УДК 546.22 ОЦЕНКА МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ, ВОЗНИКАЮЩИЕ НА ИНТЕРФЕЙСЕ "ПЛЕНКА Cd_xPb₁-_xS – ПОДЛОЖКА"

Поздин А.В.¹, Маскаева Л.Н.^{1,2}

¹ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», Екатеринбург, Россия ²Уральский институт ГПС МЧС России, Екатеринбург, Россия andrej.pozdin@yandex.ru

Аннотация. Химическим осаждением на подложках из ситалла, кремния (111), предметного стекла, стекло+ITO, плавленого кварца и пористого стекла синтезированы пленки CdPbS. Результаты расчетов величины механических напряжений на интерфейсе "пленка–подложка" показали, что пленки подвергаются механическим напряжениям сжатия.

Ключевые слова: тонкие пленки, механические напряжения, химическое осаждение, твердые растворы $Cd_xPb_{1-x}S$.

ASSESSMENT OF MECHANICAL STRESSES THAT OCCUR ON THE INTERFACE "CdPbS FILM – SUBSTRATE"

Pozdin A.V.¹, Maskaeva L.N.^{1,2}

¹Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia

²Chemistry and Combustion Process Department. Ural State Fire Service Institute of Emergency Ministry of Russia, Yekaterinburg, Russia

Abstract. CdPbS films were synthesized by chemical deposition on substrates made of sitall, silicon (111), slide glass, glass+ITO, fused quartz, and porous glass. Results of calculations of mechanical stresses on the film-substrate interface" it was shown that the films are subjected to mechanical compression stresses.

Key words thin films, mechanical stresses, chemical deposition, solid solutions $Cd_xPb_{1-x}S$.

Введение

Длительное время не ослабевает интерес к трехкомпонентным пленкам на основе полупроводниковых соединений А^{II}-В^{VI} и А^{IV}-В^{VI}, расширяющих возможность модификации структурных, полупроводниковых и

функциональных свойств бинарных халькогенидов металлов. К одним из наиболее востребованных тонкопленочных соединений можно отнести твердые растворы замещения в системе PbS-CdS, поскольку, варьируя содержание кадмия в структуре сульфида свинца, возникает возможность влиять на ширину запрещенной зоны материала в пределах 0.41-2.42 эВ, а также на его основные электрофизические свойства. Это позволяет значительно расширить области практического использования твердых растворов Cd_xPb_{1-x}S [1-5].

С развитием тонкопленочных технологий и уменьшением размеров в оптои наноэлектронике актуальной становится проблема стабильности тонких пленок на подложках различной природы. В процессе роста в тонких пленках развиваются сильные напряжения, обусловленные различием характеристик пленки и подложки (постоянных кристаллических решеток, модулей упругости, коэффициентов термического расширения). Под действием приложенных напряжений пленка и подложка испытывают различные степени деформации, однако, поскольку они жестко связаны друг с другом, пленка (поскольку существенно тоньше подложки) сжимается или растягивается, чтобы соответствовать размеру подложки [6].

Наибольший интерес представляет работа [7], в которой впервые рассчитаны внутренние механические напряжения сжатия, вызванные различием коэффициентов термического расширения пленки ZnSe и ситалловой подложки, которые зависят от толщины осажденного слоя, и достигают для толщины слоя ~1040 нм величины –30.62 кH/м². Для достижения равновесного состояния система "пленка – подложка" происходит изгиб подложки, приводящий, например к растрескиванию поверхности бинарной пленки селенида цинка.

В связи с этим цель настоящей работы заключалась в оценке механических напряжений $\sigma_{\Delta \alpha}$, возникающих в двухслойной структуре «пленка CdPbS – подложка».

Методика эксперимента

Тонкопленочные соединения CdPbS синтезировали методом химического осаждения [5] из цитратно-аммиачной реакционной смеси при фиксированных концентрациях ацетата свинца 0.04 моль/л и хлорида кадмия 0.06 моль/л и тиомочевины 0.6 моль/л. В качестве подложек при осаждении пленок использовали как проводящие материалы, так и диэлектрические. Среди первых использовался ориентированный монокристаллический кремний (111), а также нанесенный на стекло проводящий слой ITO толщиной 100 нм, имеющий состав

(In₂O₃)_{0.9}(SnO₂)_{0.1}. Из диэлектрических материалов в качестве подложек использовали ситалл марки СТ-50-1, а также плавленый кварц и предметное Предварительно обезжиренные стекло. подложки, закрепленные BO фторопластовые держатели, помещали В герметичных реакторах ИЗ молибденового стекла, которые погружали в термостате марки ТС-ТБ-10. Синтез пленок осуществляли при температуре 353 К в течение 30 минут.

Толщину полученных пленок определяли с использованием интерференционного микроскопа Линника МИИ–4М. Погрешность измерения составляла 20%.

Результаты и их обсуждения

В связи с развитием тонкопленочных технологий и уменьшением размеров в опто- и наноэлектронике актуальной становится проблема стабильности тонких пленок на подложках различной природы. Поскольку в настоящей работе проводился синтез трехкомпонентного соединения – CdPbS на подложки различной природы (ситалл, кремний, стекло, кварц), важной задачей являлась количественная оценка величины упругих напряжений, возникающих на интерфейсе "пленка – подложка".

Объектом исследования являлись пленки тройных соединений CdPbS, полученные из реакционной смеси, содержащей 0.04 М ацетат свинца, 0.06 М хлорида кадмия, 0.3 М цитрата натрия, 4 М водный раствор аммиака и 0.6 М тиомочевины. Толщина синтезированных тонкопленочных слоев составила ~180-190 нм.

Приближенная оценка механических напряжений σ_{Δα}, возникающих в пленках, рассчитывали по формуле, предложенной в работе [8]

$$\sigma_{\Delta\alpha} = \frac{6 \cdot E_{\text{CdPbS}} \cdot (\alpha_{\text{подл.}} - \alpha_{\text{CdPbS}}) \cdot h_{\text{CdPbS}} \cdot \Delta T}{(1 - \nu_{\text{CdPbS}}) \cdot (3h_{\text{подл.}} - 4h_{\text{CdPbS}})}$$

где E_{CdPbS} – модуль Юнга для твердого раствора $Cd_xPb_{1-x}S$; $\alpha_{подл.}$, α_{CdPbS} – температурные коэффициенты расширения подложки и пленки; ΔT – разность температур; ν_{CdPbS} – коэффициент Пуассона пленки; $h_{подл.}$, h_{CdPbS} – толщины подложки и пленки, соответственно, при условии $h_{подл.} >> h_{CdPbS}$.

Прежде чем приступить к расчету механических напряжений, возникающих на интерфейсе "пленка – подложка", необходимо было определить модуль Юнга, температурный коэффициент расширения, коэффициент Пуассона для пленок CdPbS, зная их состав и справочные сведения о необходимых свойствах индивидуальных соединений PbS и CdS. Данные для расчетов обсуждаемых механических напряжений приведены в таблице 1.

Тип подложки	Пористое стекло	Стекло+ІТО	Стекло	Ситалл	Кремний (111)	Кварц
$lpha \cdot 10^{6}$, K ⁻¹	13	9.5	8.3	5.0	2.82	0.56
h _{подложки} , ММ	1	1 + 0.0001	1	0.51	0.4	0.31

Таблица 1 – Температурный коэффициент расширения α и толщина подложки (*h*_{подложки}), используемые для расчета механических напряжений [9]

Справочные сведения для индивидуальных фаз PbS и CdS представлены в таблице 2.

Таблица 2 – Свойства пленок PbS, CdS: температурный коэффициент расширения α, модуль Юнга *E*, коэффициент Пуассона ν, используемые для расчета механических напряжений [6]

Соединение	$lpha\cdot 10^{6}$, K ⁻¹	<i>Е</i> , ГПа	ν
PbS	19	70.2	0.38
CdS	2.5	42	0.28

Результаты теоретических расчетов упругих механических напряжений, вызванных различием коэффициентов термического расширения на интерфейсе "пленка твердого раствора $Cd_xPb_{1-x}S$ – подложка", приведены в таблице 3. Видно, что значения механических напряжений имеют отрицательный знак, означающий, что трехкомпонентные пленки CdPbS, осажденные на различные подложки, подвергаются механическим напряжениям сжатия.

Таблица 3 – Механические напряжения на интерфейсе "пленка – подложка" $\sigma_{\Delta\alpha}$

Тип подложки	Пористое стекло	Стекло+ITO	Стекло	Ситалл	Кремний (111)	Кварц
σ _{Δα} , κΗ/м ²	-9.32	-	-21.79	-45.6	-87.62	-121.79

Библиографический список

1. Исследование кинетики роста полупроводниковых пленок Pb_xCd_{1-x}S при химическом осаждении из водного раствора / Р.Д. Мухамедьяров [и др.] // Изв. АН СССР. Неорган. материалы. 1981. Т. 17. № 10. С. 1739–1744.

2. $Pb_xCd_{1-x}S$ Alloy Nanowires and Heterostructures with Simultaneous Emission in Mid-Infrared and Visible Wavelengths / P.L. Nichols [et. al] // Ning. Nano Lett. 2015. Vol. 15. P. 909 – 916.

3. Determination of nitrogen dioxide by thin-film chemical sensors based on $Pb_xCd_{1-x}S / A.E.$ Bezdetnova [et. al] // J. Anal. Chem. 2019. Vol. 74. P.1256–1262.

4. Preparation and characterization of $Hg_xCd_{1-x}S$ and $Pb_xCd_{1-x}S$ quantum dots and doped thin films / M. Gugliemi [et. al] // J. Sol-Gel Sci. Technol. 1997. Vol. 11. P. 229–240.

5. Thickness dependence of Cd_{0.825}Pb_{0.175}S thin film properties / M.A. Barote [et. al] // Materials letters. 2012. Vol. 78. P. 113–115.

6. Шугуров А.Р., Панин А.В. Механизмы периодической деформации системы "пленка – подложка" под действием сжимающих напряжений //Физическая мезомезханика. 2009. Т.12. № 3. С.23–32.

7. Influence of the Conditions of the Chemical Bath Deposition of Thin ZnSe Films on Their Morphology and Internal Mechanical Stresses / L.N. Maskaeva [et. al] // Rus. J. of Appl. Chem. 2018. Vol. 91. No. 9. P. 1529–1538.

8. Касимов Ф.Д. Расчет упругих механических напряжений в неоднородных полупроводниковых структурах / Ф.Д. Касимов, А.Э. Лютфалибекова // Технология и конструирование в электронной аппаратуре. – 2002. – № 2. – С. 13–14.

9. Marvin J.W. Handbook of Laser Science and Technology. CRC Press LLC. 2003. 499 p.