Министерство образования и науки Российской Федерации Федеральное государственное автономное образования учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б.И. Ельдина» Химико-технодогический институт Кафедра аналитической химии

допустить і	КЗАЩИТЕ В ГЭК
Зав. кафедрой	AX
	Козицина А.Н.
(полнись)	(O.H.O.)
« »	2020 г.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

ИССЛЕДОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОГО ВОССТАНОВЛЕНИЯ 2-ЗАМЕЩЕНЫХ ХИНОКСАЛИНОВ В АПРОТОННОЙ СРЕДЕ. КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ВОЛЬТАМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ

Пояснительная записка

04.04.01 933180 008 113

Руководитель, ведущий инженер <u>Упономана</u>

Пормконтролер

Студент гр. XM-280021

А.Н. Цмокалюк

и.С. Алямовская

Ю.А. Лыкова

т. Екатеринбург. 2020 Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Институт химико-технологический Кафедра аналитической химии

Направление подготовки 04.04.01 Химия

Образовательная программа «Медицинская и фармацевтическая химия»

Образовательная траектория «Пиструментальные методы исследования в фарманевтике»

У	ТВЕРЖДАЮ
Зав. Кафедрой	Козицина А.Н
))	2020 r.

ЗАДАНИЕ

на выполнение магистерской диссертации

студента <u>Лыковой Юлии Алексеевны</u> группы XM- 280021

(фамилия, имя, отчество)

1. Тема магнетерской диссертации <u>Исследование электрохимического восстановления 2-замещеных хинокеалинов в апротонной среде. Количественное определение вольтамиерометрическим методом.</u>

Утверждена распоряжением по институту от «<u>25</u>» <u>февраля</u> 2020 г. № 33-09-05/30

- 2. Руководитель <u>Цмокалюк Антон Николаевич, ведущий инженер.</u> (Ф.И.О., должность, ученое звание, ученая степень)
- 3. Исходные данные к работе литературные данные и результаты исследования
- 4. Перечень демонстрационных материалов презентация на 23 стр
- 5. Календарный план

$\mathcal{N}_{\bar{0}}$	Наименование этапов выполнения работы	C	рок выпол	пения	Отметка о выпол-
п/п			этапов раб	боты	нении
1.	Исследование одноэлектронного переноса	ДО	10_июня	2020 г.	Выполнено
	электрона хиноксалина. Построение ряда				
	восстановительной активности произ-				
	водных хиноксалина. Количественное				
	определение вольтамперометрическим				
	методом хиноксалина и его производных.				
	Сбор и анализ полученных данных.				
2.	Оформление пояснительной записки	ДО	17 <u>июня</u>	2020 г.	Сдано
3.	Подготодка презентации и доклада	до	24 июня	2020 г.	Выполнено

			. ,		Cittio
3.	Подготодка презентации и доклада	до	<u> 24 июня</u>	2020 г.	Выполнено
Руково	MITERS UJNOKOWIOK				<u>Цмокалюк А.Н.</u>
2	(подпись)				Ф.И.О.
эаданн	е принял к исполнению <u>01.06.2020</u>			_	
	дата				(подпись)
	нстерская диссертация закончена «»			_ 2020_г	считаю возмож-
	опустить <u>Лыкову Юлию Алексеевну</u>				к защите его ма-
гистер	ской диссертации в Государственной экзамен	ацио	нной комі	иссии.	
Руково	ской диссертации в Государственной экзамен дитель (подпись)				Цмокалюк А.Н
					Ф.И.О.
7. Д ону	устить <u>Лыкову Ю.А.</u> к защите магистерской	дис	сертации	в Госуда	рственной экзамена-
ционис	ой компесии (протокол заседания кафедры №	4_0	от «_02_» д	<u>июня</u> 20:	20 г.).
	федрой				Козицина А.Н
	(подпись)				Ф.И.О.

Реферат

Пояснительная записка – 69 страниц, 24 таблицы, 39 рисунков, 29 источников.

ХИНОКСАЛИНЫ, ПРОИЗВОДНЫЕ ХИНОКСАЛИНОВ, ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА, ОДНОЭЛЕКТРОННЫЙ ПЕРЕХОД, КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ, ЭНЕРГИЯ СРОДСТВА К ЭЛЕКТРОНУ, ВОЛЬТАМПЕРОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Объектом исследования являются 2-замещеные хиноксалины.

Целью данной работы является изучение химических и электрохимических свойств хиноксалина и его производных.

Данная цель подразделяется на следующие задачи:

- 1) Изучение литературных источников о применении производных хиноксалина, химических и электрохимических свойствах этих соединений, возможных опубликованных методах количественного определения производных хиноксалина вольамперометрическим способом.
- 2) Изучение восстановительных свойств соединений производных хиноксалина (окислительно-восстановительные свойства, потенциал восстановления, ЭПР спектр, квантово-химический расчеты). Сравнение восстановительных свойств синтезированного ряда производных хиноксалина.
- 3) Определение количества электронов, участвующих в процессе восстановления производных хиноксалина. Моделирование процесса восстановления. Доказательство одноэлектронного перехода хиноксалина
- 4) Количественное определение производных хиноксалина вольтамперометрическим способом.

ABSTRACT

Explanatory note – 69 pages, 24 tables, 39 figures, 29 sources.

QUINOXALINES, DERIVATIVES OF QUINOXALINES, REDUCING PROPERTIES, SINGLE-ELECTRON TRANSITION, QUANTUM CHEMICAL CALCULATIONS, ELECTRON AFFINITY ENERGY, VOLTAMMETRIC CHARACTERISTICS

The object of research is 2-substituted quinoxalines.

The goal of this work is to study the chemical properties of quinoxaline and its derivatives.

This goal is divided into the following tasks:

- 1) Study of literature sources on the use of quinoxaline derivatives, chemical and electrochemical properties of these compounds, possible published methods for quantitative determination of quinoxaline derivatives by voltammetric method.
- 2) Study of reducing properties of compounds of quinoxalin derivatives (redox properties, reduction potential, EPR spectrum, quantum chemical calculations). Comparison of reducing properties of a synthesized series of quinoxaline derivatives.
- 3) Determination of the number of electrons involved in the reduction of quinoxaline derivatives. Modeling the reduction process. Proof of a single-electron quinoxalin transition.
- 4) Quantitative determination of quinoxalin derivatives by voltammetric methods.

Обозначения и сокращения

Соединение 1 - 6,7-Дифтор-(Е)-2-стирилхиноксалин

Соединение 2 – [2-(6,7-Дифторхиноксалин-2-метилен)амино]фенол

Соединение 3 – (Хиноксалин-2-ил)метиленгидразид бензойной кислоты

ВА – вольтамперометрия.

ЦВА – циклическая вольтамперометрия/вольтамперограмма.

ЭПР – электронный парамагнитный резонанс.

ОВ – окислительно-восстановительный процесс.

ХА –хроноамперограмма.

КВ – квадратно-волновой режим

ЛР – линейный режим.

ДИП – дифферинциально-импульсный режим.

СУЭ – стеклоуглеродный электрод.

ДМСО – диметилсульфоксид.

ТБА ТБФ – тетрабутиламмония тетрафторборрат.

 $T\Phi\Pi$ – теория функционала плотности.

ВЗLYР – модель теории функционала плотности.

EA_{ad} – сродство к электрону при адиабатическом процессе.

ДМФА – N,N-Диметилформамид.

СОДЕРЖАНИЕ

Обозначения и сокращения	3
Введение	6
1 ЛИТЕРАТУРНЫЙ ОБЗОР	7
1.1 Хиноксалин – важный структурный эле соединений.	
1.2 Применение производных хиноксалина	ı8
1.2.1 В технологических целей	8
1.2.2 В качестве лекарственных средств в активностью.	
1.3 Корреляция восстановительных свойст биологической активности.	-
2 Изучение восстановительных свойств неко	оторых производных хиноксалина. 17
2.1 Изучение восстановительных свойств м вольтамперометрии.	
2.1.1 Условия эксперимента	Error! Bookmark not defined.
2.1.2 Аппаратура	Error! Bookmark not defined.
2.1.3 Результаты эксперимента	Error! Bookmark not defined.
2.2 Регистрация продуктов электровосстан	
2.2.1 Условия эксперимента	Error! Bookmark not defined.
2.2.2 Аппаратура	Error! Bookmark not defined.
2.2.3 Результаты эксперимента	Error! Bookmark not defined.
2.3 Определение числа электронов в реакц производных хиноксалина методом сравне Восстановительным (ОВ) процессом в мод	ения с Окислительно-
ферроцена	
2.3.1 Условия эксперимента	
2.3.2 Аппаратура	
2.3.3 Результаты эксперимента	
2.4 Определение числа электронов в реакц	<u>-</u>
соединения 2, используя уравнение Котрел	іла 19
2.4.1 Уравнение Котрелла, условия прим	енимости19

2.4.1.1 Результаты эксперимента	20
2.4.2 Выбор коэффициента диффузии	22
2.4.3 Расчет количества электронов по уравнению Котрелла	22
2.5 Квантово-химический расчет энергии сродства к электрону из соединений и построение зависимости сродства от потенциала во	есстановления.
2.6 Схема восстановления изучаемых производных на основании исследования. Ряд восстановительной активности соединений Bookmark not defined.	
3 Количественное определение производных хиноксалина методом вольтамперометрии (BA).	23
3.1 Условия эксперимента	
3.2 Аппаратура	
3.3 Выбор параметров измерения ВА в линейном (ЛР), квадратно (КВ) режимах для хиноксалина, соединения 2, соединения 3	
3.3.1 Выбор скорости развертки в ЛР для исследованных соедин	нений 24
_3.3.1.1 Выбор скорости развертки в ЛР для хиноксалина	24
_3.3.1.2 Выбор скорости развертки в ЛР для соединения 2	25
3.3.2 Выбор параметров для КВ развертки для соединения 2	27
_3.3.2.1 Выбор амплитуды импульса	27
_3.3.2.2 Выбор скорости развертки (частоты)	29
3.3.3 Выбор параметров КВ развертки для соединения 3	32
_3.3.3.1 Выбор амплитуды импульса	32
_3.3.3.2 Выбор скорости развертки (частоты)	34
3.4 Определение минимальных значений определяемых концентр хиноксалина в ЛР и КВ режимах.	
3.4 Построение градуировочного графика в КВ режиме для соеди Error! Bookman	нения 3.
3.5 Построение градуировочного графика в КВ режиме для соеди Error! Bookman	нения 2.
3.6 Определение доверительного интервала для серий измерений соединений 2 и 3 Error! Bookman	для
Заключение Error! Bookman	

Введение

За последние 10-15 лет, из-за коммуникации между людьми всего мира, вирусы распространяются c угрожающей скоростью. Вирусы стали неотъемлемой частью нашей повседневной жизни. Возникновение новых вирусов, которые вызывают различные заболевания, такие как свиной и птичий грипп, лихорадка Эбола сотрясли весь мир. Самой важной на данный момент проблемой является появление короновируса - SARS-CoV-2, вызвавшего пандемию пневмонии в 2020 году. В борьбе с COVID-19 актуальность поиска новых фармацевтических препаратов резко возрастает. Так как хиноксалин и его производные проявляют противовирусную, антибактериальную противотуберкулезную активность, препараты на основе хиноксалина могут быть востребованы в борьбе с пандемией.

Изучение свойств хиноксалина является важной задачей, так как вновь производные хиноксалинов проявляют синтезированные химическую И биологическую Из-за активность. значительного увеличения необходимости новых лекарственных препаратов, исследование поиска производных хиноксалинов И ИХ химической активности, количественное определение новых синтезированных хиноксалинов является нужной и важной задачей.

Хиноксалины широко применяются не только фармацевтической промышленности, но и в технических целях.

1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Хиноксалин – важный структурный элемент природных и синтетических соединений.

Хиноксалин в органической химии представляет собой гетероциклическое соединение, содержащее кольцевой комплекс, состоящий из бензольного кольца (отвечающего за антибактериальную активность) и пиразинового кольца (участвующего в решении технологических задач). Это бесцветное масло, которое плавится чуть выше комнатной температуры [1].

Общая формула хиноксалинов представлена на рисунке 1.

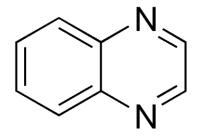


Рисунок 1 – Структурная формула хиноксалинов

Хиноксалин в основном представляет академический интерес, производные хиноксалина используются в качестве красителей, фармацевтических препаратов [1].

Производные хиноксалина являются важным классом гетероциклических соединений, в которых N замещает атомы нафталинового кольца [2]. Они важны в промышленности благодаря своей способности ингибировать коррозию металлов [2-4], в получении порфиринов, так как их структура аналогична хромофорам в естественной системе, а также в электролюминесцентных материалах [5].

В фармакологической промышленности они привлекли большое внимание благодаря своему широкому спектру биологических свойств [5]. Например, они могут быть использованы против бактерий, грибков, вирусов, лейшмании, туберкулеза, малярии, рака, депрессии и неврологических заболеваний, среди прочих. Структурное ядро хиноксалина делает все эти действия возможными. Структура хиноксалина выступает в качестве прекурсора для сборки большого количества новых соединений для различных применений [2, 6-9].

Большинство производных хиноксалина являются синтетическими, а природные производные хиноксалина встречаются редко, такие как эхиномицин и триостин [10].

Изучение хиноксалина и его производных стало предметом интереса в последние годы из-за их широкого спектра биологической активности, а также терапевтического применения. Поскольку они редки в природе, синтетические хиноксалины входят в состав различных антибиотиков, таких как эхиномицин, левомицин и актиномицин, а также активны против опухолей трансплантата [11]. Эхиномицин, например, имеет хиноксалинильную часть в своей структуре, а также некоторые известные препараты, которые облегчают симптомы глаукомы [12].

Так как хиноксалин активно используется в создании фармацевтических углубленное препаратов, необходимо изучение его свойств. Изучение химических свойств синтезированных соединений способствует поиску новых cнаибольшими восстановительными способностями производных как с предполагаемой биологической активностью. соединений, корреляции между электрохимическими данными, структурой и активностью препарата [13].

1.2 Применение производных хиноксалина

1.2.1 В технологических целей

Производные хиноксалинов используются в фармацевтической промышленности, а так же нашли широкое применение в решении технологических задач. Хиноксалины важны в промышленности из-за своей способности к ингибированию коррозии металлов [2-5], при получении порфиринов, так как их строение аналогично хромофорам в естественной системе, а также в электролюминесцентных материалах.

Нефторированные аналоги хиноксалинов демонстрировали значительные люминесцентные свойства, а введение атомов фтора может повысить растворимость в органических растворителях, что важно для производства электронных приборов [14].

Рассмотрим более подробно структуры этих веществ в таблице 1.

В таблице 1 представлены структурные формулы производных хиноксалина, которые используются в решении технологических задач.

Таблица 1 – Производные хиноксалинов, которые используются в решении технологических задач.

Применение	Структурная формула
Хромофоры, люминесцентные материалы [2]	F N R
Ингибирование коррозии металлов [2]	F X X S S

1.2.2 В качестве лекарственных средств и соединений с биологической активностью.

Хиноксалин и его производные имеют широкое применение, обладая большим потенциалом, являясь важным классом биологически активных соединений. Хиноксалин и его производные показали широкую область применения в медицине благодаря своим биологическим активностям, к которым относятся антимикробные, противодиабетические средства, противовоспалительные, противоопухолевые, антиглаукомные [2].

Упомянутая биологическая активность очень обнадеживает исследователей и фармацевтов, приводя к новым методам лечения и терапевтическим средствам, которые принесут пользу человечеству [4,6].

В таблице 2 представлено применение производных хиноксалина в фармацевтической промышленности.

Таблица 2 - Производные хиноксалина, проявляющие биологическую активность и используемые фармацевтические препараты.

Свойства	Структурная формула	Применение	
Производные хиноксалина, проявляющие биологическую активность			
Антибактериальная активность	CI N N N	Антибактериальная активность была протестирована против стафилококк и кишечной палочки.	

Антивирусная активность	CH ₂ CH ₃ CH ₃	Антивирусная активность была проверена на вирусе иммунодефицита человека 1-го типа (ВИЧ-1), который является возбудителем синдрома приобретенного иммунодефицита (СПИД) и было доказано, что данное вещество ингибирует рост клеток возбудителя.
	Продолжение таблицы	
Проводиабетная активность	NH H H N R	Исследования показали, что данное вещество снижает уровень глюкозы в крови и имеет низкую токсичность.
Противораковая активность	Compound 2	Ингибирует распространение раковых клеток, предотвращает образование метостаз.
Антиглаукоматозное средство	HN NH N N	Данное вещество способствует снижению внутриглазного давления, облегчая симптомы глаукомы.
Средство против атеросклероза	N N CI R'	Производные хиноксалина также были протестированы в качестве специфических ингибиторов клеток атеросклероза.

Используе	Используемые фармацевтические препараты			
Гидроксиме- тилхинокса- линдиоксид (диоксидин)	O- O- O-	Антибактериальный бактерицидный препарат широкого спектра действия. Действует на штаммы бактерий, устойчивых к другим антибактериальным лекарственным средствам, включая антибиотики.		
	Продолжение таблицы	1 2		
Хиноксидин	O CH ₃ O CH ₃	Хиноксидин обладает антимикробными свойствами. Хиноксидин действует бактерицидно на штаммы микробов, устойчивые к антибиотикам и другим химиотерапевтическим препаратам.		
Рифампицин	HOHO OH NH	Антибиотик, противотуберкулёзное средство. Активен в отношении микобактерий туберкулёза. Механизм действия связан с подавлением ДНК-зависимой РНК-полимеразы микроорганизмов.		
5,7-дибром-8- оксихинолин	Br OH	Противомикробный препарат. Кишечный антисептик, обладает выраженным антибактериальным свойством.		

синтезируемые производные приобретают Вновь хиноксалинов актуальность из-за устойчивости к используемым ранее противомикробным препаратам. Эта проблема представляет собой серьезную угрозу для общественного здравоохранения результате широко BO всем мире в распространенного и небрежного использования противомикробных препаратов и требует постоянных усилий для поиска лучших противомикробных средств,

эффективных против устойчивых патогенных микроорганизмов. Существует широкий спектр производных хиноксалина с антимикробной активностью [15].

Для использования в качестве хромофорных соединений на кафедре органической химии Уральского Федерального университета, химикотехнологического института и института органического синтеза Уральского отделения Российской академии наук были синтезированы соединения, представленные на рисунках 3 и 4 [14].

Рисунок 3 – Структурные формулы производных хиноксалина,

А – Соединение 1; В – Соединение 2

C

Рисунок 4 - Структурные формулы производных хиноксалина, С – Соединение 3

1.3 Корреляция восстановительных свойств, производных хиноксалина и биологической активности.

Существует предположение о связи биологической активности и восстановительными способностями соединений [13].

На рисунке 5 представлены соединения, проявляющие биологическую активность, данные соединения являются близкими по структуре с исследуемыми в данной работе производными хиноксалина.

Рисунок 5 – Производные хиноксалина, проявляющие биологическую активность [13].

Данные соединения исследовались в апротонном растворителе - ДМФА. Соединение 1а обладает антибактериальной, мутагенной, туберкулостатической активностью [13], а 2а и 2b проявляют in vivo и in vitro антибактериальную активность, а также ростостимулирующие свойства. Интересно, что 2а более активен, чем 2b, и показывает более положительные значения потенциала полуволны [16-17]. Мутагенные свойства для 1а и 3а в бактериях зависят от наличия N-оксидных групп, например, 1а является мутагенным, 3а не является [17]. Потенциал полуволны 1а равен $E_{1/2} = -1,21$ В, потенциалы полуволны для соединений 2а и 2b практически равны $E_{1/2} = -1,02$ В, $E_{1/2} = -1,04$ В, соответственно. Потенциал полуволны 3а равен $E_{1/2} = -1,80$ В, для соединения 3с равен $E_{1/2} = -1,56$ В [13]. Неокисленное соединение 3b давало единственную восстановительную волну с квази-обратимыми тенденциями при $E_{1/2} = -1,71$ В, постоянные катодные пиковые и полуволновые потенциалы были получены при всех скоростях сканирования для 1а, что свидетельствует о обратимости [13].

Так как большую биологическую активность проявляют соединения обладающие наиболее положительными потенциалами полуволны [13], можно

сделать выводы о том, что из хиноксалинов, приведенных на рисунке 5 наиболее сильную биоактивность имеют 2a и 2b, а наименьшую 3a.

На рисунке 6 представлено производное хиноксалина, проявляющее противотуберкулезную активность.

Рисунок 6 — 1,4-ди-N-оксид хиноксалина, проявляющее противотуберкулезную активность [18].

Электрохимическое восстановление 1,4-ди-N-оксидов хиноксалина проводилось в апротонных системах растворителей [18]. Для данного соединения электрохимическое восстановление ДМФА происходит с уменьшением N-оксидной функциональности с образованием анион радикала [18].

Так как существует взаимосвязь между биологической активностью и восстановительной способностью, необходимо выбрать те соединения, которые лучше проявляют восстановительную активность, следовательно, лучшую биологическую активность. [13] Электрохимические результаты показывают, что соединения с наиболее положительными восстановительными потенциалами обычно являются теми, которые обладают наибольшей антимикробной активностью. Степень N-окисления оказывает выраженное влияние на антимикробную активность, а также на легкость восстановления [2].

Однако абсолютная корреляция между антибактериальной активностью и электрохимическим поведением зависит от ряда факторов, таких как стереохимия, растворимость, диффузия, адсорбция и связывание активных

центров [13,16]. Таким образом, абсолютная корреляция между электрохимическим поведением и противотуберкулезная активность не обоснована [13]. Тем не менее, результаты этого исследования, предполагают участие передачи заряда в общем механизме действия этих хиноксалинов ди-Nоксиды против туберкулеза [18].

Так как структура исследуемых соединений 1-3 похожа на производные хиноксалинов, приводимые в данной главе (рис. 5-6), можно предположить об их биологической активности. Из-за существующей взаимосвязи восстановительной способности и биологической активности [13] производных хиноксалинов, исследование окислительно-восстановительных свойств и количественное определение соединений 1-3 является актуальной задачей.

1.4 Схема синтеза некоторых производных хиноксалинов

Синтез производных хиноксалина проводился на кафедре органической химии Уральского Федерального института и института органического синтеза Уральского отделения Российской академии наук.

Схема синтеза соединения 2, исследуемого в данной работе представлена на рисунке 7. [14]

Figure 1. Since
$$\frac{NH_2}{NH_2}$$
 $\frac{NH_2}{NH_2}$ $\frac{NH_2}{NH_2$

Рисунок 7 - Схема синтеза соединения 2

- **2** Изучение восстановительных свойств некоторых производных хиноксалина.
- 2.3 Определение числа электронов в реакции электровосстановления производных хиноксалина методом сравнения с Окислительно-Восстановительным (ОВ) процессом в модельной системе окислением ферроцена.

После проведения ЭПР исследования высказывается предположение об одноэлектронном переходе хиноксалина и его производных.

В данном эксперименте происходит сравнение пика восстановления хиноксалина с током пика окисления модельной системы одноэлектронного перехода ферроцена и площади под ними.

На данную модель распространяется ограничение диффузией. [21] Необходимо, чтобы все условия эксперимента были одинаковы: концентрация, растворитель, площадь электрода.

Предполагается, что одноэлектронный переход происходит по одному механизму у хиноксалина и его производных, а именно соединение 2 и соединения 3. Доказательство этого приводится далее. Сравнение пика восстановления хиноксалина с пиком окисления модельной системой одноэлектронного перехода ферроцена [22] происходит следующим образом: необходимо снять циклические вольтамперограммы и сравнить пики.

2.3.1 Условия эксперимента

Исследование восстановительных свойств, проводилось с использованием метода циклической вольтамерометрии. Соединения с требуемой чистотой. Эксперимент проводился в апротонной среде, в качестве растворителя — ацетонитрил. В качестве фонового электролита используется тетрафторборат тетрабутиламмония - Bu_4NBF_4 , с концентрацией $C_{TEA\ TE\Phi}=10^{-1}\ M$. Регистрация ведется в катодной области для соединения 3 и анодной области для ферроцена

[22]. Для устранения влияния кислорода на исследуемый раствор, используется барботаж анализируемого раствора аргоном в течение 10 минут.

2.3.2 Аппаратура

Вольтамперограммы регистрировались при помощи установки потенциостат/гальваностат µAutolab типа III (Меttohm, Швейцария).

В данной работе используется трехэлектродная ячейка, которая состоит из: рабочего электрода, электрода сравнения, вспомогательного электрода.

2.3.3 Результаты эксперимента

Результаты обработки пиков восстановления для соединения 3 и окисления для ферроцена представлены в таблице 7.

Таблица 7 — Результаты обработки вольтамперограмм соединения 3 и ферроцена.

Вещество	Соединение 3	Ферроцен
С, М	10 ⁻²	10 ⁻²
$ar{oldsymbol{Q}}$	6,931·10 ⁻⁵	7,884·10 ⁻⁵
\overline{Ip}	$3,113\cdot10^{-4}$	3,143·10 ⁻⁴
$rac{ar{Q}_{ m coeдинeниe 3}}{ar{Q}_{ m фeppoqeh}} = rac{6,931 \cdot 10^{-5}}{7,884 \cdot 10^{-5}} = 0,879$		
$\frac{\bar{Ip}_{\text{соединение 3}}}{\bar{Ip}_{\text{ферроцен}}} = \frac{3,113 \cdot 10 - 4}{3,143 \cdot 10 - 4} = 0,990$		

Из таблицы 7 отношение площадей пика восстановления соединения 3 и окисления ферроцена составляет 0,879, при этом отношение высоты пика составляет 0,990. Из этого делаем вывод, что если известно об одноэлектронном переходе ферроцена [22], то можно судить о возможном одноэлектронном переносе заряда при электрохимическом восстановлении производного хиноксалина (соединения 3) в апротонной среде.

2.4 Определение числа электронов в реакции электровосстановления соединения 2, используя уравнение Котрелла.

2.4.1 Уравнение Котрелла, условия применимости

Одноэлектронный переход хиноксалина можно доказать не только химическим способом (при применении модельной системы), но и при помощи применении уравнения Котрелла (при предварительном электрохимическом восстановлении).

В данной работе необходимо рассчитать количество электронов в процессе электровосстановления хиноксалина и его производных. Рассчет будет производиться по уравнению Котрелла [23].

Уравнение Котрелла решает задачи нестационарной диффузии к бесконечной плоскости. Данное уравнение вводится при процессах, лимитируемых диффузией.

Вывод уравнения Котрелла [24]:

$$\frac{i(t)}{nF} = j(0,t) = D \frac{\partial C}{\partial n}(0,t) = D \left[\frac{C}{\sqrt{\pi D t}} exp \left\{ \frac{-n^2}{4Dt} \right\} \right]_{n=0} = C \sqrt{\frac{D}{\pi t}}$$
 (1)

i(t) – ток, A;

n – количество электронов;

F — число Фарадея;

C — начальная концентрация раствора, моль/см³;

D – коэффициент диффузии, см²/с;

t – время, с;

j(0,t) – плотность тока на электроде, в зависимости от времени t, A/cм³.

Далее уравнение сводится к соответствующему уравнению Котрелла для случая линейной диффузии:

Уравнение Котрелла имеет следующий вид [23]:

$$I_d = \frac{nFAC_o\sqrt{D}}{\sqrt{\pi t}} \tag{2}$$

где,

 I_d – ток, А;

n – количество электронов;

F – число Фарадея;

A – площадь электрода, см²;

 C_o — начальная концентрация раствора, моль/см³;

D – коэффициент диффузии, см²/с;

t – время, с.

2.4.1.1 Результаты эксперимента

Эксперимент был проведен для соединения 2 (C = 10⁻³M). Хроноамерограммы регистрировались три раза. Хроноамперограммы соединения 2 представлены на рисунке 3.

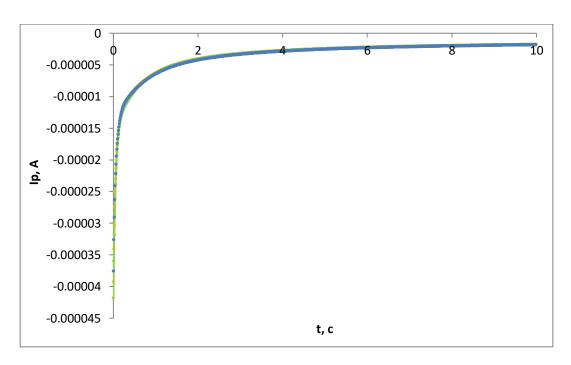


Рисунок 14 – Хроноамперограммы соединения 2.

Выборка точек для обработки проводилась с 1 по 2 секунду, применение уравнения Котрелла для расчета числа электронов возможно, когда скорость протекания электрохимической реакции ограничена диффузией реагента. То есть формула применима при диффузной кинетике процесса. Такая кинетика при хроноамперометрической реакции происходит с 1 по 2 секунды. [21,24] До первой и после второй секунды происходит ограничение скорости процессами, в которых диффузия не имеет преобладающего вклада, а с 1 по 2 секунды имеет. При больших временных значениях концентрационная поляризация доходит до поверхности, и лимитируемый диффузией ток падает ниже значений, определяемых уравнением Котрелла. После 3 секунды происходят процессы, не удовлетворяющие условиям диффузной кинетики [21].

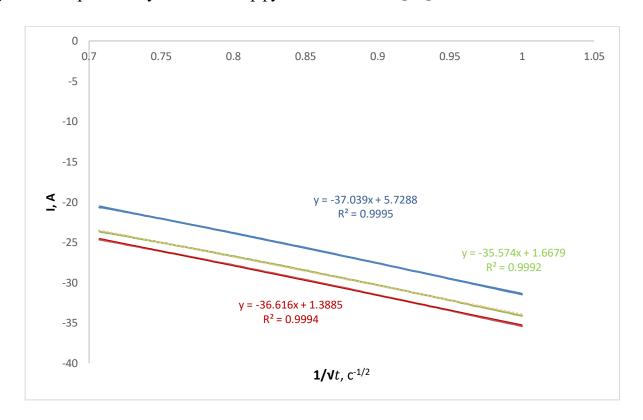


Рисунок 15 — Зависимость тока пика Т-315 ($C = 10^{-3} M$) от обратного квадратного корня времени.

По результатам эксперимента, были сделаны выводы о том, что коэффициенты достоверности полученных зависимостей >0,99. Поэтому можно сказать о диффузном характере кинетики и применимости уравнения Котрелла [23] в данной работе.

2.4.2 Выбор коэффициента диффузии.

Коэффициент диффузии для дальнейших исследований взят из литературы. В статье приводится значение коэффициента диффузии для хиноксалинов в апротонных средах (ДМСО, ДМФА), которое равно $K_D = 1.1 \cdot 10^{-5}$ (см²/с) [21].

2.4.3 Расчет количества электронов по уравнению Котрелла.

Расчет количества электронов для соединения 2 (производного хиноксалина), участвующих в процессах восстановления, проводился по уравнению Котрелла, приведенного в п. 2.4.1.

Предварительно было проведено хроноапмерометрическое исследование и зарегистрированы хроноамперограммы соединения 2, результаты приведены в п. 2.4.1.

Преобразовав уравнение Котрелла, получаем формулу для вычисления количества электронов, а также используется известное значение коэффициента диффузии, приведенного в п. 2.4.2. Пример вычисления количества электронов [26] ниже:

$$n = \frac{I_d \sqrt{\pi t}}{FAC_o \sqrt{D}} =$$

$$= \frac{3,1455 \,\mu\text{A} \cdot \sqrt{3,14 \cdot 1c}}{96485 \frac{\text{K}_{\pi}}{\text{MOЛЬ}} \cdot \frac{3,14}{4} \cdot 0,003^2 \,\text{m}^2 \cdot 0,001 \frac{\text{MОЛЬ}}{\text{ДМ}^3} \cdot \sqrt{1,1 \cdot 10^{-5}} \frac{\text{CM}^3}{\text{C}}}$$

$$= \frac{0,0000031455 \,\text{A} \cdot \sqrt{3,14}}{96485 \frac{\text{K}_{\pi}}{\text{MОЛЬ}} \cdot 0,785 \cdot 0,3^2 \,\text{cm}^2 \cdot 0,000001 \frac{\text{MОЛЬ}}{\text{CM}^3} \cdot \sqrt{1,1 \cdot 10^{-5}} \frac{\text{CM}^3}{\text{C}}}$$

$$= 1,03$$

$$n = \frac{I_d \sqrt{\pi t}}{FAC_o \sqrt{D}} \approx 1$$

В таблице 8 представлены рассчитанные значения количества электронов трех измерений.

Таблица 8 – Количество электронов трех измерений

№ Хроноамперограммы	Рассчитанное количество электронов	Количество электронов
1	1,03	1
2	1,16	1
3	1,12	1
Среднее значение	1,10	1

Данное значение можно округлить до единицы. Как приводилось в литературных источниках [20], у хиноксалинов одноэлектронный процесс восстановления, рассчитанное значение совпадает данными из источника [20].

3 Количественное определение производных хиноксалина методом катодной вольтамперометрии (BA).

Далее описывается выбор параметров регистрации вольатмперограмм для хиноксалина и его производных (соединения 2,3). Из-за ограниченности объёма синтезированного соединения 3 было решено проводить исследования по выбору оптимальных параметров измерений на с дальнейшей оптимизацией хиноксалине параметров ДЛЯ конкретного производного хиноксалина.

3.1 Условия эксперимента

Количественное определение хиноксалина и его производных проводилось по пику с наибольшим потенциалом восстановления. Исследование восстановительных свойств, проводилось с использованием линейной и квадратно-волновой развертки потенциалов. Исследовали оединения с чистотой 99% (по исследованиям ЯМР-спектроскопии). Эксперимент проводился в апротонной среде, так как хиноксалины плохо растворимы в воде, в качестве

растворителя использовался ДМСО. Фоновый электролит - тетрафторборат тетрабутиламмония (Bu₄NBF₄), с концентрацией в 10 раз выше, чем у исследуемого вещества. Вольтамперограммы регистрировали в катодной области потенциалов. Для устранения влияния кислорода на исследуемый раствор, использовался барботаж анализируемого раствора аргоном в течение 10 минут.

3.2 Аппаратура

Аппаратура указана в пункте 2.1.2

3.3 Выбор параметров измерения ВА в линейном (ЛР), квадратноволновом (КВ) режимах для хиноксалина, соединения 2, соединения 3.

3.3.1 Выбор скорости развертки в ЛР для исследованных соединений.

3.3.1.1 Выбор скорости развертки в ЛР для хиноксалина.

Выбор скорости развертки для регистрации вольтамперограмм в линейном режиме для хиноксалина. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 9.

Таблица 9 — Параметры регистрации вольтамперограмм хиноксалина в линейном режиме развертки потенциала.

		T
Параметр		Значения
Wait time, s		30
(Время накопления)		
Set potential, V		-1,0
(Потенциал накопления)		
Start potential, V		-1,0
(Начало развертки)		
Stop potential, V		-2,0
(Конец развертки)		
Scan rate, V/s (Шаг развертки)	1	0,05
	2	0,1
	3	0,2
	4	0,5
	5	1

На рисунке 18 представлены вольтамперограммы хиноксалина ($C = 10^{-3} M$), зарегистрированные в линейном режиме со скоростями развертки от 0,05 B/c до 1 B/c.

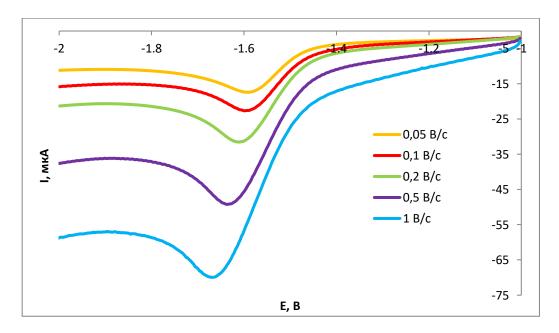


Рисунок 18 - Вольтамперограммы хиноксалина ($C = 10^{-3} \text{ M}$), зарегистрированные в линейном режиме со скоростями развертки от 0,05 B/c до 1 B/c.

Далее для количественного определения хиноксалина и соединения 3 будет использоваться скорость развертки $-0.1\,\mathrm{B/c}$, так как при данной скорости развертки не происходит искажения пика.

3.3.1.2 Выбор скорости развертки в ЛР для соединения 2.

Выбор скорости развертки для регистрации вольтамперограммы в линейном режиме для соединения 2. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 10.

Таблица 10 — Параметры регистрации вольтамперограмм хиноксалина в линейном режиме развертки потенциала.

Параметр		Значения
Wait time, s		30
Set potential, V		0,0
Start potential, V		0,0
Stop potential, V		-1,2
Scan rate, V/s	1	0,05
	2	0,1
	3	0,2
	4	0,5
	5	1

На рисунке 19 представлены вольтамперограммы соединения 2 ($C = 2.5 \cdot 10^{-3}$ M), зарегистрированные в линейном режиме со скоростями развертки от 0,05 B/c до 1 B/c.

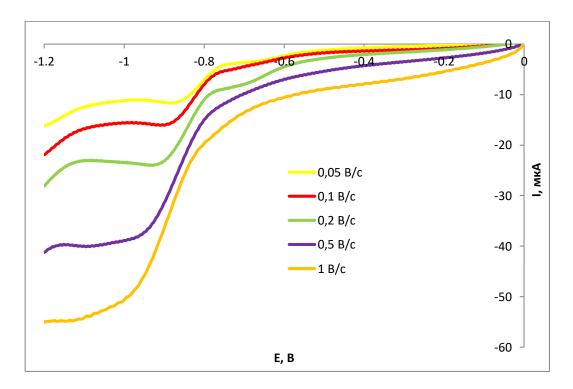


Рисунок 19 - Вольтамперограммы соединения 2 ($C = 2.5 \cdot 10^{-3}$ М), зарегистрированные в линейном режиме со скоростями развертки от 0,05 B/c до 1 B/c.

Для количественного определения соединения 2 будет использоваться скорость развертки $-0.1~\mathrm{B/c}$, так как не происходит искажения пика.

3.3.2 Выбор параметров для КВ развертки для соединения 2.

3.3.2.1 Выбор амплитуды импульса.

Условия эксперимента по выбору амплитуды импульса для регистрации вольтамперограммы в квадратно-волновом режиме для соединения 2. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 1.

Таблица 11 – Параметры регистрации вольтамперограмм соединения 2 в КВ режиме.

Параметр		Значения
Conditioning potentia	1, V	-1,1
(Потенциал регенерации)		
Conditioning time, s		30
(Время регенерации)		
Deposition potential, V		-0,1
(Потенциал накопления)		
Deposition time, s		5
(Время накопления)		
Begin potential, V		-1,0
(Начало развертки)		
End potential, V		-1,2
(Конец развертки)		
Step potential, V		-0,005
(Шаг развертки)		1.0
Frequency, Hz		10
(Частота импульса)		0.4
Scan rate, V/s		0,1
(Скорость развертки)	1	5
Amplitude, mV (Амплитуда импульса)	1	
	2	10
	3	20
	4	50
	5	100

На рисунке 20 представлены вольтамперограммы соединения 2 (C = $2.5 \cdot 10^{-3}$ M), зарегистрированные в KB режиме со скоростью развертки 0,1 B/c, при амплитуде импульса от 5 мB до 100 мB.

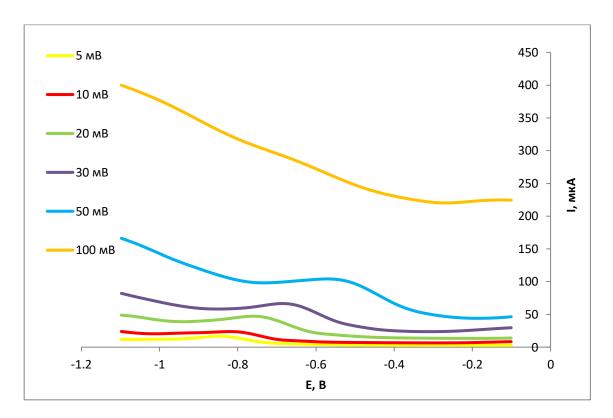


Рисунок 20 - Вольтамперограммы соединения 2 ($C = 2,5 \cdot 10^{-3}$ М), зарегистрированные в квадратно-волновом режиме со скоростью развертки 0,1 В/с, при амплитуде импульса от 5 мВ до 100 мВ.

На рисунке 21 показана зависимость площади пика соединения 2 от амплитуды импульса.

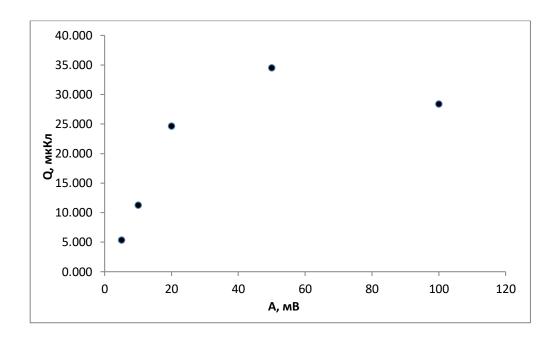


Рисунок 21 - Зависимость площади пика соединения 2 от амплитуды модуляции.

Для количественного определения соединения 2 будет использоваться значение амплитуды модуляции - 50 мВ.

3.3.2.2 Выбор скорости развертки (частоты).

Условия эксперимента по выбору частоты для регистрации вольтамперограмм в квадратно-волновом режиме для соединения 2. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 12.

Таблица 12 — Параметры регистрации вольтамперограмм соединения 2 в КВ режиме.

Параметр		Значения
Conditioning pote	ntial, V	-1,1
Conditioning time, s		30
Deposition potential, V		-0,1
Deposition time, s		5
Begin potential, V		-1,0
End potential, V		-1,2
Step potential, V		-0,005
Amplitude, mV		50
	1	5
	2	10
Frequency, Hz	3	20
	4	50
	5	100
	1	0,05
Scan rate, V/s	2	0,1
	3	0,2
	4	0,5
	5	1

На рисунке 22 представлены вольтамперограммы соединения 2 (C = $2.5 \cdot 10^{-3}$ M), зарегистрированные в КВ режиме с частотами от 5 Γ ц до 100 Γ ц.

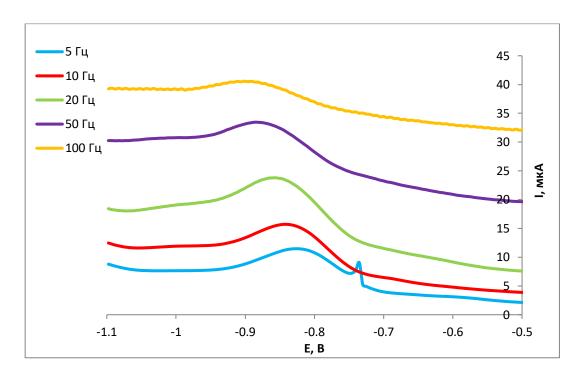


Рисунок 22 - Вольтамперограммы соединения 2 (С = $2,5\cdot10^{-3}$ М), зарегистрированные в квадратно-волновом режиме с частотами от 5 Γ ц до 100 Γ ц.

На рисунке 23 показана зависимость площади пика соединения 2 от частоты.

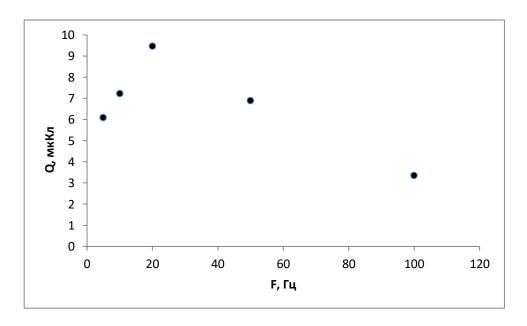


Рисунок 23 - Зависимость тока пика восстановления соединения 2 от частоты.

Для количественного определения соединения 2 будет использоваться значение частоты - $20~\Gamma$ ц, следовательно скорость сканирования – 0.2~B/c.

3.3.3 Выбор параметров КВ развертки для соединения 3.

3.3.3.1 Выбор амплитуды импульса.

Из-за ограниченности объёма синтезированного соединения 3 было решено проводить исследования по выбору оптимальных параметров измерений на хиноксалине.

Выбор амплитуды импульса для регистрации вольтамперограммы в квадратно-волновом режиме для хиноксалина. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 13.

Таблица 13 — Параметры регистрации вольтамперограмм хиноксалина в КВ режиме.

Параметр		Значения
Conditioning potential, V		-1,0
Conditioning time, s		30
Deposition potential, V		-2,1
Deposition time, s		5
Begin potential, V		-1,1
End potential, V		-2,0
Step potential, V		-0,005
Frequency, Hz		10
Scan rate, V/s		0,1
Amplitude, mV	1	5
	2	10
	3	20
	4	50
	5	100

На рисунке 24 представлены вольтамперограммы хиноксалина ($C=10^{-3}$ M), зарегистрированные в KB режиме со значениями амплитуды импульса от 5 B до $100~\mathrm{B}$.

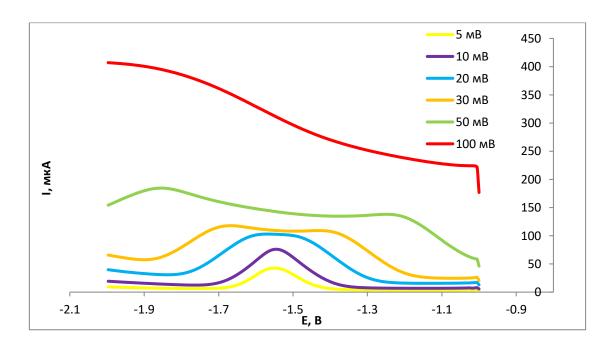


Рисунок 24 - Вольтамперограммы хиноксалина ($C = 10^{-3}$ M), зарегистрированные в квадратно-волновом режиме со скоростью развертки 0,1 B/c, при амплитуде импульса от 5 мB до 100 мB.

На рисунке 25 показана зависимость площади пика хиноксалина от амплитуды импульса.

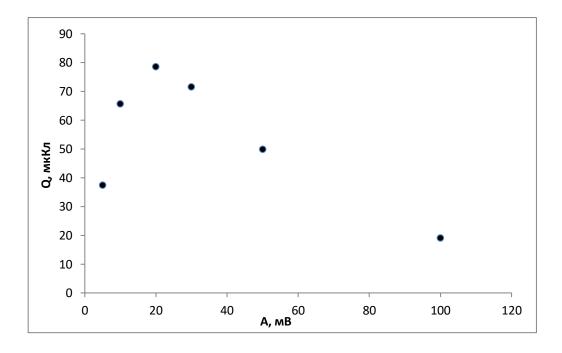


Рисунок 25 - Зависимость площади пика хиноксалина от амплитуды модуляции.

Для количественного определения соединения 3 будет использоваться значение амплитуды модуляции - 10 мВ, так как не происходит искажения пика.

3.3.3.2 Выбор скорости развертки (частоты).

Выбор частоты для регистрации вольтамперограммы в квадратноволновом режиме для хиноксалина. Условия эксперимента указаны в п. 3. Параметры для снятия вольтамперограмм представлены в таблице 14.

Таблица 14 — Параметры регистрации вольтамперограмм хиноксалина в КВ режиме.

Параметр		Значения
Conditioning pote	ntial, V	-1,0
Conditioning time	, s	30
Deposition potential, V		-2,1
Deposition time, s		5
Begin potential, V		-1,1
End potential, V		-2,0
Step potential, V		-0,005
Amplitude, mV		20
	1	5
	2	10
Frequency, Hz	3	20
	4	50
	5	100
	1	0,05
	2	0,1
Scan rate, V/s	3	0,2
	4	0,5
	5	1

На рисунке 26 представлены вольтамперограммы хиноксалина ($C=10^{-3}$ M), зарегистрированные в КВ режиме с частотами от 5 Γ ц до 100 Γ ц.

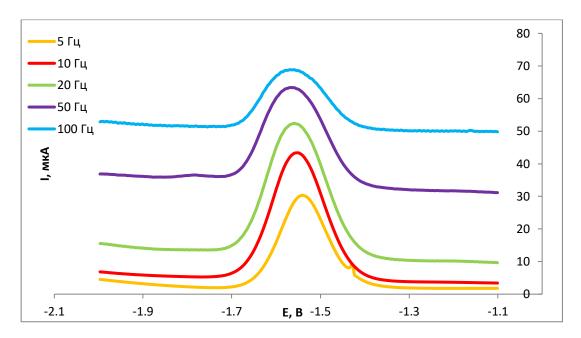


Рисунок 26 - Вольтамперограммы хиноксалина (C = 10^{-3} M), зарегистрированные в квадратно-волновом режиме с частотами от 5 Γ ц до 100 Γ ц.

На рисунке 27 показана зависимость площади пика хиноксалина от частоты.

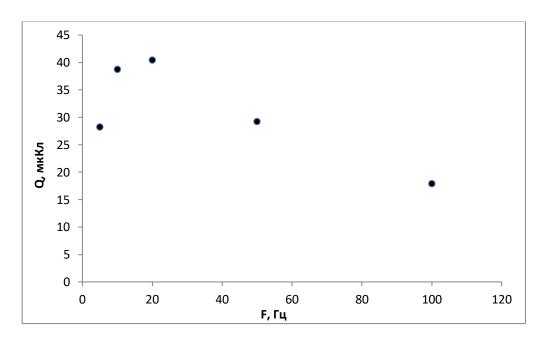


Рисунок 27 - Зависимость тока пика восстановления хиноксалина от частоты импульса.

Для количественного определения соединения 3 будет использоваться значение частоты $10 \, \Gamma$ ц, следовательно скорость сканирования $-0.1 \, \mathrm{B/c}$.

3.4 Определение минимальных значений определяемых концентраций хиноксалина в ЛР и КВ режимах.

После определения оптимальных параметров для регистрации вольтамперограмм проводилось количественное определение хиноксалина и его производных (соединение 2 и соединение 3). Условия эксперимента описаны в п. 3.

Таблица 15 — Параметры регистрации вольтамперограмм хиноксалина в ЛР.

Параметр	Значения
Wait time, s	30
Set potential, V	0,0
Start potential, V	-1,0
Stop potential, V	-2,2
Scan rate, V/s	0,5

Для выбора концентрации была проведена регистрация вольтамперограмм с различными концентрациями в двух режимах: линейном, квадратно-волновом.

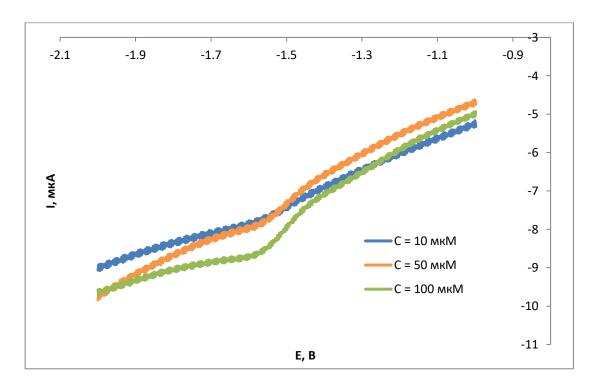


Рисунок 28 - Вольтамперограммы хиноксалина, зарегистрированные в линейном режиме со скоростью сканирования 0,1 В/с, амплитудой импульса 20 мВ, в диапазоне концентраций от 10 мкМ до 100 мкМ.

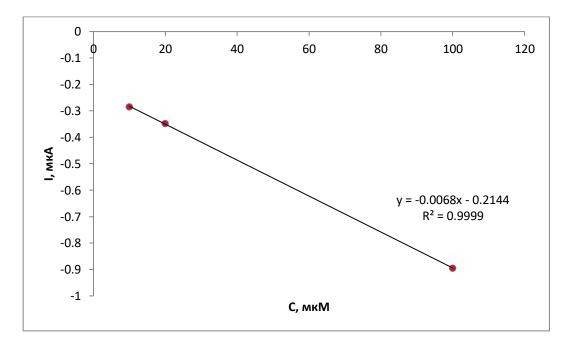


Рисунок 29 - Зависимость тока пика от концентрации хиноксалина в ДМСО.

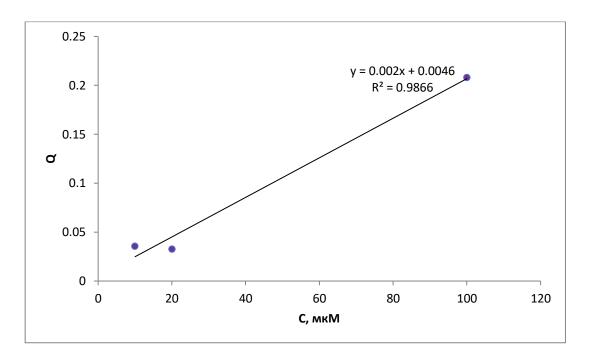


Рисунок 30 - Зависимость площади пика тока от концентрации хиноксалина в ДМСО.

По коэффициентам регрессии можно сделать вывод о том, что линейность зависимостей, построенных по току существенно выше.

Далее было проведено исследование хиноксалина в КВ режиме [22].

Таблица 16 — Параметры регистрации вольтамперограмм хиноксалина в КВ режиме.

Параметр	Значения
Conditioning potential, V	-1,0
Conditioning time, s	30
Deposition potential, V	-2,1
Deposition time, s	5
Begin potential, V	-1,1
End potential, V	-2,0
Step potential, V	-0,005
Amplitude, V	20
Frequency, Hz	10
Scan rate, V/s	0,1

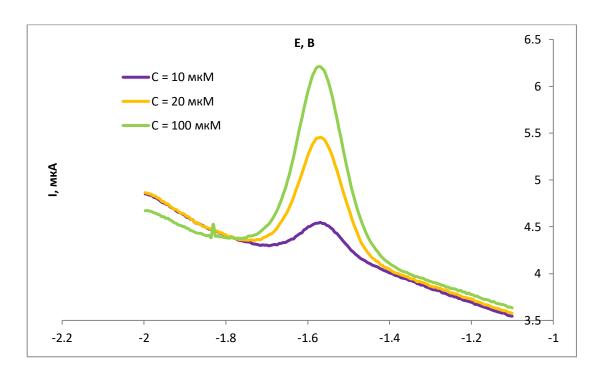


Рисунок 31 - Вольтамперограммы хиноксалина, зарегистрированные в квадратно-волновом режиме в диапазоне концентраций от 10 мкМ до 100 мкМ.

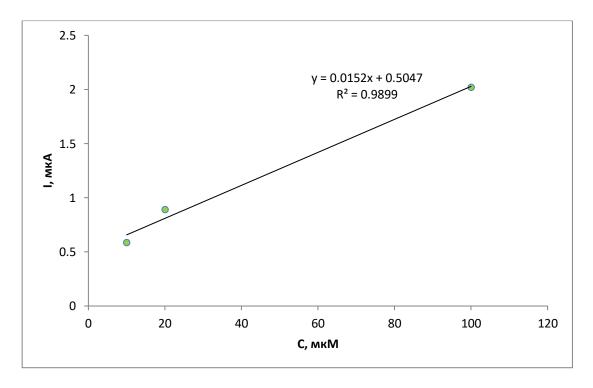


Рисунок 32 - Зависимость тока пика от концентрации хиноксалина.

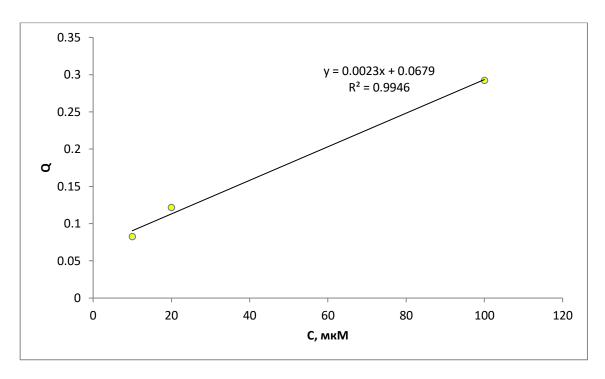


Рисунок 33 - Зависимость площади пика тока от концентрации хиноксалина.

По коэффициентам регрессии можно сделать выводы о высокой степени линейности градуировочных зависимостей хиноксалина в диапазоне концентраций от 10 мкМ до 100 мкМ в ЛР (по току пика) и КВ режимах. При этом чувствительность (наклон ГГ) рабочего электрода к хиноксалину по току выше в 2 раза в КВ режиме. Из характера пика в КВ режиме, видно, что можно понизить значения исследуемых концентраций. Поэтому для соединений 2, 3 количественное определение будет проводиться в КВ режиме с концентрациями ниже 10 мкМ.

Список используемых источников

- 1. Википедия. Хиноксалин [Электронный ресурс] Режим доступа: https://en.wikipedia.org/wiki/Quinoxaline
- 2. Z. El Adnani, M. M. M. Sfaira, M. Benzakour, A. Benjelloun, M. Ebn Touhami, B. Hammouti, M. Taleb, Int. J. Electrochem. Sci. 7 (2012) 13.
 - 3. I.B. Obot, N.O. O.-E, Corros. Sci. 52 (1) (2010) 3.
 - 4. Mwadham M. Kabanda, E.E. E, Int. J. Electrochem. Sci. 7 (2012) 20.
- 5. Joana A. Pereira, Ana M. Pessoa, M. Natália DS. Cordeiro, Joao Paulo Noronha «Quinoxaline, its derivatives and applications: A State of the Art review»
- 6. A. Carta, G. P., M. Nikookar, P. Sanna, L. Sechi, S. Zanetti, Eur. J. Med. Chem. 37 (2002) 355-366.
- 7. A.J. Belen Zarranz, Ignacio Aldana, Antonio Monge, Bioorg. Med. Chem. 12 (2004) 10.
- 8. A.P. Carlos Barea, Denis Castillo, Mirko Zimic, Miguel Quiloano, Silvia Galiano, Silvia Perez-Silanes, Antonio Monge, Eric Deharo, Ignacio Aldana, Bioorg. Med. Chem. Lett. 21 (2011) 4.
- 9. Naveen Kulkarni, V.K. R, B.N. Kirasur, Mallinath H. Hugar, Med. Chem. Res. 21 (2012) 8.
- 10. K. Watanabe, H. Oguri, H. Oikawa, Curr. Opin. Chem. Biol. 13 (2) (2009) 189-196.
- 11. A. Patidar, J. M., A. Mobiya, G. Selvam, Int. J. PharmTech Res. 3 (2011) 386-392.
- 12. S.A. Khan, J.K. Saleem, Z. Khan, Eur. J. Med. Chem. 42 (1) (2007 Jan) 103-108 (Epub 2006 Sep 25).

- 13. Philip W. Crawford, Richard G. Scamehorn, Ulrich Hollstein, Michael D. Ryan and Peter Kovacic «Cyclic voltammetry of phenazines and quinoxalines including mono- and di-n-oxides. Relation to structure and antimicrobial activity».
- 14. E. V. Nosova, T. V. Trashakhova, V. S. Ustyugov, N. N. Mochul'skaya, M. S. Valova, G. N. Lipunova, and V. N. Charushin «Fluorine containing quinoline and quinoxaline styryl derivatives: synthesis and photophysical properties».
- 15. R. Ferraz, C. Prud^encio, M. Vieira, R. Fernandes, J.P. Noronha, Z. Petrovski, Bact. Resist. Biochem. Pharmacol. Open Access (2012) [Электронный ресурс] Режим доступа: http://dx.doi.org/10.4172/2167-0501.1000e138.
- 16. U. Hollstein and D.A. McCamey, Biosynthesis of phenazines. II. Incorporation of [6-14C]-D-shikimic acid into phenazine-l-carboxylic acid and iodinin, J. Org. Chem.,38 (1973).
- 17. W. Leimgruber, G.P. Maestrone, M. Mitrovic and M. Weigele, Pharmaceutical compositions containing organometallic derivatives of 6-1ower alkoxyphenazine 5,10-dioxide, U.S. Patent 3,852,442, 1974.
- 18. Elsa Moreno, Silvia Pérez-Silanes, Shravani Gouravaram, Abinav Macharam, Saioa Ancizu, Enrique Torres, Ignacio Aldana, Antonio Monge, Philip W. Crawford «1,4-Di-N-oxide quinoxaline-2-carboxamide: Cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity».
- 19. Википедия. Электронно-парамагнитный резонанс (ЭПР) [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/Электронный_парамагнитный_peзoнanc
- 20. Leonid A. Shundrin, Irina G. Irtegova, Nadezhda V. Vasilieva, Pavel A. Avrorov «Electrochemical properties and radical anions of carbocyclefluorinated quinoxalines and their substituted derivatives*».

- 21. Steen U. Pedersen *, Torben Bo Christensen, Tove Thomasen, Kim Daasbjerg «New methods for the accurate determination of extinction and diffusion coefficients of aromatic and heteroaromatic radical anions in N,N-dimethylformamide».
- 22. А. Н. Козицина, А. В. Иванова, Ю. А. Глазырина, Е. Л. Герасимова, Т. С. Свалова, Н. Н. Малышева, а. В. Охохонин [Учебное пособие] «Электрохимические методы анализа».
- 23. Wikipedia. Cottrell equation [Электронный ресурс] Режим доступа: https://en.wikipedia.org/wiki/Cottrell equation
- 24. В.Г. Левич [Учебное пособие] «Кинетика электродных процессов в условиях медленного массопереноса».
- 25. Jarrod D. Milshtein, Liang Su, Catherine Liou, Andres F. Badel, Fikile R. Brushett «Voltammetry study of quinoxaline in aqueous electrolytes»
- 26. С.К. Игнатов [Учебное пособие] «Квантово-химическое моделирование молекулярной структуры, физико-химических свойств и реакционной способности».
- 27. Anna Tomberg [Учебное пособие] «Gaussian 09w tutorial an introduction to computational chemistry using g09w and avogadro software».
- 28. Википедия. Энергия сродства к электрону [Электронный ресурс] Режим доступа: https://ru.wikipedia.org/wiki/Энергия сродства к электрону
- 29. РМГ 61—2010 «Показатели точности, правильности, прецизионности методик количественного химического анализа»