

Ministry of Education and Science of the Russian Federation

Federal State Autonomous Educational Institution of Higher Education

 «Ural Federal University named after the first President of Russia B. N. Yeltsin»

Engineering School of Information Technologies, Telecommunications and

Control Systems

MASTER THESIS

Genetic algorithms for route planning of bank employee

Supervisor: Svyatoslav Solodushkin

Student of the group: РИМ-281229

Name: Albahadili Murtdha Sadoon

Ekaterinburg

 2020

2

Abstract:

Evolutionary algorithms (EAs) are machine-learning techniques that can be used

in many applications of optimization problems in various fields.

Bank route planning is nowadays combinatorial optimization problem, in which

customers request services from a bank. Each service is composed of dependent tasks,

which are executed by employees of varying skills along one or more days. The

objective is to schedule and route teams so that the distance and cost are minimized, In

this thesis we present a solution model tackle this problem using genetic algorithm

approach.

Keywords: EAs, combinatorial optimization problem, Bank route planning

3

Content:

Abstract: .. 2

Content:... 3

Tables and figures: .. 5

Acronyms: ... 6

1. Introduction: .. 7

1.1. Objective of Dissertation: .. 9

Chapter 1 ... 10

1. Related Works (Literature review): .. 10

2. Banking system: ... 12

2.1. Types of Banking Systems: .. 13

2.1.1. Private banking: ... 13

2.1.2. Home banking: .. 13

2.1.3. Branch banking: ... 13

2.1.4. Mixed Banking: ... 14

2.1.5. Fractional Reserve Banking: .. 14

2.2. Function banking: .. 14

2.2.1. Fundamental Functions of Banks: .. 15

2.2.2. Secondary Functions of Banks: .. 16

2.3. Banking and Appointment Scheduling: .. 16

2.3.1 . Clients and Schedule Appointments: ... 17

2.3.2. Maximizing Appointment Scheduling: .. 17

Chapter 2 ... 19

1. Evolutionary Algorithms: ... 19

1.1. Natural and artificial evolution: .. 19

1.2. The classical paradigms: ... 22

1.3. Genetic programming ... 23

2. Combinatorial Optimization Problems: .. 23

2.1. Fair Layout Optimization Problem (FLOP):.. 24

2.2 . Bin Packing Problem with Conflicts (BPPC): ... 26

4

2.3. Generalized Traveling Salesman Problem (GTSP): 26

3. Genetic Algorithms: ... 28

3.1. Selection: .. 30

3.2. Crossover: ... 32

3.3. GA Simplex: ... 33

3.4. Mutation: .. 33

4. Bootstrap Aggregation (Bagging): ... 34

4.1. GA-Bagging: .. 35

Chapter 3 ... 37

1. First process: .. 37

1.1. Clients demonstration: .. 37

1.2. Initial graph plot: .. 38

1.3. Distances calculation: .. 38

2. Second process (genetic algorithm): ... 39

2.1. Population creation: ... 39

2.2. Population ranking: .. 39

2.3. Mating pool selection: .. 39

2.4. Breeding: ... 39

2.5. Mutation: ... 40

Chapter 4 ... 41

1. First experiment: .. 41

1.1. Results: ... 43

2. Second experiment: .. 45

2.1. Results: ... 47

Conclusion: ... 49

References: .. 50

Appendices: .. 54

5

Tables and figures:

Figure 1 (a) MTSP, (b) MTSP with balance of workload. 11

Figure 2 flowchart of functions banks in briefly. 14

Figure 3 A single strip solution. 23

Figure 4 Generational GA procedure. 30

Figure 5 Roulette wheel fitness-based selection. 31

Figure 6 One-point crossover. 32

Figure 7 Two-point crossover. 32

Figure 8 Uniform crossover, p ≈ 0.5. 33

Figure 9 Illustration of bagging process. 35

Figure 10 The principle of the GA bagging procedure. 36

Figure 11 Initial graph plot. 41

Table 1 Employees’ initial distances. 42

Figure 12 Employees initial routes. 42

Figure 13 Final employees’ routes. 43

Figure 14 1st experiment employees’ curves. 44

Table 2 first experiment summary. 44

Figure 15 Initial graph plot. 45

Figure 16 Employees initial routes. 46

Table 3 Employees initial distances. 46

Figure 17 Final employee’s routes. 47

Table 4 Second experiment summary. 48

Figure 18 2nd experiment employees’ curves. 48

6

Acronyms:

GA Genetic Algorithms

TSP Traveling Salesman Problem

VRP Vehicle Routing Problems

MTSP Multiple Traveling Salesman Problem

NP-Hard Non-Deterministic Polynomial-Time Hard (No Algorithm Can Solve This

Problem in Polynomial Time)

NP-Complete Non-Deterministic Polynomial-Time Complete

7

1. Introduction:

In recent decades, the world has witnessed a growing interest in intensive modern

technology. At present, the subject of technological innovation and its integration into

the economy in general, as well as in the banking system, has great importance as it

affects the relationship with the clients. The revolution in communications and

technology in the banking sector increases local and global competition. It provides the

necessary services and promotions to be able to thrive, compete, and meet the needs of

its potential clients. It also enables customers to choose between services that suit their

personal preferences.

Recently, banks have witnessed major changes in their operations and services,

and these new changes pose major challenges to the banking sector. To establish a

strong relationship with the customers modern technology is one of the most effective

tools due its competitive advantage. Modern technology has the potential to coordinate

these relationships through direct and effective communication with clients on an

ongoing basis to achieve their satisfaction and ensure loyalty.

Maintaining clients and attracting newcomers takes the bank to a higher level.

Banks seek to achieve their goals (i.e. profit and customer service), and introduction of

modern technologies in banking operations is a mean to achieve these goals because it

enhances the trust level between banks and customers.

The association between banks and business owners is another challenge in the

banking sector. The bosses and employers think about using external offices or

companies to solve problems and develop their services not only at the short period but

in the long run as well.

On the other hand, customers generally visit the bank with their problems related

to withdraws and/or deposits etc. that can be solved with the help of technological

development which consequently led to a significant decrease the number of complains.

It doesn’t reduce just the pressure on employers but provides an opportunity for them

8

to develop a new customer service to help the bank as well as the clients. the idea is

Reverse this process where the employee must visit the customer

Such tasks are usually handled by a special team where the CEO or project

manager distributes the employees according to a specific algorithm. The development

of such algorithm programmatically is very important to anticipate many customers.

Which reflects the importance of technology in the distribution process, organization

of visits and customer identification.

The new service also requires a comprehensive study to design a plan by

specialists to develop the appropriate solution for this service, where the number of

clients, time of their visit and distance between them is well managed. It is one of the

biggest problems bank managers are facing to get the best outcome for the bank and

clients at the same time which are almost impossible to tackle without the interference

of modern technology.

Account managers are bank employees who come to meet with a client to open a

current account. The impression that these meetings leave directly affects the image of

the bank in the eyes of the client, therefore it is important that the manager’s route be

drawn up correctly and not be late for the meeting. In addition, do not forget that

managers - living people with their own preferences - would also like to participate in

planning (for example, indicating a convenient start and finish point for the route, or

setting the days on which they can work). This assignment proposes to develop a route

planning system that takes into account the wishes of both employees and customers of

the bank.

The task is similar to the well-known traveling salesman problem and, if properly

implemented, will positively affect the work of several hundred bank employees.

9

1.1. Objective of Dissertation:

The main objective of this dissertation is to develop a genetic algorithm which

manages the distances from employs to customers and the times required for each

process.

10

Chapter 1

1. Related Works (Literature review):

The various applications of MTSP arise in real world problems such as school bus

routing, printing press scheduling, interview scheduling, crew scheduling, hot rolling

scheduling, mission planning and design of global navigation satellite system (GNSS).

Due to its diversified applications, the MTSP has been extended to many practical

variants such as MTSP with multiple depots, fixed charges, fixed number of salesmen,

and time windows [5]. Since the MTSP is an exceptional variant of TSP, the solution

procedures available for TSP can also be applicable for MTSP. Additionally, the MTSP

can be extended to countless practical situations like distribution system in

transportation, particularly in vehicle routing problems (VRP). This study keeps much

attention on MTSP than the usual TSP. The solution approaches used to solve MTSP

can be categorized into heuristics, meta-heuristics, and exact approaches. Different

heuristic algorithms have been presented in the literature to solve MTSP and its

variants. The first heuristic algorithm for min-sum MTSP was appeared in [6], where it

utilizes an extension of prominent Lin and Kernighan heuristic. A two-phase heuristic

algorithm has been proposed to solve no-depot min-max MTSP, where m tours are

established in the first phase, and these tours are explored in phase two. A neural

network-based solution procedure [7] has been developed for solving MTSP. A

competition based neural network approach [8] for MTSP with minmax objectives has

been projected. (Soylu, 2015) presented a general variable neighborhood search

algorithm (VNS) for MTSP and which was then applied to a real-life problem raised in

traffic signalization network of Kayseri province in Turkey [9]. The exact solution

procedures for different models of MTSP can be found in [10][11][12]. Apart from the

heuristics and exact algorithms, bio-inspired methods like genetic and evolutionary

algorithms have been developed to tackle MTSP and its variants in the literature.

(Yousefikhoshbakht et al, 2013) [13] recommended a modified version of ant colony

11

optimization (ACO), which exploits an effectual method to overcome the local

optimum. A genetic algorithm based novel approach [14] has been improved to tackle

MTSP. (Larki and Yousefikhoshbakht, 2014) gave an efficient evolutionary

optimization approach [15], which includes the composition of modified imperialist

competitive algorithm and Lin-Kernigan heuristic. A new steady-state grouping

genetic algorithm (GGA-SS) (Singh & Baghel, 2009) has been built for MTSP. A

genetic algorithm utilizing new crossover operator known to be two-part chromosome

crossover (TCX) [16] (Yuan et al., 2013) has been recommended for solving MTSP

[17]. (Sarin et al, 2014) studied the multiple asymmetric travelling salesmen problem

with and without effect of precedence constraints [18]. (Venkatesh and Singh, 2015)

presented two meta-heuristics such as artificial bee colony (ABC) and invasive weed

optimization (IWO) algorithms to tackle MTSP [19]. (Wang et al, 2015) proposed an

improved non-dominated sorting genetic algorithm II (NSGA-II) by applying the set of

experience of knowledge structures (SOEKS) to tackle MTSP [20]. (Bolanos et al,

2016) developed an effective genetic algorithm (GA) to solve MTSP [21]. (Changdar

et al, 2016) studied the solid MTSP in the fuzzy environment and proposed a hybrid

algorithm based genetic and ant colony optimization approach [22].

There is wide research on TSP, including TSP with time windows [23], TSP with

minimum ratio [24]. Most of the existing solutions consider different constraints,

whereas finding a minimum Hamiltonian cycle. At present, the approaches of TSP are

divided into exact and approximate algorithms. The former mostly includes dynamic

programming, branch and bound, [25], integer linear programming, etc. But, if the scale

of the TSP becomes too large, its overall computational time and solution space will

increase exponentially.

By biological activities or natural phenomena Inspiration, some well-known

heuristic algorithms have been developed to solve large-scale TSPs, including ACO,

PSO, and GA. There are important research opportunities in the improvement of such

12

heuristic algorithms and their combination. [26] suggest two new crossover operators

to improve the global ergodic property of GA, which is a better key for classical TSP,

but not for complex TSP with multiple constraints. [27] present an improved dynamic

programming algorithm to deal with large-scale data, used as crossover and mutation

operator in GA. [28] integrate K-means algorithm, [29] with the greedy algorithm and

Lin Kernighan’s algorithm [30] to create an improved solution for large-scale TSP.

Though, this method is significantly affected by the scale of the subset partition.

Figure 1: (a) MTSP, (b) MTSP with balance of workload

2. Banking system:

The banking system is the union of a large number of companies or entities

together. They carry out their specific occupation of raising funds and lending resources

in the financial and economic markets [1]. A network of COMMERCIAL BANKS and

other more dedicated BANKS (such as INVESTMENT BANKS, MERCHANT

BANKS, SAVINGS BANKS) receives deposits and savings from the general public,

companies, and other institutions, and provide money transfers and other types of

financial services for clients, operating loans and credit facilities for borrowers and

investing in corporate and government securities. The banking system is part of a wider

financial system and has a major impact on the country's “monetary economy”. Bank

13

deposits occupy a central place in the supply of funds in the countries, and thus the

banking system is closely regulated by the monetary authorities [2].

2.1. Types of Banking Systems:

The group of banks in the economic system is compatible with the banking or

banking system. However, there are various types of banks that are interested in the

sector to which this entity is oriented and the size of its activity. Here are five various

types of banking systems, which are currently used all over the world:

2.1.1. Private banking:

It is a highly professionalized and management global of a client’s assets. It aims

to meet the investment, financial, wealth, and tax planning needs of individuals or

groups of families with high equity. Private banking is therefore devoted to financial

counsel and asset management. Therefore, many variables are considered, for which it

is crucial to make the best profile of the client [2].

2.1.2. Home banking:

It is called Home Banking Services for all of those resources, tools, and allocations

that aim to bring banking services closer to customers as possible. Through this, we can

find several forms of banking services depending on the connection routes.

Thus, through digital applications, like as online banking, through telemetric

means, through the telephone to execute various operations and checks, digital banking,

which is a wider term that gathers all the above, [2].

2.1.3. Branch banking:

Branch Banking is a system where banking business is performed on by a single

bank with a network of branches across the country and their offer. The bank will have

a main office in one city and branches in different portions of the country. The manager

of the branch in accordance with the regulations and policies of the head office guides

the affairs of the branch. Each bank is a single entity owned by the shareholder's group

14

and managed by a group of directors. A bank can decide to create a branch banking

organization [2].

2.1.4. Mixed Banking:

Mixed banking is a banking system where a bank gathers both investment banking

as well as deposit banking. This means the bank will supply short-term loans for trade,

commerce, and long-term finance for industrial units. Whereas this type of banking

encourages rapid industrialization, the mixed banking system decreases the liquidity of

funds of commercial banks [2].

2.1.5. Fractional Reserve Banking:

Fractional reserve banking is a system of banking in which banks save a portion

of their clients’ deposits in reserves.This portion is known as the ratio of cash. Under a

fractional reserve banking system, banks are not required to keep 100% of their clients

’deposits in their reserves. In this manner, they can lend the bit of the deposits that they

are not compelled to keep in reserves, which permits them to obtain gains and

remunerate the deposits. This system presupposes that depositors will never pull out all

their money at the same time. Fractional reserve banking permits a phenomenon named

a bank multiplier to happen.

2.2. Function banking:

Banking was defined as “Accepting for the purpose of lending & investment, of

deposit of money from the public, repayable on demand order or otherwise and

withdrawable by cheque, draft or otherwise”. Banking means dealing business with a

bank such as depositing or withdrawing funds or demand a loan see figure 2.

15

Figure 2: flowchart of functions banks in briefly.

2.2.1. Fundamental Functions of Banks:

The fundamental functions of a bank are also called as banking functions. They

are the major functions of a bank [3]. These fundamental functions of banks are clarified

below:

2.2.1.1. Accepting Deposits:

The bank gathers deposits from the public. These deposits can be of varieties

forms, such as:

- Deposits for Saving.

- Deposits for Fixed.

- Deposits for Current.

- Deposits for Recurring.

2.2.1.2. Granting of Loans and Advances:

The bank provides loans to the business community and other individuals of the

public. The ratio charged is greater than what it pays on deposits. The difference in the

rates of interest (rate of lending and the rate of deposit) is its profit.

16

The kinds of bank loans and advances are:

- Loans

- Discounting of Bill of Exchange

- Overdraft

- Cash Credits

2.2.2. Secondary Functions of Banks:

The bank executes a number of secondary functions, also named as non-banking

functions. These significant secondary functions of banks are clarified below:

2.2.2.1. Functions of Agency:

The function of the bank as an agent of its customers.

The bank performs a number of agency roles which includes:

- Funds Transfer

- Cheques Collection

- Periodic Payments

- Management of Portfolio

- Periodic Collections

- Other Agency works.

2.2.2.2. Public utility functions:

The bank also performs public utility functions, such as:

- Issuing drafts, letters of credit,

and others.

- Treasury facility

- Subscription of shares

- Dealing in foreign currencies

- Project reports

- Social Care Programmers

- Other utility functions.

2.3. Banking and Appointment Scheduling:

With all the developments in the field of electronic banking, people still want a

face to face experience. One area that successfully reconciled traditional and digital

channels and renewed user experience is scheduling appointments. There is a positive

response among clients who use the software of appointment scheduling to book

meetings at local banks.

17

2.3.1. Clients and Schedule Appointments:

The current survey shows that scheduled appointments are the most prevalent of

hiking visits in major business hours. Scheduled appointments reached their peak in the

morning between 10:00 AM and 11:00 AM, and at 4:00 PM. In contrast, walking visits

at that time were much lower and generally peaked from 12:00 p.m. to 1:00 p.m. (lunch

hour dates). When it comes to traffic per day, walking visits were the highest on

generally low traffic days (Monday, Tuesday, and Wednesday). However, they failed

to exceed the number of appointments scheduled at the end of the week, when most

account holders visited the local branch office [4].

2.3.2. Maximizing Appointment Scheduling:

- Take an Omnichannel Approach:

Due to their attract, account owners gladly to test new systems, like mobile apps,

online, and other digital applications. But at the same time, they are reluctant to give

up these that are currently using it. They want new features to add to their experience,

not replace existing applications. An appointment scheduling app emphasizes the intent

to provide convenience and availability with a full range of accessible channels.

However, even the most receptive consumers of digital channels prefer the option to

book appointments in a conventional way. It is common when they are dealing with

complicated affairs and require expert advice from the finance professionals [4].

- Optimize Available Resources:

Demanding account owners to schedule appointments is less time-consuming for

them. It also gives administrators the opportunity to collect data to evaluate and

improve scheduling. Knowing who they are meeting beforehand, enables them to better

organize available resources, so staff can better serve each client for best performance.

Consequently, it allows employees to meet with more clients and facilitate operations

and use resources to their maximum possibility. And ultimately that reduces costs,

improves performance, and increases sales output and efficiency [4].

18

- Data-Driven Decision Making:

Appointment scheduling software allows employees to require a data-backed

approach to service. These tools make it easy for employees to know what clients want.

They also pinpoint the time after they make visits that lead to sales. Decision-making

becomes data-driven and allows employees to customize each decision to suit demand.

this could be done at every branch office for optimum profit across the board. the

employees can maximize the success of their appointments right by leveraging the

facility of appointment scheduling software [4].

19

Chapter 2

1. Evolutionary Algorithms:

Evolution is the theory postulating that all the various types of living organisms

have their origin in other pre-existing types, and that the differences are due to

modifications inherited through successive generations. Evolutionary computation is a

branch of computer science concentrating on algorithms inspired by the theory of

evolution and his internal mechanisms. The definition of this field in computer science

is not clear, but it could be considered as a branch of computational intelligence and

may be involved in the broad framework of bio-inspired heuristics.

1.1. Natural and artificial evolution:

Fundamentally, the original theories regarding evolution and natural selection

were almost proposed concurrently and independently by Charles Robert Darwin and

Alfred Russel Wallace in XIX century, combined with selectionism of Charles

Weismann and genetics of Gregor Mendel, are accepted in the scientific community,

and widespread among general public.

This theory (called Neo-Darwinism) offers the basis for the biologists: through it,

the whole process of evolution is described, requiring notions such as reproduction,

mutation, competition, and selection. Reproduction is the process of creating an

offspring where the new copies inherit traits of the old ones. Mutation is the unpredicted

alteration of a trait. Competition and selection are the inevitable strive for survival

caused by limited resources environment.

The evolution process is a mechanism which progresses as a sequence of steps,

some are deterministic and some mostly random [31]. Such an idea of random forces

formed by deterministic pressures is inspiring, and not surprisingly, has been exploited

to explain phenomena quite unrelated to biology. Important examples include

alternatives conceived during learning [32], ideas striving to survive in our culture [33],

or even possible universes.

20

Evolution may be seen as an improving process that makes raw features perfect.

in fact, this is a mistake that all biologists warn us not to do. However, if evolution is

seen as a force pushing toward a goal, another awful misunderstanding, it must be

granted that it worked quite well: in some million years, it turned unorganized

assembles of cells into wings, eyes, and other amazingly complex structures without

requiring any a-priori design. The whole Neo-Darwinist paradigm may hence be

regarded as a powerful optimization tool, able to produce great results starting from

scratch, not requiring a plan, and exploiting a mix of random and deterministic

operators.

Dismissing all complains of biologists, evolutionary computation practitioners

loosely mimic the natural process to solve their problems. Since they don’t know how

their goal could be reached, at least not in details, they exploit some neo-Darwinian

principles to cultivate sets of solutions in artificial environments, iteratively modifying

them in discrete steps. Indirectly, the problem defines the environment in which

solutions strive to survive. The process has a defined purpose. The simulated evolution

is simplistic if not even implausible. Yet, successes are routinely published in the

scientific literature. Solutions in a given stage inherit qualifying traits from solutions in

the previous ones, and optimal results gradually emerge from the artificial primeval

soup.

In evolutionary computation, a single candidate solution is named individual; the

set of all candidate solutions is termed population, and each step of the evolution

process called generation. The ability of an individual to solve the given problem is

measured by the fitness function, that ranks how possible one solution to propagate its

characteristics to the next generations. Most of the jargon of evolutionary computation

mimics the terminology of biology. The word genome denotes the whole genetic

material of the organism, whereas its actual implementation differs from one approach

to another. The gene is the efficient unit of inheritance, or, practically, the smallest

21

fragment of the genome that may be modified during the evolution process. Genes are

positioned in the genome at specific positions so-called loci, the plural of locus. The

alternative genes that may occur at a given locus are termed allele.

Biologists distinguish between the genotype and the phenotype: the former is all

the genetic constitution of an organism; the latter is the observable properties that are

formed by the interaction of the genotype and the environment. Various evolutionary

computation practitioners don’t stress such a precise distinction. The fitness value

which associated to an individual is sometimes assimilated to its phenotype.

To produce the offspring for the next generation, evolutionary algorithms

implement both sexual and asexual reproduction. The former is generally named

recombination; it necessitates two or more participants and implies the possibility for

the offspring to inherit different characteristics from different parents. The latter is

called replication, to indicate that a copy of an individual is created, or more commonly

mutation, to stress that the copy is not exact. In some applications, mutation takes a

place after the sexual recombination. Practically no evolutionary algorithms take into

account, gender; whereas, individuals don’t have distinct reproductive roles. All

operators which modify the genome of individuals can be cumulatively so-called

genetic operators.

Mutation and recombination introduce variability in the population. Parent

selection is also frequently a stochastic process, while biased by the fitness. At each

generation, the population broadens and contracts rhythmically. First, it widens then

generates the offspring. Then, it shrinks when individuals are discarded. The

deterministic pressure regularly takes the form of how individuals are chosen for

survival from one generation to the next. This step may be termed survivor selection.

Evolutionary algorithms are local search algorithms because they only explore a

defined region of the search space, where the offspring define the concept of

neighbourhood. They are heuristic algorithms, as they are based on the trial and error

22

paradigm. They are not usually able to guarantee mathematically an optimal solution in

a finite time, while interesting mathematical properties have been proven over the years.

If the present boundary of evolutionary computation may seem unclear, its

inception is much more hazy. The field does not have a single recognizable origin.

Some scholars identify its starting point in 1950, when Alfred Turing reported the

similarities between learning and natural evolutions [34]. Others pinpoint that the

inspiring ideas appeared in the end of the decade [35] [36], even though, the lack of

computational power significantly impairs their diffusion in the broader scientific

community. More commonly, 1960s was the birth of evolutionary computation with

the appearance of three independent research lines, namely: evolutionary programming,

genetic algorithms, and evolution strategies. Despite the slight disparity, the pivotal

importance of these researches is unquestionable.

1.2. The classical paradigms:

The most common concept in evolutionary computation is Genetic algorithm. It is

abbreviated as GA, and it is so popular that in the non-specialized literature it is often

used to denote any kind of evolutionary algorithm. The reputation of the model is

related to the name of John Holland and his 1975 book, however the methodology was

used and described during the course of the previous decade by several researchers,

including many Holland own students. Genetic algorithms have been proposed as a

step-in classification system, a technique also proposed by Holland. Though, it may be

maintained that they have been exploited more to study the evolution mechanisms

itself, rather than solving actual problems.

Quite basic test benches were used to evaluate various strategies and schemes, as

trying to set a number of bits to a specific value. Many variations have been proposed.

So, even in this pioneering epoch, is not sensible to describe a canonical genetic

algorithm.

23

1.3. Genetic programming

The last evolutionary algorithm outlined in this introduction is genetic

programming, abbreviated as GP. Whereas µGP shares more with it its name than its

essence, the approach presented in this research owes a deep debit to its underlying

ideas. Genetic programming was developed by John Koza, who described it after

applying for a patent in 1989. the methodology’s ambitious goal is to create computer

programs in a fully automated way, using Neo-Darwinism as an optimization tool. The

original version was written in Lisp, an interpreted computer language dating back to

the end of the 1950s. The Lisp language has a unique ability to handle fragments of

code as data, allowing a program to build up its subroutines before they are evaluated.

Everything in Lisp is a prefix expression, except variables and constants. lisp programs

were Genetic programming individuals; thus, they were prefix expressions too. Since

the Lisp language is as flexible as inefficient, in the following years, researchers

switched to alternative implementations, generally using compiled language. Indeed,

the need for computational power and the quest for efficiency have been constant

pushes in the genetic programming research since its origin. Although the distinction

between an expression and a program was subtle in Lisp, it became more apparent in

later implementations. Most of the algorithms presented in the literature clearly tackle

the former, while hardly applicable to the latter

2. Combinatorial Optimization Problems:

Combinatorial Optimization Problems are very common in industrial processes

and planning activities. They are problems where a solution is composed by a set of

fundamental discrete decisions or assumptions. Every decision may influence the

global cost and the feasibility of the solution. The trivial way to solve a combinatorial

optimization problem is to list the elements of the corresponding feasible solutions set

and pick up the best one. However, because of the combinatorial nature of the

24

considered problems, in real cases the number of solutions to be enumerated (feasible

or unfeasible) for a given problem is intractable even for very powerful computers.

To deal with the difficulty in solving Combinatorial Optimization Problems, some

techniques have been proposed:

• Branch and Bound approaches in which the solution space is systematically

divided, and its subsets of solutions are evaluated on the objective function value,

according to their limits;

• Heuristic methods, where the problem is solved through the application of

experience-based techniques. When these techniques dirive from other generic or

natural problems rather than the original problem, we call them Meta-heuristic;

• Methods based on Integer/Mixer Programming and Hybrid methods that

combine some of previously mentioned approaches.

The most common optimization problems are:

- Fair Layout Optimization Problem (FLOP).

- Bin Packing Problem with Conflicts (BPPC).

- Generalized Traveling Salesman Problem (GTSP).

2.1. Fair Layout Optimization Problem (FLOP):

Fairs and expositions are now essential tools for providing industrial exhibits and

demonstrations. According to the International Association of Fairs & Exposition

(IAFE), over 3 200 fairs are currently held in North America each year. The Association

of the European Major Exhibition Centres (EMECA) reports that more than 36 million

visitors and upwards of 330 000 exhibitors take part in approximately 1000 EMECA

exhibitions. A relevant logistical issue in the organization of a fair concerns the way in

which the stands must be placed in the exhibition space so as to satisfy all constraints

(security, ease of access, services, to mention just a few) arising in this kind of event,

25

and to maximize the revenues coming from the exhibitors. Such issue is frequently

manually solved by the organizers on the basis of experience and common sense.

We are given:

- a non-convex two-dimensional surface that may contain holes (exhibition area);

- an axis-aligned minimal rectangle which encapsulates the exhibition area and

touches it on the borders;

- an unlimited number of identical rectangular stands;

- a minimum width needed for the aisles.

The Fair Layout Optimization Problem we consider consists in orthogonally

allocating the maximum number of stands, without rotation, to vertical strips parallel

to the vertical edges of the rectangle, by ensuring left and/or right (see below) side

access to each stand.

Concerning the access constraint, we will consider two variants of the problem,

that are frequently encountered in practice:

Figure 3: A single strip solution.

- FLOP1: it is required that each stand (i.e., each strip) can be accessed from both

sides, as in the solution depicted in Figure 3;

- FLOP2: it is allowed to place pairs of strips with no space between them, thus

obtaining stands that can be accessed from one side only.

26

2.2. Bin Packing Problem with Conflicts (BPPC):

In the Bin Packing Problem with Conflicts (BPPC), we are given a set 𝑉 =

 {1, 2, . . . , 𝑛} of items, each item i having a non-negative weight wi, and an infinite

number of identical bins of weight capacity C. We are also given a conflict graph 𝐺 =

 (𝑉, 𝐸), where E is a set of edges such that (𝑖, 𝑗) ∈ 𝐸 when items i and j are in conflict.

Items in conflict impossible to be assigned to the same bin. The goal of the BPPC is to

assign all items to the minimum number of bins, ensuring that the total weight of the

items assigned to a bin doesn’t exceed the bin weight capacity and that no bin contains

items in conflict.

The BPPC is important because of the high number of real-world applications, and

because it generalizes other important problems in combinatorial optimization. Some

BPPC real-world applications include examination scheduling [37], the assignment of

processes to processors and the load balancing of tasks in parallel computing [38].

Other applications concern particular delivery problems, such as food distribution,

where some items cannot be placed in the same vehicle [39].

2.3. Generalized Traveling Salesman Problem (GTSP):

The traveling salesman problem (TSP) is a well-studied combinatorial

optimization problem with applications ranging from routing to scheduling. It can be

classified based on several factors. For example, the TSP can be classified based on the

objective function: minimizing the tour cost, maximizing the profit, or a combination

of both; and it can be classified based on vehicle capacity, etc.

One real-life application of this problem can be in planning a tour for doctors in

an underdeveloped region or at a time of crisis to serve the maximum number of

patients. In addition, in health economics, registrars visit different hospitals to collect

patient documents while maximizing the total number of served hospitals with a limited

budget [40]. In disaster management problems, an objective can be to maximize the

27

number of served injured people by trained medical staff with limited time and budget

constraints who must travel to different locations affected by the disaster, assuming that

injured people could be transferred to locations on the route [41].

The traveling salesman and vehicle routing problems have been well studied.

Several extensions of each problem can be modelled using different objectives and/or

additional constraints.

In a regular TSP, the objective is to find a tour that covers all cities while

minimizing the total cost of traveling. A variation of the TSP that has a profit associated

with each node can be seen as a bi-criteria problem, where the objective is to maximize

the collected profit from visiting each node while minimizing the cost of traveling. The

solutions include a set of non-inferior feasible solutions, which none of the objectives

can improve except by deteriorating the other objective, the TSP can be different based

on the following:

- Number of travellers: If there is more than one traveller who can serve the nodes, then

more than one tour can exist in the problem. This problem is called a multiple

traveling salesman problem (MTSP). Some variations of this problem are where

the number of travellers is not fixed. In the case of a varying number of travellers,

there is a cost associated with each route (i.e., to each traveller). If there is a capacity

associated with each traveller, then the problem is called a vehicle routing problem.

- Number of depots: If there is more than one depot having a fleet of vehicles, then the

problem is called a multiple depot vehicle routing problem (MDVRP). In one

variation of the problem, vehicles departing from a depot must return to the same

depot (i.e., this is a fixed-destination problem). Vehicles departing from a depot can

return to any other depot in a different variation (i.e., a non-fixed-destination

problem).

- Time windows: The TSP with time windows has a time window associated with each

node, which requires that each node be served during its corresponding time interval.

28

The Generalized Traveling Salesman Problem (GTSP) is a variant of the Traveling

Salesman Problem (TSP). We are given an undirected graph G = (V, E), where 𝑉 =

 {1, . . . , 𝑛} is the set of vertices and E is the set of edges, each edge (𝑖, 𝑗) having an

associated cost 𝑐𝑖𝑗 . The set of vertices V is partitioned into m clusters 𝑉1, . . . , 𝑉𝑚. GTSP

is to find an elementary cycle visiting at least one vertex for each cluster, and

minimizing the sum of the costs of the travelled edges. If a directed graph is considered,

the problem is denoted as Asymmetric GTSP (AGTSP). We focus on the commonly

considered version of the problem, i.e. the so-called Equality GTSP (E-GTSP), in which

the cycle must visit exactly one vertex per cluster. Both the GTSP and the E-GTSP are

generalizations of the TSP: we obtain the TSP in the particular case where each cluster

is composed by just one vertex. Consequently, both problems are NP-Hard since the

TSP is NP-Hard.

3. Genetic Algorithms:

Proposed in 1975 by J. Holland [42], the genetic algorithm (GA) is an optimization

method that was inspired by the evolution concept. GA does not guarantee to find the

optimal solution of the problem, however there is empirical evidence [43] that solutions

are between acceptable levels, in a competitive time with the rest of combinatorial

optimization algorithms, i.e. simulated annealing, sequential search methods, hyper-

climbing, etc. Burjorjee offered an explanation for the remarkable GA adaptive

capacity [44]. Furthermore, Burjorjee presents evidence that strongly proposes that GA

can implement hyper-climbing extraordinarily efficiently for complex optimization

problems. Moreover, GAs does not make any presumptions about the search space for

the optimization problem. These are some of the reasons why GAs have been applied

to solve a wide range of engineering and scientific optimization problems [43].

29

To understand GA functionality, it is better to first explain how the optimization

problem variables must be encoded and then recombined. The theoretical foundation

of the GA requires the optimization problem variables to be encoded into a string of

either (1) binary bits, (2) real numbers or (3) characters. Each bit, real number, or

character in GA, the string is called gene or parameter, and they form as an ensemble a

chromosome, also called string or individual. In this work we refer to the variables in

the string as parameters and the ensemble of parameters as chromosome. Every

different combination of the parameters in the chromosome represents a different

variable in the optimization problem search space.

For example, let us consider a simple case in which we want to find the X and Y

values to maximize the next equation: 𝑠𝑖𝑛(𝑋2)𝑙𝑜𝑔(𝑋𝑌). One possible encoding

solution is to have a string of two real numbers (two parameters forming a chromosome)

for X and Y . Chromosomes with different X and Y values represent a different

variables to the problem.

The recombination or crossover needs two or more chromosomes (parents) to

generate a new chromosome (offspring). The objective of the crossover operator is to

find a new set of parameters that produces an optimum value in the variables to the

optimization problem.

Once variable encoding is decided, the first step in GA is creation of a random

initial population (set of variables with random encoded parameter values to form a

population of n chromosomes). Next, each chromosome in the population is evaluated

to have a measurable value that shows how well the set of parameters perform as

solution for the problem at hand.

The GA then executes the selection operator to choose the chromosomes to be

recombined. The selection operator offers more opportunities to the chromosomes that

performed the best in the optimisation problem; however, it is important not to discard

weaker chromosomes completely, in order to avoid premature convergence. Finally,

30

crossover is applied to the selected chromosomes. Selection and crossover operators try

to preserve the combination of the parameter values that obtained a better result for the

optimization problem.

The GA repeats the selection and crossover operators in order to provide a better

set of parameters (chromosome) after every iteration. Figure 4 shows the GA

procedure.

Figure 4: Generational GA procedure.

In GA terminology, the optimisation function is called objective function.

Moreover, the value that indicates the appropriateness of the chromosomes is known as

fitness value and it is calculated by the the fitness function.

The selection, crossover and mutation operators are defined in more detail in the

following subsections.

3.1. Selection:

The selection operator selects chromosomes from the entire population for later

recombination. The most frequently used selection algorithms are tournament selection

and roulette wheel.

Tournament selection algorithm consists of taking k random from population

chromosomes. The chromosome having the highest fitness value is then used as parent

for the crossover. The tournament size k determines the probability of selection the best

31

chromosome from the population, known as selection pressure. Weak chromosomes

have more probabilities to be selected when k is small (low selection pressure), in the

extreme case when k = 1 the chromosome selection is a random process. Moreover, if

the value of k is close to the number of chromosomes in the population the probability

of selecting the best chromosome increases. Stone and Smith [45] observed that high

selection pressure causes low diversity in the population. Thus, the value of k is GA

critical factor which depends on the number of chromosomes in the population.

Tournament selection algorithm adds k as an extra parameter to the GA, therefore

roulette wheel is often preferred. In roulette wheel selection, the chromosomes have a

probability p of being chosen depending on their relative fitness value. For a

chromosome i in the population, the selection probability pi is calculated by equation:

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘
𝑛
1

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is the fitness value for chromosome i, and n is the number of

chromosomes in the population.

The algorithm may be seen as a real roulette wheel, in where after the wheel

spinning, the pivot indicates the selected pattern. Figure 5 an example of a population

of four chromosomes and their probability to be chosen.

Figure 5: Roulette wheel fitness-based selection.

32

3.2. Crossover:

As in every optimization algorithm, in order to improve the current value of

criteria function, a new set of parameters must be chosen. In a GA the crossover

operator was inspired by mix of genes in reproduction. In this operator, the strings of

parameters representing the chromosomes for the two parents are cut and mixed to

generate the new offspring. There are three different crossover techniques: one-point,

two-point and uniform. One-point crossover choses a random point in the genome from

both parents and swap them to generate two offspring Figure 6.

Figure 6: One-point crossover.

Two-point crossover selects two random splitting points from both parents which

generate three splices, Figure 7 shows this process. Uniform crossover varies from the

last two

Figure 7: Two-point crossover

techniques, here the technique evaluates each gene (bit) in the genome for exchange

with a probability p instead of mixing segment of genes. If the mixing p is 0.5 then

33

around half of the chromosome for the new offspring belongs to parent one and the

other half to parent two, Figure 8 shows this technique.

Figure 8: Uniform crossover, p ≈ 0.5.

3.3. GA Simplex:

GA Simplex was proposed by Seront and Bersini [46] proposing that the search

process can be effectively improved by taking into crossover multiple parents. This

techniques takes into account the relative fitness of the parents. It works on three

chromosomes of the population 𝑖1, 𝑖2, and 𝑖3 to generate a new offspring 𝑖4. If 𝑖1.𝑓𝑖𝑡𝑛𝑒𝑠𝑠

≥ 𝑖2.𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≥ 𝑖3.𝑓𝑖𝑡𝑛𝑒𝑠𝑠, the algorithm is as follows:

Algorithm 1 GA Simplex Algorithm

 for each 𝑘 − 𝑡ℎ parameter in chromosome do

 if 𝑖1𝑘 = 𝑖2𝑘 then

 𝑖4𝑘 ← 𝑖1𝑘

 else

 𝑖4𝑘 ← 𝑛𝑒𝑔𝑎𝑡𝑒(𝑖3𝑘)

 end if

 end for

3.4. Mutation:

Mutation is an optional operator used to discover a wider solution space in order

to avoid converging in a non-adequate local minima. The mutation alters the value of

all parameters in an offspring’s chromosome with a probability 𝑝𝑚. The probability 𝑝𝑚

is fixed throughout the whole GA implementation and it should be small enough to just

34

slightly alter the chromosome as otherwise GA would behave very much as a random

search. However, the mutation operator could be improved to cover a wider solution

space while avoiding getting stuck into a local minima. This enhancement is done by

having an evolutive mutation. In evolutive mutation 𝑝𝑚 is no longer fixed, instead pm

for the offspring increases along with the similarity of the parents. For example,

supposing xxxYYxx and xxxYYxY are the encoded variable for both parents. The

resulting 𝑝𝑚 for the offspring would be high as the string of parameters only differ in

one parameter.

One common technique to determine the similarity between the parents is to

calculate the distance between them. Whitley et al. [43] calculated the Hamming

distance for binary parent strings to calculate 𝑝𝑚.

4. Bootstrap Aggregation (Bagging):

Bootstrap aggregation or bagging was first proposed by Breiman [47]. Bagging is

a method that produces multiple predictors with different structures or models in order

to get a new predictor referred to as a bagged predictor. Consider a learning set L

consisting of xi input samples and the corresponding set of 𝑦𝑖 targets, where i = 1, ...,

n. The standard, single predictor approach uses the set L to train a single prediction

model. Bagging however, contains of using a set of m learning sets, or bootstrap

samples 𝐿𝑘, k = 1, ..., m obtained by random independent sample draws with

replacement from the original set L. The bootstrap samples 𝐿𝑘 are used to train m

different predictor models. As a results, for each input bootstrap sample, there is one

prediction model. If the predictor is a regression problem where the targets y are

numeric, the final prediction 𝑦 = 𝑝𝑟𝑒𝑑(𝐿𝑘 , 𝑥) is the average of 𝑦𝑘 over m. When using

classification predictors, the bagged output is defined as the majority vote among the

bootstrap predictors 𝑝𝑟𝑒𝑑(𝐿𝑘, 𝑥) Figure II.10 shows the bootstrap principle. Studies

done by Breiman show that bagged predictors can substantially enhance the accuracy

when using unstable predictors, where a small modification in the learning set L

35

Figure 9: Illustration of bagging process.

considerably alters the predictor model [47],[48]. The improvement in the accuracy

resulting from using bagging technique depends greatly in the stability of the predictor.

Research has proved that decision trees, naïve Bayes and ANN are unstable classifiers

[49], [48]. Grandvalet published a study shows that bagging applied to DTs also

improves the estimation process stability. Experimental and theoretical results have

shown that bagging reduces the non-linear variation by stabilizing the estimation

process [49].

4.1. GA-Bagging:

As explained in the last section, the bootstrap samples are obtained by random

independent sample draws with replacement from the original set L. The new method

proposed in this work uses a GA to optimize the composition of each of the training

data subsets 𝐿𝑘. Fu et al. [50] used a GA to select a single optimal training subset. The

rationale behind their idea is to use a portion of the dataset to construct a robust

prediction model when it not feasible to use the entire dataset due to the big size.

Moreover, they state that even when the dataset is small, the best model might not be

found using the entire dataset. This approach aims to ignore the outliers and noise

samples in the learning set. They demonstrate that the performance of the tree trained

with the learning subset found by the GA achieved better results than the tree using the

complete training set.

36

In this work, we apply a similar GA approach to select m optimal learning subsets

that were used to built m models to form the bagged predictor. The principle of the GA

Bagging System is shown in Fig. II.11. Implementation details are described in

Figure 10: The principle of the GA bagging procedure.

37

Chapter 3

This chapter presents discuss the research concept and the research process which

will explain about the presented heuristic method, the testing of heuristic with a sample

of problem the comparison and selection of the searching for answer starting from

heuristic method as well as the improvement of answer.

Our program describes a method that assigns customers to employees by

partitioning them into employees, then by genetic algorithm the customers within each

formed employee are routed using the cheapest route costs.

First and foremost, we select our model’s parameters:

Population size = the number of routes generated from each employee client list.

Elite size = the small proportion of the fittest routs unchanged copied to the next

generation.

Number of clients = simply means, our number of clients.

Number of employees = bank employees

The first process is run for one time and the second is processed iteratively a finite

number of times (generations) to improve the solution quality. The search begins by

introducing the clustering customers according to their distances from bank to each

other.

1. First process:

1.1. Clients demonstration:

We first create a clients’ list that will allow us to handle our problem. These are

simply our (𝑥, 𝑦) coordinates. This can be done using a random initialization points in

the 100 × 100 coordinate-system measure.

clientList = []

for i in range(num_clients):

 clientList.append((int(random.random() * 100), int(random.random() * 100)))

38

1.2. Initial graph plot:

Using tsp package (traveling salesman problem), we calculate the shortest path

passing through all the clients including Bank with coordinates (𝟎, 𝟎):

t = tsp.tsp(clientList)

clientlist = [clientList[i] for i in t[1]]

Then we plot our initial graph using this code:

x, y = zip(*s)

plt.figure(figsize=(10,10))

plt.plot(x, y, '--ob')

plt.legend(loc= 'best')

plt.annotate('BANK', (0, 0))

plt.title('Initial clients distribution')

plt.savefig('graph.png')

plt.show()

1.3. Distances calculation:

Within the Clients’ list, we form a distance calculation graph matrix (making use

of the Pythagorean theorem:

def euc_dis(a,b):

 return np.sqrt((b[0]-a[0])**2+(b[1]-a[1])**2)

def graph(v):

 a = np.zeros((len(v), len(v)))

 for i in range(len(v)):

 for j in range(len(v)):

 if v[j][0]==v[i][0]:

 a[i,j] = round(abs(v[j][1]-v[i][1]), 2)

 elif v[j][1]==v[i][1]:

 a[i,j] = round(abs(v[j][0]-v[i][0]), 2)

 else:

 a[i,j] = round(euc_dis(v[j],v[i]), 2)

 return a

39

1.1. Clients clustering over employees:

Based on tsp shortest path, we devise clients over employees including BANK

point to all clusters, this can be done by:

def divide_client_for_employee(clientlist, em):

 n = math.ceil(len(clientList)/em)

 chunks = [clientList[i:i + n] for i in range(0, len(clientList), n)]

 for i in range(len(chunks)):

 chunks[i].insert(0, (0,0))

 return chunks

2. Second process (genetic algorithm):

The second process is based on two parameters:

Generations = iterations of the process

Mutation rate = the proportion of

2.1. Population creation:

Selecting the matrix of population for each employee randomly, which contains

of " Population size" routes possible formed by clients.

2.2. Population ranking:

Ranking the routes of population of each employee from lower distance to higher,

depending on distances mentioned in graph matrix.

2.3. Mating pool selection:

Selecting the parents that will be used to create the next generation. The method

used here is distance proportionate selection; we keep the first "Elite size" routes from

the ranked population matrix of each employee, then we fill the rest roads depending

on those who have high proportion of low distance.

2.4. Breeding:

With our mating pool created, for each employee, we can create the next

generation in a process called "crossover", we save the same “Elite size” routes that

they have the lowest distances from the mating pool and then we apply crossover

breeding to the roads that chosen randomly from the mating pool.

40

2.5. Mutation:

We’ll use a method called "swap mutation". This means that, with specified low

probability “Mutation rate”, two cities will swap places in our children matrix. We’ll

do this for one individual to avoid local convergence by introducing novel routes that

will allow us to explore other parts of the solution space.

In this step we consider the output matrix as a population and then we apply the

same algorithm many times “Generations”.

41

Chapter 4

In this chapter we introduce the experiments and results obtained by our model.

1. First experiment:

Let’s say we have 12 clients, 3 employees, which means each employee will have a list

of 4 clients, we will try to implement our algorithm based on these parameters:

Population size = 10, Elite size = 5, Mutation rate = 2, Generations = 100

Figure 11: Initial banking route

Figure 11: Initial graph plot

42

Figure 12: Employees inicial routes

Table 1: Employees’ initial distances

 1st employee 2nd employee 3rd employee

initial distance (m) 135.79 326.49 200.11

43

Figure 13: Final employees’ routes

1.1. Results:

Execution time 0.16 seconds

1st employee final shortest route: [(51, 38), (52, 27), (49, 29), (43, 27), (0, 0)]

2nd employee final shortest route: [(0, 0), (28, 90), (78, 99), (89, 50), (96, 17)]

3rd employee final shortest route: [(16, 87), (10, 76), (3, 58), (0, 0), (34, 28)]

44

Distance curves:

Figure 14: 1st experiment employees’ curves

The second employee distance stays the same.

Suppose that each 1 meter takes 2 seconds time, results are summarized in this table:

Employee Final distance (m) Time (s)

1st employee 135.35 270.7

2nd employee 326.49 666.14

3rd employee 195.65 391.3

Table 2: first experiment summary

45

2. Second experiment:

Let’s say we have 20 clients, 3 employees, which means each employee will have

a list of at least 6 clients, we will try to implement our algorithm based on these

parameters: Population size = 10, Elite size = 3, Mutation rate = 2, Generations = 500

Figure 15: Initial graph plot

46

Figure 16: Employees initial routes

 1st Employee 2nd Employee 3rd Employee

Initial distance (m) 336.47 401.42 225.29

Table 3: Employees initial distances

47

Figure 17: Final employee’s routes

2.1. Results:

Execution time 1.02 seconds

1st employee final distance: his shortest route:

[(49, 29), (43, 27), (0, 0), (3, 58), (1, 80), (10, 76), (51, 38), (52, 27)]

2nd employee final distance: his shortest route:

[(28, 90), (16, 87), (9, 87), (0, 0), (89, 50), (92, 49), (98, 62), (78, 99)]

3rd employee final distance: his shortest route:

[(22, 3), (0, 0), (27, 10), (34, 28), (96, 17), (56, 12), (37, 4)]

48

Suppose that each 1 meter takes 2 seconds time, 2nd experiment results are summarized

in this table:

Employee Final distance (m) Time (s)

1st employee 217.67 435.34

2nd employee 319.25 638.5

3rd employee 209.23 418.46

Table 4: Second experiment summary

Figure 18: 2nd experiment employees’ curves

49

Conclusion:

The goal of this thesis is to design and implement a genetic algorithm In order to

organize bank employees movements, in which, a number of employees travel

throughout a set of clients given, the goal is to get the optimal solution which is the

minimum cost and distance of each employee’s route.

Results above show that the optimal solution is definitely related to the GA

parameters, as much as we increase “Generations”, “Population size”, and “Mutation

rate” values as much as we get to the better solution.

50

References:

1. Umar Farooq, July 25, 2017, What is Banking System | Types of Banking Systems

| Banking Systems in Future from

https://www.businessstudynotes.com/others/banking-finance/banking-systems-

types-and-future-of-banking-systems/

2. banking system. (n.d.) Farlex Financial Dictionary. (2009). Retrieved May 27

2020 from https://financial-dictionary.thefreedictionary.com/banking+system.

3. Gaurav Akrani, 4/20/2011, Functions of Banks - Important Banking Functions and

Services from https://kalyan-city.blogspot.com/2011/04/functions-of-banks-

important-banking.html

4. 30 November 2018, BANKING AND APPOINTMENT SCHEDULING from

https://www.appointmentcare.com/industries/banking-and-appointment-

scheduling/

5. Kara, I., & Bektas, T. (2006). Integer linear programming formulations of multiple

salesman problems and its variations. European Journal of Operational Research,

174(3), 1449-1458.

6. Russell, R. A. (1977). An effective heuristic for the m-tour traveling salesman

problem with some side conditions. Operations Research, 25(3), 517-524.

7. Wacholder, E., Han, J., & Mann, R. C. (1989). A neural network algorithm for the

multiple traveling salesmen problem. Biological Cybernetics, 61(1), 11-19.

8. Somhom, S., Modares, A., & Enkawa, T. (1999). Competition-based neural

network for the multiple travelling salesmen problem with minmax objective.

Computers & Operations Research, 26(4), 395-407.

9. Soylu, B. (2015). A general variable neighborhood search heuristic for multiple

traveling salesmen problem. Computers & Industrial Engineering, 90, 390-401.

10. Gavish, B., & Srikanth, K. (1986). An optimal solution method for large-scale

multiple traveling salesmen problems. Operations Research, 34(5), 698-717.

https://www.businessstudynotes.com/others/banking-finance/banking-systems-types-and-future-of-banking-systems/
https://www.businessstudynotes.com/others/banking-finance/banking-systems-types-and-future-of-banking-systems/
https://financial-dictionary.thefreedictionary.com/banking+system
https://kalyan-city.blogspot.com/2011/04/functions-of-banks-important-banking.html
https://kalyan-city.blogspot.com/2011/04/functions-of-banks-important-banking.html
https://www.appointmentcare.com/industries/banking-and-appointment-scheduling/
https://www.appointmentcare.com/industries/banking-and-appointment-scheduling/

51

11. França, P. M., Gendreau, M., Laporte, G., & Müller, F. M. (1995). The m traveling

salesman problem with minmax objective. Transportation Science, 29(3), 267-275.

12. Bektas, T. (2006). The multiple traveling salesman problem: an overview of

formulations and solution procedures. Omega, 34(3), 209-219.

13. Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the

ant colony optimization for solving the multiple traveling salesman problem.

Romanian Journal of Information Science and Technology, 16(1), 65 80.

14. Király, A., & Abonyi, J. (2010). A novel approach to solve multiple traveling

salesmen problem by genetic algorithm. Computational Intelligence in

Engineering, 141-151.

15. Larki, H., & Yousefikhoshbakht, M. (2014). Solving the multiple traveling

salesman problem by a novel meta-heuristic algorithm. Journal of Optimization in

Industrial Engineering, 7(16), 55-63.

16. Singh, A., & Baghel, A. S. (2009). A new grouping genetic algorithm approach to

the multiple traveling salesperson problem. Soft Computing-A Fusion of

Foundations, Methodologies and Applications, 13(1), 95-101.

17. Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach for

solving the multiple travelling salesmen problem using genetic algorithms.

European Journal of Operational Research, 228(1), 72-82.

18. Sarin, S. C., Sherali, H. D., Judd, J. D., & Tsai, P. F. J. (2014). Multiple

asymmetric traveling salesmen problem with and without precedence constraints:

Performance comparison of alternative formulations. Computers & Operations

Research, 51, 64-89.

19. Venkatesh, P., & Singh, A. (2015). Two metaheuristic approaches for the multiple

traveling salesperson problem. Applied Soft Computing, 26, 74-89.

52

20. Wang, P., Sanin, C., & Szczerbicki, E. (2015). Evolutionary algorithm and

decisional DNA for multiple travelling salesman problem. Neurocomputing, 150,

50-57.

21. Bolanos, R. (2016). A population-based algorithm for the multi travelling

salesman problem. International Journal of Industrial Engineering Computations,

7(2), 245-256.

22. Changdar, C., Pal, R. K., & Mahapatra, G. S. (2017). A genetic ant colony

optimization based algorithm for solid multiple travelling salesmen problem in

fuzzy rough environment. Soft Computing, 21(16), 4661-4675.

23. Falcon R, Nayak A (2010) The one-commodity traveling salesman problem with

selective pickup and delivery: an ant colony approach. In: Proceedings Barcelona,

Spain, CEC, pp 4326–4333Return

24. Ghadle KP, Muley YM (2014) An application of assignment problem in traveling

salesman problem (TSP). J Eng Res Appl 4(1):169–172

25. Mahfoudh SS, Khaznaji W, Bellalouna M (2015) A branch and bound algorithm

for the porbabilistic traveling salesman problem. In: Proceedings Takamatsu,

SNPD, pp 1–6

26. Pham DT, Huynh TTB (2015) New mechanism of combination crossover

operators in genetic algorithm for solving the traveling salesman problem, in

knowledge and systems engineering, 2nd ed., vol 326, Switzerland, pp 367–379

27. Ye C, Yang ZC, Yan TX (2014) An efficient and scalable algorithm for the

traveling salesman problem. In: Proceedings Beijing, ICSESS, pp 335–339

28. tif AK, Muhammad UK, Muneeb I (2012) Multilevel graph partitioning scheme to

solve traveling salesman problem. In: Proceedings Las Vegas, NV, ITNG, pp 458–

463

29. Hu CQ (2014) A K-means algorithm. J Changchun Univ Technol 35(2):139–142

53

30. Helsgun K (2014) Solving the equality generalized traveling salesman problem

using the Lin–Kernighan–Helsgaun algorithm. Math Program Comput 7(3):269–

287

31. E. W. Mayr, Toward a new Philosophy of Biological Thought: Diversity,

Evolution and Inheritance, Belknap, Harvard, 1982.

32. W. D. Cannon, The Wisdom of the body, W.W.Norton, 1932.

33. R. Dawkins, The Selfish Gene, Oxford University Press, 1982.

34. A. M. Turing, Computing Machinery and Intelligence, Mind 9 (1950) 433-360.

35. R. M. Friedberg, A learning machine: Part I, IBM Journal of Research and

Development 2 (1) (1958) 2-13.

36. G. E. P. Box, Evolutionary operation: A method for increasing industrial

productivity, Applied Statistics VI, no. 2 (1957) 81-101.

37. G. Laporte and S. Desroches. Examination timetabling by computer. Computers

and Operations Research, 11:351–360, 1984.

38. Klaus Jansen. An approximation scheme for bin packing with conflicts. J. Comb.

Optim., 3(4):363–377, 1999.

39. N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In N.

Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial

Optimization, pages 315–338. Wiley, Chichester, 1979.

40. Rahoual, M., Kitoun, B., Mabed, M. H., Bachelet, V., & Benameur, F. (2001,

July). Multicriteria genetic algorithms for the vehicle routing problem with time

windows. In 4th Metaheuristics International Conference (pp. 527-532).

41. Iori, M., Salazar-González, J. J., & Vigo, D. (2007). An exact approach for the

vehicle routing problem with two-dimensional loading constraints. Transportation

Science, 41(2), 253-264.

42. Elissee A, Evgeniou T, and Pontil M. Stability of randomized learning algorithms.

J. Mach. Learn. Res., 6:55-79, December 2005.

54

43. Mora AM, Ashoor H, Awara K, Jankovic BR, Kamau A, Chowdhary R, Archer

JAC, and Bajic VB. Conservation of and recognition of translation initiation sites

in arabidopsis thaliana. Submitted to BMC Bioinformatics.

44. Cheng B and Titterington DM. Neural networks: A review from a statistical

perspective. Statistical Science, 9(1):2-30, 1994.

45. Hassibi B, Stork DG, andWol GJ. Optimal Brain Surgeon and General Network

Pruning. Technical Report CRC-TR-9235, RICOH California Research Centre,

1992.

46. Carr C. The mit encyclopedia of the cognitive sciences, edited by robert Wilson

and frank keil. Artificial Intelligence, 130:183-184, 2001.

47. Stone C and Smith J. Strategy parameter variety in self-adaptation of mutation

rates, 2002.

48. Bishop CM. Neural networks and their applications. Review of Scientific

Instruments, 65(6):1803-1832, 1994.

49. Whitley D, Starkweather T, and Bogart C. Genetic algorithms and neural

networks: optimizing connections and connectivity. Parallel Computing,

14(3):347-361, 1990.

50. Montana DJ and Davis L. Training feedforward neural networks using genetic

algorithms. In Proceedings of the 11th international joint conference on Artificial

intelligence - Volume 1, pages 762-767, San Francisco, CA, USA, 1989. Morgan

Kaufmann Publishers Inc.

Appendices:

Our notebook:

https://colab.research.google.com/drive/1UtdEOviOaHSdOy6sgWmgEDSWM4yNtp

3r?usp=sharing

https://colab.research.google.com/drive/1UtdEOviOaHSdOy6sgWmgEDSWM4yNtp3r?usp=sharing
https://colab.research.google.com/drive/1UtdEOviOaHSdOy6sgWmgEDSWM4yNtp3r?usp=sharing

