997b) when constructing
a statistical method for the accuracy of calculations control. However, in this study,
the cell sizes are so small that each cell contains not more than one star in any
versions 0 and 1 of the cluster model. According to (16.1), the volume of the cell in
the velocity space is equal to @ = ;G ;H ;I ; the corresponding phase volume of the cell
containing stars from the interval ΔA 9 , is

&( 9) = @
4

3
c(A3

9 − A3
9−1);
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9 = 1, ..., 10, A0 = 0. Let = (0) (8, 9) be the number of stars from the 8-th cell
of the velocity space of the OSC model 0, which fall to the 9-th interval of the
distances from the cluster center. Taking into account the adopted notation, the value
of the "coarse-grained" PDF of the OSC model 0 (corresponding to the intervals
8, 9 in the spaces of the velocities v and the distances r from the cluster center) is
= (0) (8, 9)/&( 9). The average relative difference of the PDFs of the 0 and 1 OSC
model versions in the interval ΔA 9 is:

Ψ 9 =

:∑
8=1

|= (0) (8, 9) − = (1) (8, 9) |

1

2

:∑
8=1

|= (0) (8, 9) + = (1) (8, 9) |
, 9 = 1, ..., 10. (16.4)

We have reduced the numerator and denominator of the formula (16.4) by the same
factor &( 9). Following to Kandrup et al. (1994), the difference between the OSC
models 0 and 1 can be estimated from the formulas

Δ' =
1

2
ln

#∑
;=1

|Xr; |2, Δ+ =
1

2
ln

#∑
;=1

|Xv; |2, (16.5)

where Xr; and Xv; are the differences of the radius vector r; and the velocity vector
v; of the star with the number ; in the OSC models 0 and 1. The values Xr; and
Xv; in formulas (16.5) are reduced to a dimensionless form by dividing them by the
distance unit (1 pc) and the speed unit (1 pc/Myr) used in our work, respectively.

Danilov (1999) carried out the calculations of Δ', Δ+ and Ψ 9 at 9 = 1, ..., 10

for the stars from the intervals ΔA 9 at the different time points C in the interval

0 < C/g (0)EA ≤ 1.7. Danilov (1999) determined the values of Δ', Δ+ and Ψ 9 by
comparing the cluster models 0 and 1 with the identical initial PCS obtained by
the difference schemes of the 6th and 7th accuracy order (see (2) from the paper of
Danilov (1997b)), as well as by comparing the 0 and 1 OSC models with the slightly
different initial PCS obtained by the difference scheme of the 7th accuracy order. In
this model for the period of time 0 < C/g (0)EA ≤ 1.7, the control of the cluster energy is
|X�/�0 | < 0.0000058 (where �0 is the initial value of �) and the statistical control
of the PDF calculation accuracy is 0.9 < % 9 < 1.0. Here, % 9 is the probability that
the samples of the PCS from all considered intervalsΔA 9 ( 9 = 1, ..., 10) of distances
from the cluster center in the 0 and 1 cluster models, obtained by the schemes of
the 7th and 6th accuracy orders, are the samples from the same general populations
of the PCS, i.e. the differences between the PCS distributions in the versions 0 and
1 are random. According to Danilov (1997b) in this case, the accuracy of the PCS
calculation can be considered sufficient for conclusions about the physical properties
of the cluster model’s PDF. If, at C = 0, the cluster model versions 0 and 1 coincide,
and, at C > 0, the difference schemes of the 7th and 6th accuracy order are used to
calculate the PCS in the model versions 0 and 1, then the comparison of the 0 and 1
versions for the time points C from the interval 0 < C < 1.7g

(0)
EA shows that % 9 ≃ 1
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at 9 = 1, ..., 10 (Danilov, 1997b), and the values of Ψ 9 at 9 = 2, ..., 10 are within
the interval 0 < Ψ 9 ≤ 0.04.

In the central region of the cluster ( 9 = 1, A ≤ ΔA1), Ψ1 begins to increase
systematically with C > C1 ≃ (1.4−1.5)g (0)EA reachingΨ1 ≃ 0.38−0.40 at C = 1.7g

(0)
EA .

In this interval of the C values, the stellar velocity distribution in the region A ≤ ΔA1
can be represented as i0(v)+i1(v), where i0(v) is the smoothed velocity distribution
and i1(v) is a perturbation.This perturbation has the form of a sum of the amplifying
(with a growing C) peaks (at different v) located approximately in an antiphase in
the versions 0 and 1 of this cluster model. Thus, the errors of the difference scheme
of the 6th accuracy order begin to appear at C > C1 ≃ (1.4 − 1.5)g (0)EA in the form of
a phase change of the perturbations i1 (v) of the stellar velocity distribution in the
region A ≤ ΔA1. Herewith, the smoothed velocity distribution i0 (v) of the stars from
the region A ≤ ΔA1 can be considered as the same up to the values of C = 1.7g

(0)
EA

(with a probability %1 ≃ 1) in the calculations according to the schemes of the 6th
and 7th accuracy orders.

Let us consider the case when the PCS in the 0 and 1 cluster model versions at
C = 0 differ a little (within ±1 % of the PCS values), and to calculate the PCS at C > 0

in the versions 0 and 1 the difference schemes of the 7th accuracy order are used.
Fig.16.1 shows the plots of the time dependencies of Ψ 9 at 9 = 1, 9, 10 obtained by
Danilov (1999) when comparing the versions 0 and 1 of the OSC model.

At : = 125, 1000, on the time interval from 0 to C2 ≃ (0.5−1.1)g (0)EA , the Ψ 9

values increase with the time both near the center and on the cluster periphery.
During this period, the rearrangement of the cluster takes place due to its relaxation
toward the more equilibrium state. Near the cluster center, the local relaxation time
(as well as C2) is smaller than on the periphery (where C2 ≃ 1.1g

(0)
EA ). Therefore, the

rearrangement of the PDF in the central region completes earlier than at the cluster
periphery.

At C2 ≤ C ≤ 1.7g
(0)
EA , the Ψ 9 values experience the small oscillations around some

constant equilibrium values Ψ 9 both at : = 125, and at : = 1000. The established

values of Ψ 9 at : = 125 are 1.7−2.0 times smaller than at : = 1000.
During the period 0 < C < C2, the exponential divergence of the orbits of stars

with the same numbers ; in the versions 0 and 1 of the cluster model with the
small differences in the initial PCS leads to an increase in the differences in the
PDFs of these versions until the corresponding change in the number of stars in the
considered cells of the phase space does not begin to be compensated (at C > C2)
due to other stars coming from the neighbor cells of the phase space. This occurs
after the formation of an "equilibrium" PDF in the given region of the cluster, when
the relaxation transition to the equilibrium state in this region is completed to the
extent possible in these system (the oscillations of the regular field and, apparently,
the PDF acquire a steady-state character). This is possible, for example, if the cluster
PDF 5 (r, v, C) is approximately periodic with respect to the C values (at fixed r and
v) and changes quite little when passing through C from one oscillation period %A of

the regular field of the system to another; %A ≃ 0.7g
(0)
EA in this cluster model. In this

case, the instability of the OSC models to the small initial perturbations of the PDF
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Fig.16.1 The plots of the time dependencies of Ψ 9 at 9 = 1, 9, 10 in the considered model of star
cluster

in an every considered interval of ΔA 9 of distances from the cluster center manifests
itself as the differences in the velocity distributions i0 (v) and i1 (v) in the versions
0 and 1 of the cluster models of Danilov (1997b) emerging and disappearing with a
period of (0.05 − 0.15)g (0)EA .

Since the denominator of (16.4) at C > C2 differs a little from 50 (usually,

1

2

:∑
8=1

(= (0) (8, 9) + = (1) (8, 9)) = � 9 ≃ 50 ± (1 − 2),

( 9 = 1, ..., 10)), then the numerator in (16.4) also varies a little over time at
C > C2. The growing differences between i0 (v) and i1 (v) at some values of v

are compensated by the disappearing of these differences at other values of v. The
values of i0 (v) and i1 (v) experience such oscillations with respect to i(v, C) =

1
2
(i0 (v) + i1 (v)) that the value � 9Ψ 9 changes a little with time at C > C2 (this

corresponds to the constant in time amplitude of the oscillations of i0 (v) relative
to i(v, C) averaged by a velocity for each 9). At C > C2, the smaller Ψ 9 at the cluster
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periphery in comparison with Ψ1 are apparently caused by the action of the stellar
encounters less tight than in the cluster core, and also by the larger dimensions of
the considered phase cells at the cluster periphery than in its core. Even a large DSO
(the divergence of stellar orbits) at the cluster periphery may not lead to a change of
the coarse-grained PDF if the DSO dimensions do not exceed the dimensions of the
considered cells of the phase space).

In the central regions of the cluster model, the density of the number of stars and
the amplitude of the oscillations of the regular field are the greatest, so the established
values of Ψ 9 can be due to both the action of the stellar encounters in the cluster and
the interaction of stars with the changing regular cluster field. The difference between
the compared versions 0 and 1 of the OSC model at the cluster periphery can also be
due to the difference of the orbits of stars formed in the versions 0 and 1 of the cluster
model under the action of the mechanisms mentioned above. At 0 < C ≤ C2, the rate
of an increase of Ψ1 with time in this cluster model are 2 times larger than the rate of
an increase of Ψ9 and Ψ10; the value C2 in the cluster core is 2 times smaller than at
the cluster periphery (Fig.16.1). Apparently, the rate of the DSO in the cluster core
is greater than at its periphery. We note that a high rate of the DSO in the cluster core
is accompanied by the shorter time of the formation of the "equilibrium" PDF in the
cluster core (C ≃ C2) in comparison with its external areas. This is an argument in
favor of the existence of a connection between the exponential instability of the orbits
of stars and the relaxation processes in the system. The characteristics of the PDF
instability with respect to the small initial perturbations of the PDF can serve as an
indicator of the dynamic state of the cluster model. At C ≃ C2, there is a sharp change
in the properties of this instability of the PDF (see above, as well as Fig.16.1), caused
by the formation of some "equilibrium" PDF in the cluster models. The value of C2
can be regarded as an estimate of the local relaxation time in the cluster model to
the indicated "equilibrium" state. However, the virial equilibrium and a stationarity
in the field of the regular forces in such systems can not be achieved, since the
irregular forces dominate over the regular ones in a significant part of the volume
of the non-isolated open clusters (Danilov, 1997a, 1987) and support a significant
non-stationarity in the regular field in the observed OSCs (Danilov and Seleznev,
1994). It is found in the OSC models in the form of the oscillations of the values of
the virial coefficient 2() +Ω)/Ω with the practically constant amplitude and period
(here,) is the total kinetic energy of the peculiar motions of the cluster stars, Ω is the
potential energy of the cluster). After the formation of the indicated "equilibrium"
state during the time C2, the further evolution of the cluster PDF probably does not
pass so violently and rapidly (as at C < C2) as a result of the gradual development of
the "halo-core" structure of the cluster due to the stellar encounters. The evolution
of the cluster at C > C2 is also accompanied by the appearance of the new groups of
the high-energy stars at the cluster periphery after the periodic compressions of the
cluster. The formation of such groups is due to the interaction of the stars with the
changing regular cluster field (Danilov and Ryazanov, 1985).

The values of Δ' and Δ+ in the considered cluster model linearly increase
with the time in the period from C ≃ (0.1 − 0.15)g (0)EA to C ≃ 1C2A ≃ 0.4g

(0)
EA ; it

corresponds to an increase of |XA | and |XE | with time by the law ∼ exp(C/C∗), with
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C∗ ≃ 0.16g
(0)
EA ≃ 0.42C2A , |XA | =

∑#
;=1 |Xr; |, |XE | =

∑#
;=1 |Xv; |. Thus, the exponential

instability of orbits also occurs in the clusters models, the calculation of which is
controlled by means of a statistical criterion of accuracy. The value C∗ quite agrees
with the data of Kandrup and Haywood (1992) obtained for the clusters with a
smoothing of the force functions in the right-hand parts of the equations of a stellar
motion. The values Δ' and Δ+ at C > 2C2A continue to grow linearly, albeit at a

slower rate than at C < 1C2A (the corresponding values are C∗,A ≃ 0.7g
(0)
EA ≃ 1.8C2A for

|XA | and C∗,E ≃ 1.8g
(0)
EA ≃ 4.6C2A for |XE |). Such increase of |XA | and |XE | with time

is due to the expansion in the phase space of the subsystem of stars that have the
velocities greater than the critical ones and which have left the cluster and leave to
the field of the Galaxy.

In the considered versions of the OSC model in the time 1.7g
(0)
EA , the phase

volumes &( 9) increase several times at 9 = 1, and ∼ 2000 times at 9 = 10 (the
greater 9 the greater an increase of &( 9) with time). Thus, the dynamic evolution of
the OSC results in a constant decrease in the values of the PDF (the most significant
at the cluster periphery). At C > C2, the differences in the PDF of the versions 0 and 1
of the cluster model (on average over the stellar velocities) turn out to be proportional
to the values of the PDF (also averaged by the velocities) for each interval ΔA 9 of the
distances from the cluster center. Since the values of Ψ 9 ≃ Ψ 9 are relatively constant
at C > C2, with a decrease of the PDF at C > C2, the differences in the PDFs of the
versions of the OSC model with a little difference in the initial PCS also decrease
proportionally. Increase of the phase volumes&( 9) occurs mainly due to an increase
in time the intervals ΔA 9 ; the values of ;G , ;H , ;I increase only in ∼ 1.2−2.0 times

over the time 1.7g
(0)
EA .

Let us mention the following main results of this part of the work.
1. In the considered OSC model, the star orbits exhibit an exponential instability

to small perturbations of the initial PCS. The characteristic time of the corresponding
DSO is C∗ ≃ 0.4C2A , which agrees with the estimates of C∗ by Kandrup and Haywood
(1992).

2. At 0 < C < C2, the instability of the PDF of the cluster model to small
perturbations of the initial PCS leads to an increase of the mean (over the velocity
space) relative changes of the PDF with time, i.e., of the Ψ 9 values in the considered
intervalsΔA 9 of the distances from the cluster center. The values ofΨ 9 are stabilizing
at C > C2. The reason for this stabilization, apparently, is the formation of the
"equilibrium" PDF of the cluster and the relaxation transition to a state close to an
equilibriumas far as it is possible in the presence of the steady-state oscillations of the
regular field of the cluster model. The instability of the PDF of the cluster model at
C > C2 has the following features. The growing differences between the "unperturbed"
i0 (v, C) and "perturbed" i1 (v, C) velocity distributions in the intervals of time

∼ 0.1g
(0)
EA at some values of v are compensated by the disappearance of these

differences at other values of v. At the same time, the average (by the stellar velocities)
oscillation amplitude of the values of i0 (v, C) and i1 (v, C) with respect to i(v, C) =
1
2
(i0 (v) + i1 (v)) in each of the considered intervals ΔA 9 of the distances from the

cluster center is approximately constant in time.
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3. The local time C2 of the relaxation of the cluster to the considered "equilibrium"
state in the central regions of the cluster is smaller than at the cluster periphery,
where C2 practically coincides with the time of a violent relaxation of the cluster
C2 ≃ 1.1g

(0)
EA ). At C < C2, the DSO leads to an increase of Ψ1 near the cluster center

which is ∼2 times greater than the increase of Ψ 9 at the cluster periphery.
4. At C < C2, the DSO leads to an increase of Ψ 9 in all considered intervals ΔA 9

of the distances from the cluster center. The rate of the increase of Ψ 9 with time in
the cluster core is ∼ 2 times greater than at the cluster periphery. Apparently, the
rate of the DSO in the cluster core is greater than at the periphery. The higher rate
of the DSO in the cluster core is accompanied by shorter time of the formation of
an "equilibrium" PDF in the core in comparison with the values of C2 at the cluster
periphery. This is an argument in favor of the existence of a connection between
the exponential instability of the orbits of stars and the relaxation processes in the
system.

5. When using the statistical criterion for the accuracy of the computation of
the cluster PDF (% 9 ≃ 1 for 9 = 1, ..., 10 at 0 < C ≤ 1.7g

(0)
EA ), the values of

Ψ 9 obtained by comparing the PCS calculated by the difference schemes of the
6th and 7th accuracy orders do not exceed 0.04 for all the considered intervals
ΔA 9 with the exception of the central region of the cluster (A ≤ ΔA1). Near the
cluster center, the errors of calculation of the PCS according to the scheme of the
6th accuracy order become noticeable even at C ≥ (1.4 − 1.5)g (0)EA and manifest
themselves as a change in the phases of the perturbations i1 (v) of the velocity
distribution i(v) = i0(v) + i1 (v) in comparison with the phases i1(v) in the
distribution i(v) obtained by the calculations of the PCS according to the scheme
of the 7th accuracy order (i0(v) is the smoothed velocity distribution). The velocity
distributions i0(v) in the PCS calculations according to the schemes of the 6th and
7th accuracy orders with probability %1 ≃ 1 are not statistically different from each
other until the time point C = 1.7g

(0)
EA .
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