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Abstract: 

 

 

Evolutionary algorithms (EAs) are machine-learning techniques that can be used 

in many applications of optimization problems in various fields.  

Bank route planning is nowadays combinatorial optimization problem, in which 

customers request services from a bank. Each service is composed of dependent tasks, 

which are executed by employees of varying skills along one or more days. The 

objective is to schedule and route teams so that the distance and cost are minimized, In 

this thesis we present a solution model tackle this problem using genetic algorithm 

approach. 
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1. Introduction: 

In recent decades, the world has witnessed a growing interest in intensive modern 

technology. At present, the subject of technological innovation and its integration into 

the economy in general, as well as in the banking system, has great importance as it 

affects the relationship with the clients. The revolution in communications and 

technology in the banking sector increases local and global competition. It provides the 

necessary services and promotions to be able to thrive, compete, and meet the needs of 

its potential clients. It also enables customers to choose between services that suit their 

personal preferences. 

Recently, banks have witnessed major changes in their operations and services, 

and these new changes pose major challenges to the banking sector. To establish a 

strong relationship with the customers modern technology is one of the most effective 

tools due its competitive advantage. Modern technology has the potential to coordinate 

these relationships through direct and effective communication with clients on an 

ongoing basis to achieve their satisfaction and ensure loyalty. 

Maintaining clients and attracting newcomers takes the bank to a higher level. 

Banks seek to achieve their goals (i.e. profit and customer service), and introduction of 

modern technologies in banking operations is a mean to achieve these goals because it 

enhances the trust level between banks and customers. 

The association between banks and business owners is another challenge in the 

banking sector. The bosses and employers think about using external offices or 

companies to solve problems and develop their services not only at the short period but 

in the long run as well. 

On the other hand, customers generally visit the bank with their problems related 

to withdraws and/or deposits etc. that can be solved with the help of technological 

development which consequently led to a significant decrease the number of complains.  

It doesn’t reduce just the pressure on employers but provides an opportunity for them 
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to develop a new customer service to help the bank as well as the clients. the idea is 

Reverse this process where the employee must visit the customer 

Such tasks are usually handled by a special team where the CEO or project 

manager distributes the employees according to a specific algorithm. The development 

of such algorithm programmatically is very important to anticipate many customers. 

Which reflects the importance of technology in the distribution process, organization 

of visits and customer identification. 

The new service also requires a comprehensive study to design a plan by 

specialists to develop the appropriate solution for this service, where the number of 

clients, time of their visit and distance between them is well managed. It is one of the 

biggest problems bank managers are facing to get the best outcome for the bank and 

clients at the same time which are almost impossible to tackle without the interference 

of modern technology.  

Account managers are bank employees who come to meet with a client to open a 

current account. The impression that these meetings leave directly affects the image of 

the bank in the eyes of the client, therefore it is important that the manager’s route be 

drawn up correctly and not be late for the meeting. In addition, do not forget that 

managers - living people with their own preferences - would also like to participate in 

planning (for example, indicating a convenient start and finish point for the route, or 

setting the days on which they can work). This assignment proposes to develop a route 

planning system that takes into account the wishes of both employees and customers of 

the bank. 

The task is similar to the well-known traveling salesman problem and, if properly 

implemented, will positively affect the work of several hundred bank employees.  
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1.1. Objective of Dissertation: 

The main objective of this dissertation is to develop a genetic algorithm which 

manages the distances from employs to customers and the times required for each 

process. 
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Chapter 1 

1. Related Works (Literature review): 

The various applications of MTSP arise in real world problems such as school bus 

routing, printing press scheduling, interview scheduling, crew scheduling, hot rolling 

scheduling, mission planning and design of global navigation satellite system (GNSS).  

Due to its diversified applications, the MTSP has been extended to many practical 

variants such as MTSP with multiple depots, fixed charges, fixed number of salesmen, 

and time windows [5].  Since the MTSP is an exceptional variant of TSP, the solution 

procedures available for TSP can also be applicable for MTSP. Additionally, the MTSP 

can be extended to countless practical situations like distribution system in 

transportation, particularly in vehicle routing problems (VRP). This study keeps much 

attention on MTSP than the usual TSP.  The solution approaches used to solve MTSP 

can be categorized into heuristics, meta-heuristics, and exact approaches. Different 

heuristic algorithms have been presented in the literature to solve MTSP and its 

variants. The first heuristic algorithm for min-sum MTSP was appeared in [6], where it 

utilizes an extension of prominent Lin and Kernighan heuristic. A two-phase heuristic 

algorithm has been proposed to solve no-depot min-max MTSP, where m tours are 

established in the first phase, and these tours are explored in phase two.  A neural 

network-based solution procedure [7] has been developed for solving MTSP.  A 

competition based neural network approach [8] for MTSP with minmax objectives has 

been projected. (Soylu, 2015) presented a general variable neighborhood search 

algorithm (VNS) for MTSP and which was then applied to a real-life problem raised in 

traffic signalization network of Kayseri province in Turkey [9].  The exact solution 

procedures for different models of MTSP can be found in [10][11][12]. Apart from the 

heuristics and exact algorithms, bio-inspired methods like genetic and evolutionary 

algorithms have been developed to tackle MTSP and its variants in the literature.   

(Yousefikhoshbakht et al, 2013) [13] recommended a modified version of ant colony 
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optimization (ACO), which exploits an effectual method to overcome the local 

optimum. A genetic algorithm based novel approach [14] has been improved to tackle 

MTSP. (Larki and Yousefikhoshbakht, 2014) gave an efficient evolutionary 

optimization approach [15], which includes the composition of modified imperialist 

competitive algorithm and Lin-Kernigan heuristic.  A new steady-state grouping 

genetic algorithm (GGA-SS) (Singh & Baghel,  2009) has been built for MTSP.  A 

genetic algorithm utilizing new crossover operator known to be two-part chromosome 

crossover (TCX) [16] (Yuan et al., 2013) has been recommended for solving MTSP 

[17]. (Sarin et al, 2014) studied the multiple asymmetric travelling salesmen problem 

with and without effect of precedence constraints [18]. (Venkatesh and Singh, 2015) 

presented two meta-heuristics such as artificial bee colony (ABC) and invasive weed 

optimization (IWO) algorithms to tackle MTSP [19]. (Wang et al, 2015) proposed an 

improved non-dominated sorting genetic algorithm II (NSGA-II) by applying the set of 

experience of knowledge structures (SOEKS) to tackle MTSP [20]. (Bolanos et al, 

2016) developed an effective genetic algorithm (GA) to solve MTSP [21]. (Changdar 

et al, 2016) studied the solid MTSP in the fuzzy environment and proposed a hybrid 

algorithm based genetic and ant colony optimization approach [22].  

There is wide research on TSP, including TSP with time windows [23], TSP with 

minimum ratio [24]. Most of the existing solutions consider different constraints, 

whereas finding a minimum Hamiltonian cycle. At present, the approaches of TSP are 

divided into exact and approximate algorithms. The former mostly includes dynamic 

programming, branch and bound, [25], integer linear programming, etc. But, if the scale 

of the TSP becomes too large, its overall computational time and solution space will 

increase exponentially. 

By biological activities or natural phenomena Inspiration, some well-known 

heuristic algorithms have been developed to solve large-scale TSPs, including ACO, 

PSO, and GA. There are important research opportunities in the improvement of such 
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heuristic algorithms and their combination. [26] suggest two new crossover operators 

to improve the global ergodic property of GA, which is a better key for classical TSP, 

but not for complex TSP with multiple constraints. [27] present an improved dynamic 

programming algorithm to deal with large-scale data, used as crossover and mutation 

operator in GA. [28] integrate K-means algorithm, [29] with the greedy algorithm and 

Lin Kernighan’s algorithm [30] to create an improved solution for large-scale TSP. 

Though, this method is significantly affected by the scale of the subset partition. 

 

 

Figure 1: (a) MTSP, (b) MTSP with balance of workload 

2. Banking system: 

The banking system is the union of a large number of companies or entities 

together. They carry out their specific occupation of raising funds and lending resources 

in the financial and economic markets [1]. A network of COMMERCIAL BANKS and 

other more dedicated BANKS (such as INVESTMENT BANKS, MERCHANT 

BANKS, SAVINGS BANKS ) receives deposits and savings from the general public, 

companies, and other institutions, and provide money transfers and other types of 

financial services for clients, operating loans and credit facilities for borrowers and 

investing in corporate and government securities. The banking system is part of a wider 

financial system and has a major impact on the country's “monetary economy”. Bank 
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deposits occupy a central place in the supply of funds in the countries, and thus the 

banking system is closely regulated by the monetary authorities [2]. 

2.1. Types of Banking Systems: 

The group of banks in the economic system is compatible with the banking or 

banking system. However, there are various types of banks that are interested in the 

sector to which this entity is oriented and the size of its activity. Here are five various 

types of banking systems, which are currently used all over the world: 

2.1.1. Private banking: 

It is a highly professionalized and management global of a client’s assets. It aims 

to meet the investment, financial, wealth, and tax planning needs of individuals or 

groups of families with high equity. Private banking is therefore devoted to financial 

counsel and asset management. Therefore, many variables are considered, for which it 

is crucial to make the best profile of the client [2]. 

2.1.2. Home banking: 

It is called Home Banking Services for all of those resources, tools, and allocations 

that aim to bring banking services closer to customers as possible. Through this, we can 

find several forms of banking services depending on the connection routes. 

Thus, through digital applications, like as online banking, through telemetric 

means, through the telephone to execute various operations and checks, digital banking, 

which is a wider term that gathers all the above, [2]. 

2.1.3. Branch banking: 

Branch Banking is a system where banking business is performed on by a single 

bank with a network of branches across the country and their offer. The bank will have 

a main office in one city and branches in different portions of the country. The manager 

of the branch in accordance with the regulations and policies of the head office guides 

the affairs of the branch. Each bank is a single entity owned by the shareholder's group 
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and managed by a group of directors. A bank can decide to create a branch banking 

organization [2]. 

2.1.4. Mixed Banking: 

Mixed banking is a banking system where a bank gathers both investment banking 

as well as deposit banking. This means the bank will supply short-term loans for trade, 

commerce, and long-term finance for industrial units. Whereas this type of banking 

encourages rapid industrialization, the mixed banking system decreases the liquidity of 

funds of commercial banks [2]. 

2.1.5. Fractional Reserve Banking: 

Fractional reserve banking is a system of banking in which banks save a portion 

of their clients’ deposits in reserves.This portion is known as the ratio of cash. Under a 

fractional reserve banking system, banks are not required to keep 100% of their clients 

’deposits in their reserves. In this manner, they can lend the bit of the deposits that they 

are not compelled to keep in reserves, which permits them to obtain gains and 

remunerate the deposits. This system presupposes that depositors will never pull out all 

their money at the same time. Fractional reserve banking permits a phenomenon named 

a bank multiplier to happen. 

2.2. Function banking: 

Banking was defined as “Accepting for the purpose of lending & investment, of 

deposit of money from the public, repayable on demand order or otherwise and 

withdrawable by cheque, draft or otherwise”. Banking means dealing business with a 

bank such as depositing or withdrawing funds or demand a loan see figure 2. 
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Figure 2: flowchart of functions banks in briefly. 

2.2.1. Fundamental Functions of Banks: 

The fundamental functions of a bank are also called as banking functions. They 

are the major functions of a bank [3]. These fundamental functions of banks are clarified 

below: 

 

2.2.1.1. Accepting Deposits: 

The bank gathers deposits from the public. These deposits can be of varieties 

forms, such as: 

- Deposits for Saving. 

- Deposits for Fixed. 

- Deposits for Current. 

- Deposits for Recurring. 

2.2.1.2. Granting of Loans and Advances: 

The bank provides loans to the business community and other individuals of the 

public. The ratio charged is greater than what it pays on deposits. The difference in the 

rates of interest (rate of lending and the rate of deposit) is its profit. 
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The kinds of bank loans and advances are: 

- Loans 

- Discounting of Bill of Exchange 

- Overdraft 

- Cash Credits 

2.2.2. Secondary Functions of Banks: 

The bank executes a number of secondary functions, also named as non-banking 

functions. These significant secondary functions of banks are clarified below: 

2.2.2.1. Functions of Agency: 

The function of the bank as an agent of its customers.  

The bank performs a number of agency roles which includes:  

- Funds Transfer 

- Cheques Collection 

- Periodic Payments 

- Management of Portfolio  

- Periodic Collections 

- Other Agency works. 

2.2.2.2. Public utility functions: 

The bank also performs public utility functions, such as: 

- Issuing drafts, letters of credit, 

and others. 

- Treasury facility 

- Subscription of shares 

 

- Dealing in foreign currencies 

- Project reports 

- Social Care Programmers 

- Other utility functions. 

2.3. Banking and Appointment Scheduling: 

With all the developments in the field of electronic banking, people still want a 

face to face experience. One area that successfully reconciled traditional and digital 

channels and renewed user experience is scheduling appointments. There is a positive 

response among clients who use the software of appointment scheduling to book 

meetings at local banks. 
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2.3.1. Clients and Schedule Appointments: 

The current survey shows that scheduled appointments are the most prevalent of 

hiking visits in major business hours. Scheduled appointments reached their peak in the 

morning between 10:00 AM and 11:00 AM, and at 4:00 PM. In contrast, walking visits 

at that time were much lower and generally peaked from 12:00 p.m. to 1:00 p.m. (lunch 

hour dates). When it comes to traffic per day, walking visits were the highest on 

generally low traffic days (Monday, Tuesday, and Wednesday). However, they failed 

to exceed the number of appointments scheduled at the end of the week, when most 

account holders visited the local branch office [4]. 

2.3.2. Maximizing Appointment Scheduling: 

- Take an Omnichannel Approach: 

Due to their attract, account owners gladly to test new systems, like mobile apps, 

online, and other digital applications. But at the same time, they are reluctant to give 

up these that are currently using it. They want new features to add to their experience, 

not replace existing applications. An appointment scheduling app emphasizes the intent 

to provide convenience and availability with a full range of accessible channels. 

However, even the most receptive consumers of digital channels prefer the option to 

book appointments in a conventional way. It is common when they are dealing with 

complicated affairs and require expert advice from the finance professionals [4]. 

- Optimize Available Resources: 

Demanding account owners to schedule appointments is less time-consuming for 

them. It also gives administrators the opportunity to collect data to evaluate and 

improve scheduling. Knowing who they are meeting beforehand, enables them to better 

organize available resources, so staff can better serve each client for best performance. 

Consequently, it allows employees to meet with more clients and facilitate operations 

and use resources to their maximum possibility. And ultimately that reduces costs, 

improves performance, and increases sales output and efficiency [4]. 
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- Data-Driven Decision Making: 

Appointment scheduling software allows employees to require a data-backed 

approach to service. These tools make it easy for employees to know what clients want. 

They also pinpoint the time after they make visits that lead to sales. Decision-making 

becomes data-driven and allows employees to customize each decision to suit demand. 

this could be done at every branch office for optimum profit across the board. the 

employees can maximize the success of their appointments right by leveraging the 

facility of appointment scheduling software [4]. 
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Chapter 2 

1. Evolutionary Algorithms: 

Evolution is the theory postulating that all the various types of living organisms 

have their origin in other pre-existing types, and that the differences are due to 

modifications inherited through successive generations. Evolutionary computation is a 

branch of computer science concentrating on algorithms inspired by the theory of 

evolution and his internal mechanisms. The definition of this field in computer science 

is not clear, but it could be considered as a branch of computational intelligence and 

may be involved in the broad framework of bio-inspired heuristics. 

1.1. Natural and artificial evolution: 

Fundamentally, the original theories regarding evolution and natural selection 

were almost proposed concurrently and independently by Charles Robert Darwin and 

Alfred Russel Wallace in XIX century, combined with selectionism of Charles 

Weismann and genetics of Gregor Mendel, are accepted in the scientific community, 

and widespread among general public. 

This theory (called Neo-Darwinism) offers the basis for the biologists: through it, 

the whole process of evolution is described, requiring notions such as reproduction, 

mutation, competition, and selection. Reproduction is the process of creating an 

offspring where the new copies inherit traits of the old ones. Mutation is the unpredicted 

alteration of a trait. Competition and selection are the inevitable strive for survival 

caused by limited resources environment. 

The evolution process is a mechanism which progresses as a sequence of steps, 

some are deterministic and some mostly random [31]. Such an idea of random forces 

formed by deterministic pressures is inspiring, and not surprisingly, has been exploited 

to explain phenomena quite unrelated to biology. Important examples include 

alternatives conceived during learning [32], ideas striving to survive in our culture [33], 

or even possible universes. 
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Evolution may be seen as an improving process that makes raw features perfect. 

in fact, this is a mistake that all biologists warn us not to do. However, if evolution is 

seen as a force pushing toward a goal, another awful misunderstanding, it must be 

granted that it worked quite well: in some million years, it turned unorganized 

assembles of cells into wings, eyes, and other amazingly complex structures without 

requiring any a-priori design. The whole Neo-Darwinist paradigm may hence be 

regarded as a powerful optimization tool, able to produce great results starting from 

scratch, not requiring a plan, and exploiting a mix of random and deterministic 

operators. 

Dismissing all complains of biologists, evolutionary computation practitioners 

loosely mimic the natural process to solve their problems. Since they don’t know how 

their goal could be reached, at least not in details, they exploit some neo-Darwinian 

principles to cultivate sets of solutions in artificial environments, iteratively modifying 

them in discrete steps. Indirectly, the problem defines the environment in which 

solutions strive to survive. The process has a defined purpose. The simulated evolution 

is simplistic if not even implausible. Yet, successes are routinely published in the 

scientific literature. Solutions in a given stage inherit qualifying traits from solutions in 

the previous ones, and optimal results gradually emerge from the artificial primeval 

soup. 

In evolutionary computation, a single candidate solution is named individual; the 

set of all candidate solutions is termed population, and each step of the evolution 

process called generation. The ability of an individual to solve the given problem is 

measured by the fitness function, that ranks how possible one solution to propagate its 

characteristics to the next generations. Most of the jargon of evolutionary computation 

mimics the terminology of biology. The word genome denotes the whole genetic 

material of the organism, whereas its actual implementation differs from one approach 

to another. The gene is the efficient unit of inheritance, or, practically, the smallest 
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fragment of the genome that may be modified during the evolution process. Genes are 

positioned in the genome at specific positions so-called loci, the plural of locus. The 

alternative genes that may occur at a given locus are termed allele. 

Biologists distinguish between the genotype and the phenotype: the former is all 

the genetic constitution of an organism; the latter is the observable properties that are 

formed by the interaction of the genotype and the environment. Various evolutionary 

computation practitioners don’t stress such a precise distinction. The fitness value 

which associated to an individual is sometimes assimilated to its phenotype. 

To produce the offspring for the next generation, evolutionary algorithms 

implement both sexual and asexual reproduction. The former is generally named 

recombination; it necessitates two or more participants and implies the possibility for 

the offspring to inherit different characteristics from different parents. The latter is 

called replication, to indicate that a copy of an individual is created, or more commonly 

mutation, to stress that the copy is not exact. In some applications, mutation takes a 

place after the sexual recombination. Practically no evolutionary algorithms take into 

account, gender; whereas, individuals don’t have distinct reproductive roles. All 

operators which modify the genome of individuals can be cumulatively so-called 

genetic operators. 

Mutation and recombination introduce variability in the population. Parent 

selection is also frequently a stochastic process, while biased by the fitness. At each 

generation, the population broadens and contracts rhythmically. First, it widens then 

generates the offspring. Then, it shrinks when individuals are discarded. The 

deterministic pressure regularly takes the form of how individuals are chosen for 

survival from one generation to the next. This step may be termed survivor selection. 

Evolutionary algorithms are local search algorithms because they only explore a 

defined region of the search space, where the offspring define the concept of 

neighbourhood. They are heuristic algorithms, as they are based on the trial and error 
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paradigm. They are not usually able to guarantee mathematically an optimal solution in 

a finite time, while interesting mathematical properties have been proven over the years. 

If the present boundary of evolutionary computation may seem unclear, its 

inception is much more hazy. The field does not have a single recognizable origin. 

Some scholars identify its starting point in 1950, when Alfred Turing reported the 

similarities between learning and natural evolutions [34]. Others pinpoint that the 

inspiring ideas appeared in the end of the decade [35] [36], even though, the lack of 

computational power significantly impairs their diffusion in the broader scientific 

community. More commonly, 1960s was the birth of evolutionary computation with 

the appearance of three independent research lines, namely: evolutionary programming, 

genetic algorithms, and evolution strategies. Despite the slight disparity, the pivotal 

importance of these researches is unquestionable. 

 

1.2. The classical paradigms: 

The most common concept in evolutionary computation is Genetic algorithm. It is 

abbreviated as GA, and it is so popular that in the non-specialized literature it is often 

used to denote any kind of evolutionary algorithm. The reputation of the model is 

related to the name of John Holland and his 1975 book, however the methodology was 

used and described during the course of the previous decade by several researchers, 

including many Holland own students. Genetic algorithms have been proposed as a 

step-in classification system, a technique also proposed by Holland. Though, it may be 

maintained that they have been exploited more to study the evolution mechanisms 

itself, rather than solving actual problems.  

Quite basic test benches were used to evaluate various strategies and schemes, as 

trying to set a number of bits to a specific value. Many variations have been proposed. 

So, even in this pioneering epoch, is not sensible to describe a canonical genetic 

algorithm. 
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1.3. Genetic programming 

The last evolutionary algorithm outlined in this introduction is genetic 

programming, abbreviated as GP. Whereas µGP shares more with it its name than its 

essence, the approach presented in this research owes a deep debit to its underlying 

ideas. Genetic programming was developed by John Koza, who described it after 

applying for a patent in 1989. the methodology’s ambitious goal is to create computer 

programs in a fully automated way, using Neo-Darwinism as an optimization tool. The 

original version was written in Lisp, an interpreted computer language dating back to 

the end of the 1950s. The Lisp language has a unique ability to handle fragments of 

code as data, allowing a program to build up its subroutines before they are evaluated. 

Everything in Lisp is a prefix expression, except variables and constants. lisp programs 

were Genetic programming individuals; thus, they were prefix expressions too. Since 

the Lisp language is as flexible as inefficient, in the following years, researchers 

switched to alternative implementations, generally using compiled language. Indeed, 

the need for computational power and the quest for efficiency have been constant 

pushes in the genetic programming research since its origin. Although the distinction 

between an expression and a program was subtle in Lisp, it became more apparent in 

later implementations. Most of the algorithms presented in the literature clearly tackle 

the former, while hardly applicable to the latter 

 

2. Combinatorial Optimization Problems:  

Combinatorial Optimization Problems are very common in industrial processes 

and planning activities. They are problems where a solution is composed by a set of 

fundamental discrete decisions or assumptions. Every decision may influence the 

global cost and the feasibility of the solution. The trivial way to solve a combinatorial 

optimization problem is to list the elements of the corresponding feasible solutions set 

and pick up the best one. However, because of the combinatorial nature of the 
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considered problems, in real cases the number of solutions to be enumerated (feasible 

or unfeasible) for a given problem is intractable even for very powerful computers. 

To deal with the difficulty in solving Combinatorial Optimization Problems, some 

techniques have been proposed: 

• Branch and Bound approaches in which the solution space is systematically 

divided, and its subsets of solutions are evaluated on the objective function value, 

according to their limits; 

• Heuristic methods, where the problem is solved through the application of 

experience-based techniques. When these techniques dirive from other generic or 

natural problems rather than the original problem, we call them Meta-heuristic; 

• Methods based on Integer/Mixer Programming and Hybrid methods that 

combine some of previously mentioned approaches. 

The most common optimization problems are:  

- Fair Layout Optimization Problem (FLOP). 

- Bin Packing Problem with Conflicts (BPPC). 

- Generalized Traveling Salesman Problem (GTSP). 

 

2.1. Fair Layout Optimization Problem (FLOP): 

Fairs and expositions are now essential tools for providing industrial exhibits and 

demonstrations. According to the International Association of Fairs & Exposition 

(IAFE), over 3 200 fairs are currently held in North America each year. The Association 

of the European Major Exhibition Centres (EMECA) reports that more than 36 million 

visitors and upwards of 330 000 exhibitors take part in approximately 1000 EMECA 

exhibitions. A relevant logistical issue in the organization of a fair concerns the way in 

which the stands must be placed in the exhibition space so as to satisfy all constraints 

(security, ease of access, services, to mention just a few) arising in this kind of event, 
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and to maximize the revenues coming from the exhibitors. Such issue is frequently 

manually solved by the organizers on the basis of experience and common sense. 

We are given: 

- a non-convex two-dimensional surface that may contain holes (exhibition area); 

- an axis-aligned minimal rectangle which encapsulates the exhibition area and 

touches it on the borders;  

- an unlimited number of identical rectangular stands; 

- a minimum width needed for the aisles. 

The Fair Layout Optimization Problem we consider consists in orthogonally 

allocating the maximum number of stands, without rotation, to vertical strips parallel 

to the vertical edges of the rectangle, by ensuring left and/or right (see below) side 

access to each stand. 

Concerning the access constraint, we will consider two variants of the problem, 

that are frequently encountered in practice: 

 

 

 

 

 

 

 

Figure 3: A single strip solution. 

- FLOP1: it is required that each stand (i.e., each strip) can be accessed from both 

sides, as in the solution depicted in Figure 3; 

- FLOP2: it is allowed to place pairs of strips with no space between them, thus 

obtaining stands that can be accessed from one side only. 
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2.2. Bin Packing Problem with Conflicts (BPPC): 

In the Bin Packing Problem with Conflicts (BPPC), we are given a set 𝑉 =

 {1, 2, . . . , 𝑛} of items, each item i having a non-negative weight wi, and an infinite 

number of identical bins of weight capacity C. We are also given a conflict graph 𝐺 =

 (𝑉, 𝐸), where E is a set of edges such that (𝑖, 𝑗)  ∈  𝐸 when items i and j are in conflict. 

Items in conflict impossible to be assigned to the same bin. The goal of the BPPC is to 

assign all items to the minimum number of bins, ensuring that the total weight of the 

items assigned to a bin doesn’t exceed the bin weight capacity and that no bin contains 

items in conflict. 

The BPPC is important because of the high number of real-world applications, and 

because it generalizes other important problems in combinatorial optimization. Some 

BPPC real-world applications include examination scheduling [37], the assignment of 

processes to processors and the load balancing of tasks in parallel computing [38]. 

Other applications concern particular delivery problems, such as food distribution, 

where some items cannot be placed in the same vehicle [39]. 

 

2.3. Generalized Traveling Salesman Problem (GTSP): 

The traveling salesman problem (TSP) is a well-studied combinatorial 

optimization problem with applications ranging from routing to scheduling. It can be 

classified based on several factors. For example, the TSP can be classified based on the 

objective function: minimizing the tour cost, maximizing the profit, or a combination 

of both; and it can be classified based on vehicle capacity, etc.  

One real-life application of this problem can be in planning a tour for doctors in 

an underdeveloped region or at a time of crisis to serve the maximum number of 

patients. In addition, in health economics, registrars visit different hospitals to collect 

patient documents while maximizing the total number of served hospitals with a limited 

budget [40]. In disaster management problems, an objective can be to maximize the 
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number of served injured people by trained medical staff with limited time and budget 

constraints who must travel to different locations affected by the disaster, assuming that 

injured people could be transferred to locations on the route [41]. 

The traveling salesman and vehicle routing problems have been well studied. 

Several extensions of each problem can be modelled using different objectives and/or 

additional constraints. 

In a regular TSP, the objective is to find a tour that covers all cities while 

minimizing the total cost of traveling. A variation of the TSP that has a profit associated 

with each node can be seen as a bi-criteria problem, where the objective is to maximize 

the collected profit from visiting each node while minimizing the cost of traveling. The 

solutions include a set of non-inferior feasible solutions, which none of the objectives 

can improve except by deteriorating the other objective, the TSP can be different based 

on the following: 

- Number of travellers: If there is more than one traveller who can serve the nodes, then 

more than one tour can exist in the problem. This problem is called a multiple 

traveling salesman problem (MTSP). Some variations of this problem are where 

the number of travellers is not fixed. In the case of a varying number of travellers, 

there is a cost associated with each route (i.e., to each traveller). If there is a capacity 

associated with each traveller, then the problem is called a vehicle routing problem. 

- Number of depots: If there is more than one depot having a fleet of vehicles, then the 

problem is called a multiple depot vehicle routing problem (MDVRP). In one 

variation of the problem, vehicles departing from a depot must return to the same 

depot (i.e., this is a fixed-destination problem). Vehicles departing from a depot can 

return to any other depot in a different variation (i.e., a non-fixed-destination 

problem). 

- Time windows: The TSP with time windows has a time window associated with each 

node, which requires that each node be served during its corresponding time interval. 
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The Generalized Traveling Salesman Problem (GTSP) is a variant of the Traveling 

Salesman Problem (TSP). We are given an undirected graph G = (V, E), where 𝑉 =

 {1, . . . , 𝑛} is the set of vertices and E is the set of edges, each edge (𝑖, 𝑗) having an 

associated cost 𝑐𝑖𝑗 . The set of vertices V is partitioned into m clusters 𝑉1, . . . , 𝑉𝑚. GTSP 

is to find an elementary cycle visiting at least one vertex for each cluster, and 

minimizing the sum of the costs of the travelled edges. If a directed graph is considered, 

the problem is denoted as Asymmetric GTSP (AGTSP). We focus on the commonly 

considered version of the problem, i.e. the so-called Equality GTSP (E-GTSP), in which 

the cycle must visit exactly one vertex per cluster. Both the GTSP and the E-GTSP are 

generalizations of the TSP: we obtain the TSP in the particular case where each cluster 

is composed by just one vertex. Consequently, both problems are NP-Hard since the 

TSP is NP-Hard. 

 

3. Genetic Algorithms: 

Proposed in 1975 by J. Holland [42], the genetic algorithm (GA) is an optimization 

method that was inspired by the evolution concept. GA does not guarantee to find the 

optimal solution of the problem, however there is empirical evidence [43] that solutions 

are between acceptable levels, in a competitive time with the rest of combinatorial 

optimization algorithms, i.e. simulated annealing, sequential search methods, hyper-

climbing, etc. Burjorjee offered an explanation for the remarkable GA adaptive 

capacity [44]. Furthermore, Burjorjee presents evidence that strongly proposes that GA 

can implement hyper-climbing extraordinarily efficiently for complex optimization 

problems. Moreover, GAs does not make any presumptions about the search space for 

the optimization problem. These are some of the reasons why GAs have been applied 

to solve a wide range of engineering and scientific optimization problems [43]. 
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To understand GA functionality, it is better to first explain how the optimization 

problem variables must be encoded and then recombined. The theoretical foundation 

of the GA requires the optimization problem variables to be encoded into a string of 

either (1) binary bits, (2) real numbers or (3) characters. Each bit, real number, or 

character in GA, the string is called gene or parameter, and they form as an ensemble a 

chromosome, also called string or individual. In this work we refer to the variables in 

the string as parameters and the ensemble of parameters as chromosome. Every 

different combination of the parameters in the chromosome represents a different 

variable in the optimization problem search space. 

For example, let us consider a simple case in which we want to find the X and Y 

values to maximize the next equation: 𝑠𝑖𝑛(𝑋2)𝑙𝑜𝑔(𝑋𝑌 ). One possible encoding 

solution is to have a string of two real numbers (two parameters forming a chromosome) 

for X and Y . Chromosomes with different X and Y values represent a different 

variables to the problem. 

The recombination or crossover needs two or more chromosomes (parents) to 

generate a new chromosome (offspring). The objective of the crossover operator is to 

find a new set of parameters that produces an optimum value in the variables to the 

optimization problem.  

Once variable encoding is decided, the first step in GA is creation of a random 

initial population (set of variables with random encoded parameter values to form a 

population of n chromosomes). Next, each chromosome in the population is evaluated 

to have a measurable value that shows how well the set of parameters perform as 

solution for the problem at hand. 

The GA then executes the selection operator to choose the chromosomes to be 

recombined. The selection operator offers more opportunities to the chromosomes that 

performed the best in the optimisation problem; however, it is important not to discard 

weaker chromosomes completely, in order to avoid premature convergence. Finally, 
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crossover is applied to the selected chromosomes. Selection and crossover operators try 

to preserve the combination of the parameter values that obtained a better result for the 

optimization problem. 

The GA repeats the selection and crossover operators in order to provide a better 

set of parameters (chromosome) after every iteration. Figure 4 shows the GA 

procedure. 

 

 

 

 

 

 

 

Figure 4: Generational GA procedure. 

 

In GA terminology, the optimisation function is called objective function. 

Moreover, the value that indicates the appropriateness of the chromosomes is known as 

fitness value and it is calculated by the the fitness function. 

The selection, crossover and mutation operators are defined in more detail in the 

following subsections. 

3.1. Selection: 

The selection operator selects chromosomes from the entire population for later 

recombination. The most frequently used selection algorithms are tournament selection 

and roulette wheel. 

Tournament selection algorithm consists of taking k random from population 

chromosomes. The chromosome having the highest fitness value is then used as parent 

for the crossover. The tournament size k determines the probability of selection the best 
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chromosome from the population, known as selection pressure. Weak chromosomes 

have more probabilities to be selected when k is small (low selection pressure), in the 

extreme case when k = 1 the chromosome selection is a random process. Moreover, if 

the value of k is close to the number of chromosomes in the population the probability 

of selecting the best chromosome increases. Stone and Smith [45] observed that high 

selection pressure causes low diversity in the population. Thus, the value of k is GA 

critical factor which depends on the number of chromosomes in the population. 

Tournament selection algorithm adds k as an extra parameter to the GA, therefore 

roulette wheel is often preferred. In roulette wheel selection, the chromosomes have a 

probability p of being chosen depending on their relative fitness value. For a 

chromosome i in the population, the selection probability pi is calculated by equation: 

𝑝𝑖 =  
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘
𝑛
1

 

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 is the fitness value for chromosome i, and n is the number of 

chromosomes in the population. 

The algorithm may be seen as a real roulette wheel, in where after the wheel 

spinning, the pivot indicates the selected pattern. Figure 5 an example of a population 

of four chromosomes and their probability to be chosen. 

 

Figure 5: Roulette wheel fitness-based selection. 
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3.2. Crossover: 

As in every optimization algorithm, in order to improve the current value of 

criteria function, a new set of parameters must be chosen. In a GA the crossover 

operator was inspired by mix of genes in reproduction. In this operator, the strings of 

parameters representing the chromosomes for the two parents are cut and mixed to 

generate the new offspring. There are three different crossover techniques: one-point, 

two-point and uniform. One-point crossover choses a random point in the genome from 

both parents and swap them to generate two offspring Figure 6. 

 

 

Figure 6: One-point crossover. 

Two-point crossover selects two random splitting points from both parents which 

generate three splices, Figure 7 shows this process. Uniform crossover varies from the 

last two 

 

 

 

 

Figure 7: Two-point crossover 

techniques, here the technique evaluates each gene (bit) in the genome for exchange 

with a probability p instead of mixing segment of genes. If the mixing p is 0.5 then 



33 

 

around half of the chromosome for the new offspring belongs to parent one and the 

other half to parent two, Figure 8 shows this technique. 

 

 

 

 

 

 

Figure 8: Uniform crossover, p ≈ 0.5. 

 

3.3. GA Simplex: 

GA Simplex was proposed by Seront and Bersini [46] proposing that the search 

process can be effectively improved by taking into crossover multiple parents. This 

techniques takes into account the relative fitness of the parents. It works on three 

chromosomes of the population 𝑖1, 𝑖2, and 𝑖3 to generate a new offspring 𝑖4. If  𝑖1.𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

≥ 𝑖2.𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≥ 𝑖3.𝑓𝑖𝑡𝑛𝑒𝑠𝑠, the algorithm is as follows: 

Algorithm 1 GA Simplex Algorithm 

     for each 𝑘 − 𝑡ℎ parameter in chromosome do 

           if 𝑖1𝑘  =  𝑖2𝑘  then 

               𝑖4𝑘  ←  𝑖1𝑘 

           else 

               𝑖4𝑘  ←  𝑛𝑒𝑔𝑎𝑡𝑒(𝑖3𝑘) 

           end if 

     end for 

 

3.4. Mutation: 

Mutation is an optional operator used to discover a wider solution space in order 

to avoid converging in a non-adequate local minima. The mutation alters the value of 

all parameters in an offspring’s chromosome with a probability 𝑝𝑚. The probability 𝑝𝑚 

is fixed throughout the whole GA implementation and it should be small enough to just 
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slightly alter the chromosome as otherwise GA would behave very much as a random 

search. However, the mutation operator could be improved to cover a wider solution 

space while avoiding getting stuck into a local minima. This enhancement is done by 

having an evolutive mutation. In evolutive mutation 𝑝𝑚 is no longer fixed, instead pm 

for the offspring increases along with the similarity of the parents. For example, 

supposing xxxYYxx and xxxYYxY are the encoded variable for both parents. The 

resulting 𝑝𝑚 for the offspring would be high as the string of parameters only differ in 

one parameter. 

One common technique to determine the similarity between the parents is to 

calculate the distance between them. Whitley et al. [43] calculated the Hamming 

distance for binary parent strings to calculate 𝑝𝑚. 

4. Bootstrap Aggregation (Bagging): 

Bootstrap aggregation or bagging was first proposed by Breiman [47]. Bagging is 

a method that produces multiple predictors with different structures or models in order 

to get a new predictor referred to as a bagged predictor. Consider a learning set L 

consisting of xi input samples and the corresponding set of 𝑦𝑖 targets, where i = 1, ..., 

n. The standard, single predictor approach uses the set L to train a single prediction 

model. Bagging however, contains of using a set of m learning sets, or bootstrap 

samples 𝐿𝑘, k = 1, ..., m obtained by random independent sample draws with 

replacement from the original set L. The bootstrap samples 𝐿𝑘 are used to train m 

different predictor models. As a results, for each input bootstrap sample, there is one 

prediction model. If the predictor is a regression problem where the targets y are 

numeric, the final prediction 𝑦 =  𝑝𝑟𝑒𝑑(𝐿𝑘 , 𝑥) is the average of 𝑦𝑘  over m. When using 

classification predictors, the bagged output is defined as the majority vote among the 

bootstrap predictors 𝑝𝑟𝑒𝑑(𝐿𝑘, 𝑥)  Figure II.10 shows the bootstrap principle. Studies 

done by Breiman show that bagged predictors can substantially enhance the accuracy 

when using unstable predictors, where a small modification in the learning set L 
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Figure 9: Illustration of bagging process. 

considerably alters the predictor model [47],[48]. The improvement in the accuracy 

resulting from using bagging technique depends greatly in the stability of the predictor. 

Research has proved that decision trees, naïve Bayes and ANN are unstable classifiers 

[49], [48]. Grandvalet published a study shows that bagging applied to DTs also 

improves the estimation process stability. Experimental and theoretical results have 

shown that bagging reduces the non-linear variation by stabilizing the estimation 

process [49]. 

 

4.1. GA-Bagging: 

As explained in the last section, the bootstrap samples are obtained by random 

independent sample draws with replacement from the original set L. The new method 

proposed in this work uses a GA to optimize the composition of each of the training 

data subsets 𝐿𝑘. Fu et al. [50] used a GA to select a single optimal training subset. The 

rationale behind their idea is to use a portion of the dataset to construct a robust 

prediction model when it not feasible to use the entire dataset due to the big size. 

Moreover, they state that even when the dataset is small, the best model might not be 

found using the entire dataset. This approach aims to ignore the outliers and noise 

samples in the learning set. They demonstrate that the performance of the tree trained 

with the learning subset found by the GA achieved better results than the tree using the 

complete training set. 
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In this work, we apply a similar GA approach to select m optimal learning subsets 

that were used to built m models to form the bagged predictor. The principle of the GA 

Bagging System is shown in Fig. II.11. Implementation details are described in 

 

 

Figure 10: The principle of the GA bagging procedure. 
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Chapter 3 

 

This chapter presents discuss the research concept and the research process which 

will explain about the presented heuristic method, the testing of heuristic with a sample 

of problem the comparison and selection of the searching for answer starting from 

heuristic method as well as the improvement of answer. 

Our program describes a method that assigns customers to employees by 

partitioning them into employees, then by genetic algorithm the customers within each 

formed employee are routed using the cheapest route costs. 

First and foremost, we select our model’s parameters: 

Population size = the number of routes generated from each employee client list. 

Elite size = the small proportion of the fittest routs unchanged copied to the next 

generation. 

Number of clients = simply means, our number of clients.  

Number of employees = bank employees 

The first process is run for one time and the second is processed iteratively a finite 

number of times (generations) to improve the solution quality. The search begins by 

introducing the clustering customers according to their distances from bank to each 

other. 

1. First process: 

1.1. Clients demonstration: 

We first create a clients’ list that will allow us to handle our problem. These are 

simply our (𝑥, 𝑦) coordinates. This can be done using a random initialization points in 

the 100 × 100 coordinate-system measure. 

clientList = [] 

for i in range(num_clients): 

    clientList.append((int(random.random() * 100), int(random.random() * 100))) 
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1.2. Initial graph plot:  

Using tsp package (traveling salesman problem), we calculate the shortest path 

passing through all the clients including Bank with coordinates (𝟎, 𝟎): 

t = tsp.tsp(clientList) 

clientlist = [clientList[i] for i in t[1]] 

Then we plot our initial graph using this code: 

x, y = zip(*s) 

plt.figure(figsize=(10,10)) 

plt.plot(x, y, '--ob') 

plt.legend(loc= 'best') 

plt.annotate('BANK', (0, 0)) 

plt.title('Initial clients distribution') 

plt.savefig('graph.png') 

plt.show() 

 

 

1.3. Distances calculation: 

Within the Clients’ list, we form a distance calculation graph matrix (making use 

of the Pythagorean theorem:  

def euc_dis(a,b): 

    return np.sqrt((b[0]-a[0])**2+(b[1]-a[1])**2) 

 

def graph(v): 

    a = np.zeros((len(v), len(v))) 

    for i in range(len(v)): 

        for j in range(len(v)): 

            if v[j][0]==v[i][0]: 

                a[i,j] = round(abs(v[j][1]-v[i][1]), 2) 

            elif v[j][1]==v[i][1]: 

                a[i,j] = round(abs(v[j][0]-v[i][0]), 2) 

            else:     

                a[i,j] = round(euc_dis(v[j],v[i]), 2) 

    return a 
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1.1. Clients clustering over employees: 

Based on tsp shortest path, we devise clients over employees including BANK 

point to all clusters, this can be done by: 

def divide_client_for_employee(clientlist, em): 

    n = math.ceil(len(clientList)/em) 

    chunks = [clientList[i:i + n] for i in range(0, len(clientList), n)] 

    for i in range(len(chunks)): 

      chunks[i].insert(0, (0,0)) 

    return chunks 

 

2. Second process (genetic algorithm): 

The second process is based on two parameters: 

Generations = iterations of the process 

Mutation rate = the proportion of  

2.1. Population creation:  

Selecting the matrix of population for each employee randomly, which contains 

of " Population size" routes possible formed by clients. 

2.2. Population ranking: 

Ranking the routes of population of each employee from lower distance to higher, 

depending on distances mentioned in graph matrix. 

2.3. Mating pool selection: 

Selecting the parents that will be used to create the next generation. The method 

used here is distance proportionate selection; we keep the first "Elite size" routes from 

the ranked population matrix of each employee, then we fill the rest roads depending 

on those who have high proportion of low distance. 

2.4. Breeding: 

With our mating pool created, for each employee, we can create the next 

generation in a process called "crossover", we save the same “Elite size”  routes that 

they have the lowest distances from the mating pool and then we apply crossover 

breeding to the roads that chosen randomly from the mating pool. 
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2.5. Mutation: 

We’ll use a method called "swap mutation". This means that, with specified low 

probability “Mutation rate”, two cities will swap places in our children matrix. We’ll 

do this for one individual to avoid local convergence by introducing novel routes that 

will allow us to explore other parts of the solution space. 

In this step we consider the output matrix as a population and then we apply the 

same algorithm many times “Generations”. 
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Chapter 4 

 

In this chapter we introduce the experiments and results obtained by our model. 

1. First experiment: 

Let’s say we have 12 clients, 3 employees, which means each employee will have a list 

of 4 clients, we will try to implement our algorithm based on these parameters: 

Population size = 10, Elite size = 5, Mutation rate = 2, Generations = 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Initial banking route 

 

 

 

Figure 11: Initial graph plot 
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Figure 12: Employees inicial routes 

 

 

Table 1: Employees’ initial distances 

 

 

 

 

 1st employee 2nd employee 3rd employee 

initial distance (m) 135.79 326.49 200.11 
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Figure 13: Final employees’ routes 

 

1.1. Results: 

Execution time 0.16 seconds 

1st employee final shortest route: [(51, 38), (52, 27), (49, 29), (43, 27), (0, 0)] 

2nd employee final shortest route: [(0, 0), (28, 90), (78, 99), (89, 50), (96, 17)] 

3rd employee final shortest route: [(16, 87), (10, 76), (3, 58), (0, 0), (34, 28)] 
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Distance curves: 

 

 

 

 

 

 

 

 

Figure 14: 1st experiment employees’ curves 

The second employee distance stays the same. 

 

Suppose that each 1 meter takes 2 seconds time, results are summarized in this table: 

Employee Final distance (m) Time (s) 

1st employee 135.35 270.7 

2nd employee 326.49 666.14 

3rd employee 195.65 391.3 

 

Table 2: first experiment summary 
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2. Second experiment: 

Let’s say we have 20 clients, 3 employees, which means each employee will have 

a list of at least 6 clients, we will try to implement our algorithm based on these 

parameters: Population size = 10, Elite size = 3, Mutation rate = 2, Generations = 500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Initial graph plot 
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Figure 16: Employees initial routes 

 

 

 1st Employee 2nd Employee 3rd Employee 

Initial distance (m) 336.47 401.42 225.29 

 

Table 3: Employees initial distances 
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Figure 17: Final employee’s routes 

 

2.1. Results: 

Execution time 1.02 seconds 

1st employee final distance: his shortest route: 

[(49, 29), (43, 27), (0, 0), (3, 58), (1, 80), (10, 76), (51, 38), (52, 27)] 

2nd employee final distance: his shortest route:  

[(28, 90), (16, 87), (9, 87), (0, 0), (89, 50), (92, 49), (98, 62), (78, 99)] 

3rd employee final distance: his shortest route:  

[(22, 3), (0, 0), (27, 10), (34, 28), (96, 17), (56, 12), (37, 4)] 

 



48 

 

Suppose that each 1 meter takes 2 seconds time, 2nd experiment results are summarized 

in this table: 

Employee Final distance (m) Time (s) 

1st employee 217.67 435.34 

2nd employee 319.25 638.5 

3rd employee 209.23 418.46 

 

Table 4: Second experiment summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: 2nd experiment employees’ curves 
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Conclusion: 

 

The goal of this thesis is to design and implement a genetic algorithm In order to 

organize bank employees movements, in which, a number of employees travel 

throughout a set of clients given, the goal is to get the optimal solution which is the 

minimum cost and distance of each employee’s route. 

Results above show that the optimal solution is definitely related to the GA 

parameters, as much as we increase “Generations”, “Population size”, and “Mutation 

rate” values as much as we get to the better solution. 
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