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Abstract: In this paper, we study the growth of solutions of higher order linear differential equations
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1. Introduction

Let us consider the following linear differential equations

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = 0, (1.1)

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f = F (z), (1.2)

where k ≥ 2, A0 6≡ 0 and F 6≡ 0. It is well-known that if the coefficients A0, A1, . . . , Ak−1 and
F are entire functions, then all solutions of (1.1) and (1.2) are entire. The equation (1.1) has at
least one solution of infinite order if some of coefficients are transcendental. For more details about
the growth of solutions of equations (1.1) and (1.2), the reader can refer to [14]. In this paper,
we use the standard notations of Nevanlinna value distribution theory of meromorphic functions
(see [10, 14, 18, 22]). The term meromorphic function throughout this paper means meromorphic
in the whole complex plane C. This will not be recalled in the next statements.

To study the growth of meromorphic functions, we recall the following definitions. For all r ∈ R,
we define exp1 r = exp r = er and expp+1 r = exp(expp r), p ∈ N = {1, 2, . . . }. Inductively, for all
r ∈ (0,+∞) large enough, we define log1 r = log r and logp+1 r = log(logp r), p ∈ N. We also denote
exp0 r = r = log0 r, exp−1 r = log1 r and log−1 r = exp1 r.

Definition 1 [13]. The iterated p-order of a meromorphic function f is defined by

ρp(f) := lim sup
r→+∞

logp T (r, f)

log r
, p ∈ N,

where T (r, f) is the Nevanlinna characteristic function of f . If f is an entire function, then the

iterated p-order is defined as

ρ̃p(f) := lim sup
r→+∞

logp+1M(r, f)

log r
= ρp(f),

where M(r, f) = max{|f(z)| : |z| = r} is the maximum modulus of f .
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Note that ρ1(f) = ρ(f) is the usual order and ρ2(f) is the hyper-order.

Definition 2 [13]. The growth index of the iterated p-order of a meromorphic function f is

defined by

i (f) =





0 if f is rational,

min {j ∈ N : ρj (f) < +∞} if f is transcendental and ρj (f) < +∞ for some j ∈ N,
+∞ if ρj (f) = +∞ for all j ∈ N.

Historically, Bernal [4] was the first one who introduced the idea of the iterated order to study
the growth of solutions of complex differential equations. In [13], Kinnunen considered the growth
of solutions of equations (1.1) and (1.2) with entire coefficients of a finite iterated p-order and
extended many previous results obtained for the usual order and the hyper-order.

Theorem A [13]. Let A0 (z) , . . . , Ak−1 (z) be entire functions such that i (A0) = p (0<p<∞) .
If either max{i (Aj): j = 1, 2, . . . , k − 1} < p or max{ρp (Aj): j = 1, 2, . . . , k − 1} < ρp (A0) , then
every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p+ 1 and ρp+1 (f) = ρp (A0) .

In [3], the second author has extended Theorem A when most of the coefficients
A0 (z) , . . . , Ak−1 (z) have the same order by using the concept of iterated p-type as follows.

Theorem B [3]. Let A0 (z) , . . . , Ak−1 (z) be entire functions, and let i (A0) = p (0 < p < ∞) .
Assume that

max{ρp (Aj) : j = 1, 2, . . . , k − 1} ≤ ρp (A0) = ρ (0 < ρ < +∞)

and

max{τ̃p (Aj) : ρp (Aj) = ρp (A0)} < τ̃p (A0) = τ (0 < τ < +∞) ,

where

τ̃p (f) = lim sup
r→+∞

logpM (r, f)

rρp(f)
.

Then, every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p+ 1 and ρp+1 (f) = ρp (A0) = ρ.

In [5], Cao–Xu–Chen improved Theorems A and B by considering meromorphic coefficients
instead of entire coefficients. In [16], Liu–Tu–Shi made a small modification in the original definition
of [p, q]-order introduced by Juneja–Kapoor–Bajpai [11] in order to study the growth of entire
solutions of equations (1.1) and (1.2). After that, Li and Cao [15] investigated the growth of
meromorphic solutions of equations (1.1) and (1.2) with meromorphic coefficients of [p, q]-order
which improved many results in [3, 5, 13, 16].

Definition 3 [15, 16]. Let p ≥ q ≥ 1 be integers. The [p, q]-order of transcendental meromor-

phic function f is defined by

ρ[p,q](f) = lim sup
r→+∞

logp T (r, f)

logq r
.

If f is transcendental entire function, then

ρ[p,q](f) = lim sup
r→+∞

logp+1M(r, f)

logq r
.

Note that ρ[p,1](f) = ρp(f) is the iterated p-order (see [13, 14]).
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Definition 4 [15]. The [p, q]-type of a meromorphic function f with [p, q]-order ρ[p,q](f) ∈
(0,+∞) is defined by

τ[p,q](f) = lim sup
r→+∞

logp−1 T (r, f)

(logq−1 r)
ρ[p,q](f)

.

Definition 5 [15]. Let p ≥ q ≥ 1 be integers. The [p, q]-convergence exponent of the sequence

of zeros of a meromorphic function f is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN (r, 1/f)

logq r
,

where N (r, 1/f) is the integrated counting function of zeros of f in {z : |z| ≤ r} . Similarly, the

[p, q]-convergence exponent of the sequence of distinct zeros of f is defined by

λ[p,q] (f) = lim sup
r→+∞

logpN (r, 1/f)

logq r
,

where N (r, 1/f) is the integrated counting function of distinct zeros of f in {z : |z| ≤ r}.

Here, we give two results due to Li-Cao in [15] concerning the growth of meromorphic solutions of
equations (1.1) and (1.2) when the coefficients are meromorphic functions of [p, q]-order.

Theorem C [15]. Let A0, A1, . . . , Ak−1 be meromorphic functions such that

max

{
ρ[p,q](Aj), λ[p,q]

(
1

A0

)
: j = 1, . . . , k − 1

}
< ρ[p,q](A0) < +∞.

Then every meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities of

equation (1.1) satisfies ρ[p+1,q](f) = ρ[p,q](A0).

If there exist some other coefficients Aj(j = 1, . . . , k − 1) having the same [p, q]-order as A0,
then we have the following result.

Theorem D [15]. Let A0, A1, . . . , Ak−1 be meromorphic functions such that λ[p,q] (1/A0) <
ρ[p,q](A0) and

max{ρ[p,q](Aj) : j = 1, . . . , k − 1} = ρ[p,q](A0) < +∞,

max{τ[p,q](Aj) : ρ[p,q](Aj) = ρ[p,q](A0) > 0, j = 1, . . . , k − 1} < τ[p,q](A0).

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ[p+1,q](f) = ρ[p,q](A0).

It is clear that Theorem C and Theorem D improve respectively Theorem A and Theorem B
from entire coefficients of iterated p-order to meromorphic coefficients of [p, q]-order. Recently,
Chyzhykov and Semochko [7] showed that both definitions of iterated p-order and [p, q]-order have
the disadvantage that they do not cover arbitrary growth (see [7, Example 1.4]). They introduced
more general scale to measure the growth of entire solutions of equation (1.1) called the ϕ-order
(see [20]).

Definition 6 [7]. Let ϕ be an increasing unbounded function on [1,+∞) . The ϕ-orders of a

meromorphic function f are defined by

ρ0ϕ(f) = lim sup
r→+∞

ϕ(eT (r,f))

log r
, ρ1ϕ(f) = lim sup

r→+∞

ϕ(T (r, f))

log r
.

If f is an entire function, then the ϕ-orders are defined by

ρ̃0ϕ(f) = lim sup
r→+∞

ϕ(M(r, f))

log r
, ρ̃1ϕ(f) = lim sup

r→+∞

ϕ(logM(r, f))

log r
.
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Definition 7 [1]. Let ϕ be an increasing unbounded function on [1,+∞). We define the ϕ-types
of a meromorphic function f with ϕ-order ∈ (0,+∞) by

τ0ϕ(f) = lim sup
r→+∞

eϕ(e
T (r,f))

rρ
0
ϕ(f)

, τ1ϕ(f) = lim sup
r→+∞

eϕ(T (r,f))

rρ
1
ϕ(f)

.

If f is an entire function, then the ϕ-types are defined as

τ̃0ϕ(f) = lim sup
r→+∞

eϕ(M(r,f))

rρ̃
0
ϕ(f)

, τ̃1ϕ(f) = lim sup
r→+∞

eϕ(logM(r,f))

rρ̃
1
ϕ(f)

.

By symbol Φ we define the class of positive unbounded increasing functions on [1,+∞) , such that

ϕ(et) grows slowly, i. e., ∀c > 0 : lim
r→+∞

ϕ(ect)

ϕ(et)
= 1.

Example 1. Let f be a meromorphic function. One can see that ϕ(r) = logp r, (p ≥ 2) belongs
to the class Φ and ϕ(r) = log r /∈ Φ. Moreover, the ρ1ϕ(f) order of the function f coincides
with its iterated p-order, i. e., ρ1ϕ(f) = ρp(f). As a particular case, for ϕ = log2 ∈ Φ we have
ρ0log2(f) = ρ1(f) and ρ1log2(f) = ρ2(f) which are respectively the usual order and the hyper-order
of f .

The following result due to Chyzhykov–Semochko [7] investigates the growth of entire solutions
of equation (1.1) when the coefficients are entire functions of ϕ-order.

Theorem E [7]. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be entire functions such that

max{ρ0ϕ(Aj), j = 1, . . . , k − 1} < ρ0ϕ(A0).

Then every solution f 6≡ 0 of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

We recall that the linear measure of a set E ⊂ (0,+∞) is defined by

m(E) =

∫ +∞

0
χE(t) dt

and the logarithmic measure of a set F ⊂ (1,+∞) is defined by

lm(F ) =

∫ +∞

1

χF (t)

t
dt,

where χA is the characteristic function of a set A. The upper density of a set E ⊂ (0,+∞) is
defined by

densE = lim sup
r→+∞

m(E ∩ [0, r])

r
.

The upper logarithmic density of a set F ⊂ (1,+∞) is defined by

log densF = lim sup
r→+∞

lm(F ∩ [1, r])

log r
.

Definition 8 [10, 22]. For a ∈ C = C∪{∞}, the deficiency of a with respect to a meromorphic

function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1/(f − a)

)

T (r, f)
= 1− lim sup

r→+∞

N
(
r, 1/(f − a)

)

T (r, f)
, a 6= ∞,

δ (∞, f) = lim inf
r→+∞

m (r, f)

T (r, f)
= 1− lim sup

r→+∞

N (r, f)

T (r, f)
.
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Recently, the second author has studied the growth of entire solutions of equation (1.1) when
the coefficients are entire functions of ϕ-order and obtained the following results.

Theorem F [2]. Let G be a set of complex numbers z satisfying log dens {|z| : z ∈ G} > 0. Let
ϕ ∈ Φ and let A0, A1, . . . , Ak−1 be entire functions satisfying

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} ≤ α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

T (r,A0) ≥ log
(
ϕ−1((α− ε) log r)

)

and

T (r,Aj) ≤ log
(
ϕ−1(β log r)

)
, j = 1, . . . , k − 1

as |z| → +∞ for z ∈ G. Then every non-zero solution f of equation (1.1) satisfies ρ1ϕ(f) = α.

Theorem G [1]. Let A0 (z) , . . . , Ak−1 (z) be entire functions, and let ϕ ∈ Φ. Assume that

max{ρ̃0ϕ (Aj) : j = 1, . . . , k − 1} ≤ ρ̃0ϕ (A0) = ρ < +∞ (0 < ρ < +∞)

and

max{τ̃0ϕ (Aj) : ρ̃
0
ϕ (Aj) = ρ̃0ϕ (A0)} < τ̃0ϕ (A0) = τ (0 < τ < +∞) .

Then every solution f 6≡ 0 of (1.1) satisfies ρ̃1ϕ (f) = ρ̃0ϕ (A0) .

2. Main results

The aim of this paper is to investigate the growth of meromorphic solutions of equations (1.1)
and (1.2) with meromorphic coefficients of finite ϕ-order. By using the concept of ϕ-order, we can
cover arbitrary growth of solutions of equations (1.1) and (1.2) which improves several results in
[1–3, 5, 7, 13]. To do that, we firstly introduce the following quantities by an analogous manner
with the definitions of the ϕ-orders.

Definition 9. Let ϕ be an increasing unbounded function on [1,+∞). We define the ϕ-
convergence exponents of the sequence of zeros of a meromorphic function f by

λ0
ϕ(f) = lim sup

r→+∞

ϕ
(
eN(r,1/f)

)

log r
, λ1

ϕ(f) = lim sup
r→+∞

ϕ (N(r, 1/f))

log r
.

Similarly, the notations λ̄0
ϕ(f) and λ̄1

ϕ(f) can be used to denote the ϕ-convergence exponents of the

sequence of distinct zeros of f .

Now, we list our main results.

Theorem 1. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions. Suppose, there exists

one coefficient As (s ∈ {0, 1, . . . , k − 1}) such that

max

{
ρ0ϕ(Aj), λ

0
ϕ

(
1

As

)
: j = 0, 1, . . . , k − 1 (j 6= s)

}
< ρ0ϕ(As) < +∞.

Then every transcendental meromorphic solution f whose poles are of uniformly bounded multiplic-

ities of (1.1) satisfies
ρ1ϕ(f) ≤ ρ0ϕ(As) ≤ ρ0ϕ(f).

Furthermore, if all solutions of (1.1) are meromorphic solutions, then there is at least one mero-

morphic solution, say f1, verifies ρ1ϕ(f1) = ρ0ϕ(A0).
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Remark 1. By setting ϕ (r) = logp+1 r (p ≥ 1) in Theorem 1, we obtain Theorem 2.2 in [5].

Theorem 2. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions such that

max

{
λ0
ϕ

(
1

A0

)
, ρ0ϕ(Aj) : j = 1, . . . , k − 1

}
< ρ0ϕ(A0) < +∞.

Then every non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

Remark 2. Clearly, Theorem 2 is an extension of Theorem E from entire solutions of equa-
tion (1.1) to the case of meromorphic solutions of equation (1.1) with meromorphic coefficients
instead of entire coefficients. Furthermore, by setting ϕ (r) = logp+1 r (p ≥ 1) in Theorem 2, we
obtain Theorem A when the coefficients of (1.1) are entire functions.

If there exist some other coefficients Aj (j = 1, . . . , k − 1) having the same ϕ-order as A0, then
we have the following result.

Theorem 3. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions such that

λ0
ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ(Aj) : j = 1, . . . , k − 1} ≤ ρ0ϕ(A0) = ρ0 < +∞, (2.1)

max{τ0ϕ(Aj) : ρ
0
ϕ(Aj) = ρ0ϕ(A0) > 0, j = 1, . . . , k − 1} < τ0ϕ(A0) = τ0 (0 < τ0 < +∞) . (2.2)

Then any non-zero meromorphic solution f whose poles are of uniformly bounded multiplicities

of (1.1) satisfies ρ1ϕ(f) = ρ0ϕ(A0).

Remark 3. Namely, Theorem 3 extends Theorem G from entire solutions of equation (1.1) to
meromorphic solutions. Furthermore, by setting ϕ(r) = logp+1 r (p ≥ 1) in Theorem 3, we obtain
Theorem 2.1 in [5] and Theorem B when the coefficients of (1.1) are entire functions.

Theorem 4. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions such that

λ0
ϕ (1/A0) < ρ0ϕ(A0) and

max
{
ρ1ϕ(F ), ρ0ϕ(Aj) : j = 1, . . . , k − 1

}
< ρ0ϕ(A0) < +∞. (2.3)

Then every meromorphic solution f whose poles are of uniformly bounded multiplicities of (1.2)
satisfies

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = ρ0ϕ(A0)

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < ρ0ϕ(A0).

Remark 4. Theorem 4 is a counterpart of Theorem 1.6 in [15]. Moreover, if we choose ϕ (r) =
logp+1 r (p ≥ 1) in Theorem 4, then we obtain a special case of Theorem 2.6 in [21].

Theorem 5. Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions such that

max{ρ0ϕ(Aj) : j = 0, . . . , k − 1} < ρ1ϕ(F ).

If all solutions f of (1.2) are meromorphic functions whose poles are of uniformly bounded multi-

plicities, then there holds ρ1ϕ(f) = ρ1ϕ(F ) for all solutions of (1.2).

Remark 5. Theorem 5 is a counterpart of Theorem 1.7 in [15]. Furthermore, if we choose
ϕ (r) = logp+1 r (p ≥ 1) in Theorem 5, then we obtain a special case in [13, Remark 4.1, p. 399]
when the coefficients of equation (1.1) are entire functions.
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Theorem 6. Let G ⊂ (1,+∞) be a set of complex numbers z satisfying

log dens{|z| : z ∈ G} > 0.

Let ϕ ∈ Φ and A0, A1, . . . , Ak−1 be meromorphic functions satisfying δ (∞, A0) = δ > 0 and

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} ≤ α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

T (r,A0) ≥ log
(
ϕ−1((α− ε) log r)

)
(2.4)

and

T (r,Aj) ≤ log
(
ϕ−1(β log r)

)
, j = 1, . . . , k − 1 (2.5)

as |z| = r → +∞ for z ∈ G. Then every non-zero meromorphic solution of equation (1.1) satisfies
ρ1ϕ(f) = α.

Remark 6. Theorem 6 extends Theorem F from entire solutions of equation (1.1) to meromor-
phic solutions.

Theorem 7. Let G ⊂ (1,+∞) be a set of complex numbers z satisfying

log dens{|z| : z ∈ G} > 0.

Let ϕ ∈ Φ and A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions satisfying

max{ρ0ϕ(Aj) : j = 0, 1, . . . , k − 1} < α (0 < α < +∞).

Suppose, there exists a real number β satisfies 0 < β < α such that for any given ε (0 < 2ε < α−β),
we have

|A0(z)| ≥ ϕ−1((α− ε) log r) (2.6)

and

|Aj(z)| ≤ ϕ−1(β log r), j = 1, . . . , k − 1 (2.7)

as |z| = r → +∞ for z ∈ G. Then, the following conclusions hold

(i) If ρ1ϕ(F ) ≥ α, then all meromorphic solutions f whose poles are of uniformly bounded multi-

plicities of equation (1.2) satisfy ρ1ϕ(f) = ρ1ϕ(F ).

(ii) If ρ1ϕ(F ) < α, then every meromorphic solution f whose poles are of uniformly bounded

multiplicities of (1.2) satisfies

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = α

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < α.

Remark 7. Clearly, Theorem 7 is an improvement of Theorem 1.15 in [2] from entire solutions of
equation (1.2) to meromorphic solutions. Furthermore, Theorem 7 is a counterpart of Theorem 1.8
in [15].
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3. Preliminary lemmas

Proposition 1 [7]. If ϕ ∈ Φ, then

∀m > 0, ∀k ≥ 0 :
ϕ−1(log xm)

xk
−→ +∞, x → +∞, (3.1)

∀δ > 0 :
logϕ−1((1 + δ)x)

logϕ−1(x)
−→ +∞, x → +∞. (3.2)

Remark 8 [7]. We can see that (3.2) implies that

∀c > 0, ϕ(ct) ≤ ϕ(tc) ≤ (1 + o(1))ϕ(t), t → +∞. (3.3)

Proposition 2 [7]. Let ϕ ∈ Φ and f be an entire function. Then

ρjϕ(f) = ρ̃jϕ(f), j = 0, 1.

Lemma 1 [6]. Let f be a meromorphic solution of equation (1.1), suppose that not all coeffi-

cients Aj are constants. Given a real number γ > 1, and denoting T (r) =
k−1∑
j=0

T (r,Aj), then the

inequalities

logm(r, f) < T (r){(log r) log T (r)}γ if s = 0,

logm(r, f) < r2s+γ−1T (r){log T (r)}γ if s > 0

take place outside of an exceptional set Es with
∫
Es

ts−1 dt < +∞.

Lemma 2 [8]. Let f1, f2, . . . , fk be linearly independent meromorphic solutions of equa-

tion (1.1) with meromorphic coefficients A0, A1, . . . , Ak−1. Then

m(r,Aj) = O
(
log
(
max
1≤i≤k

T (r, fi)
))

, j = 0, 1, . . . , k − 1.

Lemma 3 [9]. Let f be a transcendental meromorphic function and let α > 1 be a given con-

stant. Then, there exists a set E1 ⊂ (1,+∞) with finite logarithmic measure and a constant Bα > 0
that depends only on α and i, j (j > i ≥ 0) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we
have ∣∣∣∣∣

f (j)(z)

f (i)(z)

∣∣∣∣∣ ≤ Bα

{
T (αr, f)

r
(logα r) log T (αr, f)

}j−i

.

Lemma 4 [12]. Let f be a meromorphic function and ϕ ∈ Φ. Then

ρjϕ(f
′) = ρjϕ(f) for j = 0, 1.

Lemma 5 [7, 12]. Let ϕ ∈ Φ and f1, f2 be two meromorphic functions. Then

(i) ρjϕ(f1 + f2) ≤ max
{
ρjϕ(f1), ρ

j
ϕ(f2)

}
and ρjϕ(f1f2) ≤ max

{
ρjϕ(f1), ρ

j
ϕ(f2)

}
for j = 0, 1.

(ii) If ρjϕ(f1) < ρjϕ(f2), then ρjϕ(f1 + f2) = ρjϕ(f1f2) = ρjϕ(f2) for j = 0, 1.
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Lemma 6. Let ϕ ∈ Φ and f be a meromorphic function. Then, for any set E2 ⊂ [0,+∞) with
finite linear measure, there exists a sequence {rn, rn /∈ E2} such that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f),

(
resp. lim

rn→+∞

ϕ(eT (rn,f))

log rn
= ρ0ϕ(f)

)
.

P r o o f. The definition of ρ1ϕ(f) implies that there exists a sequence {sn, n ≥ 1}, sn → +∞
such that

lim
sn→+∞

ϕ(T (sn, f))

log sn
= ρ1ϕ(f).

Setting m(E2) = δ < +∞. Then, for rn ∈ [sn, sn + δ + 1]\E2, we have

ϕ(T (rn, f))

log rn
≥

ϕ(T (sn, f))

log(sn + δ + 1)
=

ϕ(T (sn, f))

log sn + log
(
1 +

δ + 1

sn

) .

Hence

lim
rn→+∞

ϕ(T (rn, f))

log rn
≥ lim

sn→+∞

ϕ(T (sn, f))

log sn + log
(
1 +

δ + 1

sn

) = ρ1ϕ(f).

By

lim
rn→+∞

ϕ(T (rn, f))

log rn
≤ lim sup

r→+∞

ϕ(T (r, f))

log r
= ρ1ϕ(f),

we deduce that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f).

Similar proof for ρ0ϕ(f). �

Lemma 7. Let ϕ ∈ Φ and f be a meromorphic function satisfying 0 < ρ0ϕ(f) < +∞ and

0 < τ0ϕ(f) < +∞. Then, for any given η < τ0ϕ(f), there exists a set E3 ⊂ [0,+∞) with infinite

logarithmic measure such that for all r ∈ E3, we have

ϕ(eT (r,f)) > log(η rρ
0
ϕ(f)).

P r o o f. We denote ρ0ϕ(f) = ρ0 and τ0ϕ(f) = τ0. The definition of τ0ϕ(f) implies that there
exists a sequence {rm,m ≥ 1} tending to +∞ satisfying

(
1 +

1

m

)
rm < rm+1 and lim

m→+∞

eϕ(e
T (rm,f))

rρ0m
= τ0.

Then, for any given ε (0 < ε < τ0 − η), there exists an integer m1 such that for all m ≥ m1, we
have

eϕ(e
T (rm,f)) > (τ0 − ε)rρ0m . (3.4)

Since η < τ0 − ε, there exists an integer m2 such that for all m ≥ m2, we have

(
m

m+ 1

)ρ0

>
η

τ0 − ε
. (3.5)

Taking m ≥ m3 = max{m1,m2}, it follows from (3.4) and (3.5) that for any r ∈ [rm, (1 + 1/m) rm]

eϕ(e
T (r,f)) ≥ eϕ(e

T (rm,f)) > (τ0 − ε)rρ0m ≥ (τ0 − ε)

(
mr

m+ 1

)ρ0

> η rρ0 .
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Thus
ϕ(eT (r,f)) > log(η rρ

0
ϕ(f)).

Setting E3 =
+∞⋃

m=m3

[rm, (1 + 1/m) rm] , then the logarithmic measure lm(E3) of E3 satisfies

lm(E3) =
+∞∑

m=m3

(1+1/m)rm∫

rm

dt

t
=

+∞∑

m=m3

log
(
1 +

1

m

)
= +∞.

�

Lemma 8. Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions and let f be a meromorphic

solution of equation (1.2). If max
{
ρ1ϕ(F ), ρ1ϕ(Aj) : j = 0, 1, . . . , k − 1

}
< ρ1ϕ(f), then

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f).

P r o o f. Equation (1.2) can be written as

1

f
=

1

F

(f (k)

f
+Ak−1

f (k−1)

f
+ · · · +A1

f ′

f
+A0

)
. (3.6)

If f has a zero at z0 of order l > k and if A0, A1, . . . , Ak−1 are all analytic at z0, then F has a zero
at z0 of order at least l − k. Then

n
(
r,

1

f

)
≤ k · n̄

(
r,

1

f

)
+ n

(
r,

1

F

)
+

k−1∑

j=0

n(r,Aj)

and

N
(
r,

1

f

)
≤ k · N̄

(
r,

1

f

)
+N

(
r,

1

F

)
+

k−1∑

j=0

N(r,Aj). (3.7)

By the lemma of logarithmic derivative [10] and (3.6), we get that

m
(
r,

1

f

)
≤ m

(
r,

1

F

)
+

k−1∑

j=0

m(r,Aj) +O(log r + log T (r, f)) (3.8)

holds for all |z| = r /∈ E4, where E4 is a set of finite linear measure. By (3.7), (3.8) and the
Nevanlinna’s first main theorem, we obtain

T (r, f) = T
(
r,

1

f

)
+O(1) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+O(1)

≤ k · N̄
(
r,

1

f

)
+ T (r, F ) +

k−1∑

j=0

T (r,Aj) +O(log r + log T (r, f))

(3.9)

holds for all sufficiently large r /∈ E4. We denote

µ = max
{
ρ1ϕ(F ), ρ1ϕ(Aj) (j = 0, 1, . . . , k − 1)

}
.

According to Lemma 6, there exists a sequence {rn, rn /∈ E4} such that

lim
rn→+∞

ϕ(T (rn, f))

log rn
= ρ1ϕ(f) = ρ1.
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So, if rn /∈ E4, then for any given ε (0 < 2ε < ρ1 − µ) we get

T (rn, f) ≥ ϕ−1((ρ1 − ε) log rn). (3.10)

We have

max
j=0,1,...,k−1

{T (rn, F ), T (rn, Aj)} ≤ ϕ−1((µ + ε) log rn), (3.11)

O(log rn + log T (rn, f)) = o(T (rn, f)). (3.12)

Since ε (0 < 2ε < ρ1 − µ), then from (3.10), (3.11) and Proposition 1, we obtain

max
j=0,1,...,k−1

{
T (rn, F )

T (rn, f)
,
T (rn, Aj)

T (rn, f)

}
≤

exp
{
logϕ−1((µ+ ε) log rn)

}

exp {logϕ−1((ρ1 − ε) log rn)}

= exp
{
logϕ−1((µ + ε) log rn)− logϕ−1((ρ1 − ε) log rn)

}

= exp

{(
1−

logϕ−1((ρ1 − ε) log rn)

logϕ−1((µ + ε) log rn)

)
logϕ−1((µ+ ε) log rn)

}
−→ 0

(3.13)

as rn → +∞. By substituting (3.12) and (3.13) into (3.9) we deduce that for sufficiently large
rn /∈ E4, there holds

(1− o(1))T (rn, f) ≤ kN̄

(
rn,

1

f

)
.

From this inequality, by the monotonicity of ϕ and (3.3), we obtain ρ1ϕ(f) ≤ λ̄1
ϕ(f). In addition,

we have by definition that λ̄1
ϕ(f) ≤ λ1

ϕ(f) ≤ ρ1ϕ(f). Hence λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f). �

Lemma 9. Let f be a meromorphic function. If ρ0ϕ(f) = ρ < +∞, then ρ1ϕ(f) = 0.

P r o o f. Suppose that ρ0ϕ(f) = ρ < +∞. Then, for any given ε > 0 and sufficiently large r,
we have

T (r, f) ≤ log(ϕ−1((ρ+ ε) log r)).

By Karamata’s theorem (see [19]), it follows that ϕ(et) = to(1) as t → +∞. Hence,

ρ1ϕ(f) = lim sup
r→+∞

ϕ(T (r, f))

log r
= lim sup

r→+∞

ϕ(elog T (r,f))

log r

= lim sup
r→+∞

(log T (r, f))o(1)

log r
≤ lim sup

r→+∞

(
log log(ϕ−1((ρ+ ε) log r))

)o(1)

log r
= 0.

�

4. Proofs of the main results

P r o o f of Theorem 1. (i) We first prove that ρ1ϕ(f) ≤ ρ0ϕ(As) ≤ ρ0ϕ(f) holds for every
transcendental meromorphic function satisfying (1.1). From equation (1.1), we know that the poles
of f can only occur at the poles of A0, A1, . . . , Ak−1, note that the multiplicities of poles of f are
uniformly bounded, so we have

N(r, f) ≤ C1N̄(r, f) ≤ C1

k−1∑

j=0

N̄(r,Aj) ≤ Cmax{N(r,Aj) : j = 0, 1, . . . , k − 1} ≤ O(T (r,As)),
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where C and C1 are two suitable positive constants. Hence

T (r, f) ≤ m(r, f) +O(T (r,As)).

This inequality and Lemma 1 lead to

T (r, f) ≤ m(r, f) +O(T (r,As)) ≤ O(eT (r,As)[(log r) log T (r,As)]γ ), γ > 1

outside of an exceptional set E0 with finite logarithmic measure. By the monotonicity of the
function ϕ and (3.3), we obtain ρ1ϕ(f) ≤ ρ0ϕ(As).

On the other hand, equation (1.1) can be written as

−As =
f (k)

f (s)
+Ak−1

f (k−1)

f (s)
+ · · ·+As+1

f (s+1)

f (s)
+As−1

f (s−1)

f (s)
+ · · · +A0

f

f (s)

=
f

f (s)

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · · +As+1

f (s+1)

f
+As−1

f (s−1)

f
+ · · ·+A0

)
.

By the lemma of logarithmic derivative and the fact that

m

(
r,

f

f (s)

)
≤ T (r, f) + T

(
r,

1

f (s)

)
= T (r, f) + T (r, f (s)) +O(1) = O(T (r, f)),

it follows that

T (r,As) ≤ N(r,As) +
∑

j 6=s

m(r,Aj) +O(log r + log T (r, f)) +O(T (r, f)) (4.1)

which holds for all |z| = r /∈ E5 where E5 is a set of finite linear measure. By Lemma 6, it follows
that there exists a sequence {rn, n ≥ 1}, rn → +∞ such that for |zn| = rn /∈ E5

lim
rn→+∞

ϕ(eT (rn,As))

log rn
= ρ0ϕ(As) = ρ0

and so

T (rn, As) ≥ log(ϕ−1((ρ0 − ε) log rn)). (4.2)

Under the assumption η = max
{
ρ0ϕ(Aj), λ

0
ϕ (1/As) : j 6= s

}
< ρ0ϕ(As) = ρ0, we have

N(rn, As) ≤ log(ϕ−1((η + ε) log rn)), (4.3)

m(rn, Aj) ≤ T (rn, Aj) ≤ log(ϕ−1((η + ε) log rn)), j 6= s (4.4)

provided for any given ε that verifies 0 < 2ε < ρ0− η. Substituting (4.2), (4.3) and (4.4) into (4.1),
we get

(1− o(1)) log(ϕ−1((ρ0 − ε) log rn)) ≤ O(log rn + log T (rn, f)) +O(T (rn, f)) = O(T (rn, f)).

Applying (3.3), one can deduce that ρ0ϕ(As) = ρ0 ≤ ρ0ϕ(f).

(ii) Now, we prove that there exists at least one meromorphic solution that satisfies
ρ1ϕ(f) = ρ0ϕ(As). Let {f1, f2, . . . , fk} be a solution base of equation (1.1). By Lemma 2, we have

em(r,As) ≤ O
(
max
1≤i≤k

T (r, fi)
)
, s ∈ {1, 2, . . . , k − 1}.



Growth of ϕ-order Solutions 107

If N(r,As) ≥ m(r,As), so T (r,As) ≤ 2N(r,As), then ρ0ϕ(As) ≤ λ0
ϕ

(
1

As

)
. This contradicts our

assumption λ0
ϕ

(
1

As

)
< ρ0ϕ(As) and asserts that N(r,As) < m(r,As). Hence, for sufficiently large r,

we have
eT (r,As) = O(em(r,As)) ≤ O

(
max
1≤i≤k

T (r, fi)
)
.

This implies that there exists at least one solution of {f1, f2, . . . , fk}, say f1, that satisfies
eT (r,As) ≤ O(T (r, f1)). By this inequality and (3.3) and the monotonicity of ϕ, we obtain

ρ0ϕ(As) ≤ ρ1ϕ(f1).

We have proved in the first part that ρ1ϕ(f1) ≤ ρ0ϕ(As). Therefore, ρ
1
ϕ(f1) = ρ0ϕ(As). �

P r o o f of Theorem 2. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). Equation (1.1) can be written as

A0 = −

(
f (k)

f
+Ak−1

f (k−1)

f
+ · · · +A1

f ′

f

)
.

By the lemma of logarithmic derivative and the above equation, we have

m(r,A0) ≤

k−1∑

j=1

m(r,Aj) +

k∑

j=1

m

(
r,
f (j)

f

)
+O(1)

≤

k−1∑

j=1

m(r,Aj) +O(log r + log T (r, f))

(4.5)

holds possibly outside of an exceptional set E6 ⊂ (0,+∞) with finite linear measure. From this
inequality, it follows

T (r,A0) = m(r,A0) +N(r,A0)

≤ N(r,A0) +

k−1∑

j=1

m(r,Aj) +O(log r + log T (r, f))
(4.6)

holds for r /∈ E6. By Lemma 6, it follows that there exists a sequence {rn, n ≥ 1}, rn → +∞ such
that for |zn| = rn /∈ E6

lim
rn→+∞

ϕ(eT (rn,A0))

log rn
= ρ0ϕ(A0) = ρ0

and so
T (rn, A0) ≥ log(ϕ−1((ρ0 − ε) log rn)) (4.7)

under the assumption η = max
{
ρ0ϕ(Aj), λ

0
ϕ (1/A0) : j 6= 0

}
< ρ0ϕ(A0) = ρ0, we have

N(rn, A0) ≤ log(ϕ−1((η + ε) log rn)), (4.8)

m(rn, Aj) ≤ T (rn, Aj) ≤ log(ϕ−1((η + ε) log rn)), j 6= 0 (4.9)

provided for any given ε that verifies 0 < 2ε < ρ0− η. Substituting (4.7), (4.8) and (4.9) into (4.6),
we get

(1− o(1)) log(ϕ−1((ρ0 − ε) log rn)) ≤ O(log rn + log T (rn, f)).
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Applying (3.3), one can deduce that ρ0ϕ(A0) = ρ0 ≤ ρ1ϕ(f).
On the other hand, from Theorem 1, we have ρ0ϕ(A0) ≥ ρ1ϕ(f). We deduce finally that every

meromorphic solution f 6≡ 0 whose poles are of uniformly bounded multiplicities of (1.1) satisfies
ρ1ϕ(f) = ρ0ϕ(A0). �

P r o o f of Theorem 3. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). If λ0

ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ(Aj) : j = 1, . . . , k − 1} < ρ0ϕ(A0) < +∞,

then by Theorem 2, we obtain ρ1ϕ (f) = ρ0ϕ (A0) . Suppose that λ
0
ϕ (1/A0) < ρ0ϕ(A0) and

max{ρ0ϕ (Aj) : j = 1, . . . , k − 1} = ρ0ϕ (A0) = ρ0 (0 < ρ0 < +∞) ,

max{τ0ϕ (Aj) : ρ
0
ϕ (Aj) = ρ0ϕ (A0)} < τ0ϕ (A0) = τ0 (0 < τ0 < +∞) .

Then, there exists a set J ⊆ {1, . . . , k − 1} such that ρ0ϕ (Aj) = ρ0ϕ (A0) = ρ0 (j ∈ J) and τ0ϕ (Aj) <
τ0ϕ (A0) = τ0 (j ∈ J) . Hence, there exist two constants β1 and β2 such that

max{τ0ϕ(Aj) : j ∈ J} < β1 < β2 < τ0ϕ(A0) = τ0.

The definition of the type τ0ϕ(Aj) implies that for r sufficiently large

em(r,Aj) ≤ eT (r,Aj) < ϕ−1(log(β1r
ρ0)), j ∈ J (4.10)

and

em(r,Aj) ≤ eT (r,Aj) < ϕ−1(log(rρ
0
0)) < ϕ−1(log(β1r

ρ0)), j ∈ {1, . . . , k − 1} \ J, (4.11)

where 0 < ρ00 < ρ0. Since λ0 = λ0
ϕ (1/A0) < ρ0ϕ(A0) = ρ0, then for any given ε (0 < 2ε < ρ0 − λ0)

and sufficiently large r, we have

eN(r,A0) ≤ ϕ−1(log(rλ0+ε)) < ϕ−1(log(rρ0−ε)) < ϕ−1(log(β1r
ρ0)). (4.12)

By Lemma 7, there exists a set E3 ⊂ [1,+∞) with infinite logarithmic measure such that for all
r ∈ E3, we have

eT (r,A0) > ϕ−1(log(β2r
ρ0)). (4.13)

By substituting (4.10), (4.11), (4.12) and (4.13) into (4.6), we obtain

(1− o(1)) log(ϕ−1[log(β2r
ρ0)]) ≤ O(log r + log T (r, f)) (4.14)

for all r ∈ E3\E6. Since E3\E6 is a set of infinite logarithmic measure, then there exists a sequence
of points |zn| = rn ∈ E3\E6 tending to +∞. Hence, by (4.14) we have

(1− o(1)) log(ϕ−1[log(β2r
ρ0
n )]) ≤ O(log rn + log T (rn, f))

holds for all zn satisfying |zn| = rn ∈ E3\E6 as |zn| = rn → +∞. By the monotonicity of
ϕ−1 and (3.3), we obtain ρ0ϕ(A0) ≤ ρ1ϕ(f). By Theorem 1, we have ρ1ϕ(f) ≤ ρ0ϕ(A0). Therefore
ρ1ϕ(f) = ρ0ϕ(A0) which completes the proof. �

P r o o f of Theorem 4. Since all solutions of equation (1.2) are meromorphic functions, all
solutions of the homogeneous differential equation (1.1) corresponding to equation (1.2) are also
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meromorphic functions. We assume that {f1, . . . , fk} is a meromorphic solution base of (1.1), then
any solution of (1.2) has the form

f = c1f1 + c2f2 + · · ·+ ckfk, (4.15)

where c1, c2, . . . , ck are meromorphic functions satisfying

c′j = F ·Gj(f1, . . . , fk) ·W
−1(f1, . . . , fk), j = 1, 2, . . . , k, (4.16)

where Gj(f1, . . . , fk) are differential polynomials in {f1, . . . , fk} and their derivatives and
W−1(f1, . . . , fk) is the Wronskian of {f1, . . . , fk}. We have by Theorem 2

ρ1ϕ(fj) = ρ0ϕ(A0), j = 1, . . . , k.

By Lemma 4, Lemma 5, (4.15) and (4.16), we get

ρ1ϕ(f) ≤ max{ρ1ϕ(fj) ( j = 1, . . . , k) , ρ1ϕ(F )} = ρ0ϕ(A0).

In order to show that all solutions f of equation (1.2) satisfy ρ1ϕ(f) = ρ0ϕ(A0) with at most one
exceptional solution, say f1, satisfying ρ1ϕ(f1) < ρ0ϕ(A0), we suppose that there exist two distinct
meromorphic solutions f1 and f2 of equation (1.2) satisfying ρ1ϕ(fi) < ρ0ϕ(A0), i = 1, 2. Then,
f = f1 − f2 is also a non-zero meromorphic solution of (1.1) and satisfies

ρ1ϕ(f) = ρ1ϕ(f1 − f2) ≤ max{ρ1ϕ(f1), ρ
1
ϕ(f2)} < ρ0ϕ(A0)

which contradicts Theorem 2. By (2.3) for all solutions f of equation (1.2) satisfying ρ1ϕ(f) =
ρ0ϕ(A0), by Lemma 9, we have

max{ρ1ϕ(F ), ρ1ϕ(Aj) (j = 0, 1, . . . , k − 1)} = ρ1ϕ(F ) < ρ0ϕ(A0) = ρ1ϕ(f).

By Lemma 8, we have λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) and hence Theorem 4 is proved. �

P r o o f of Theorem 5. Let f be a meromorphic solution of equation (1.2) and {f1, . . . , fk}
be a meromorphic solution base of (1.1) corresponding to equation (1.2). By a similar discussion
as in the proof of Theorem 4, it follows from Lemma 4, Lemma 5, (4.15) and (4.16) that

ρ1ϕ(f) ≤ max{ρ1ϕ(fj) (j = 1, . . . , k) , ρ1ϕ(F )}.

By the first part of the proof of Theorem 1, one can show easily that

ρ1ϕ(fj) ≤ max{ρ0ϕ(Aj) : j = 0, . . . , k − 1} (4.17)

for j = 1, . . . , k. We obtain from the assumptions of Theorem 5 that ρ1ϕ(fj) ≤ ρ1ϕ(F ) and thus

ρ1ϕ(f) ≤ ρ1ϕ(F ).

On the other hand, by Lemma 4, Lemma 5 and a simple order comparison from equation (1.2),
we get

ρ1ϕ(F ) ≤ max{ρ1ϕ(Aj) (j = 0, . . . , k − 1) , ρ1ϕ(f)}.

Since ρ1ϕ(Aj) ≤ ρ0ϕ(Aj) < ρ1ϕ(F ) (j = 0, . . . , k − 1) , then

ρ1ϕ(F ) ≤ ρ1ϕ(f).
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Therefore, ρ1ϕ(f) = ρ1ϕ(F ). �

P r o o f of Theorem 6. Assume that f is a non-zero meromorphic solution whose poles are
of uniformly bounded multiplicities of (1.1). Set G1 = {|z| = r : z ∈ G}, since log dens{|z| : z ∈

G} > 0, then G1 is a set with

∫

G1

dr

r
= +∞. Set

δ (∞, A0) = lim inf
r→+∞

m (r,A0)

T (r,A0)
= δ > 0. (4.18)

Thus, for sufficiently large r, we have

m (r,A0) >
1

2
δT (r,A0) . (4.19)

By substituting (2.4), (2.5) and (4.19) into (4.5), we obtain for sufficiently large r and any given ε
(0 < 2ε < α− β)

1

2
δ log

(
ϕ−1((α − ε) log r)

)
≤

1

2
δT (r,A0) ≤ m(r,A0)

≤

k−1∑

j=1

m(r,Aj) +

k∑

j=1

m

(
r,
f (j)

f

)
+O(1)

≤

k−1∑

j=1

T (r,Aj) +O(log r + log T (r, f))

≤ (k − 1) log
(
ϕ−1(β log r)

)
+O(log r + log T (r, f)),

it follows that
(1− o(1)) log

(
ϕ−1((α − ε) log r)

)
≤ O(log r + log T (r, f)) (4.20)

holds for all z satisfying |z| = r ∈ G1 \ E6 as |z| = r → +∞. Since G1 \ E6 is a set of infinite
logarithmic measure, then there exists a sequence of points |zn| = rn ∈ G1 \ E6 tending to +∞.
Hence, by (4.20) we have

(1 − o(1)) log
(
ϕ−1((α − ε) log rn)

)
≤ O(log rn + log T (rn, f))

holds for all zn satisfying |zn| = rn ∈ G1 \E6 as |zn| = rn → +∞. By the monotonicity of ϕ−1 and
arbitrariness of ε (0 < 2ε < α− β), one can obtain ρ1ϕ(f) ≥ α.

On the other hand, it follows by a similar proof as in the first part of Theorem 1 that
ρ1ϕ(f) ≤ α. Therefore ρ1ϕ(f) = α. �

P r o o f of Theorem 7. (i) If ρ1ϕ(F ) ≥ α, then it follows from Theorem 5 that ρ1ϕ(f) = ρ1ϕ(F ).
(ii) If ρ1ϕ(F ) < α, we prove that ρ1 = ρ1ϕ(f) = α for any non-zero meromorphic solution whose

poles are of uniformly bounded multiplicities of (1.1). We show firstly that ρ1 = ρ1ϕ(f) ≥ α.
Without loss of the generality, we suppose the contrary ρ1 ≤ β < α. Set G2 = {|z| = r : z ∈ G},

since log dens{|z| : z ∈ G} > 0, then G2 is a set with

∫

G2

dr

r
= +∞. From Lemma 3, there exists a set

E1 ⊂ (1,+∞) with finite logarithmic measure and a constant B > 0 such that for all z satisfying
|z| = r /∈ [0, 1] ∪E1, we have

∣∣∣∣
f (j)(z)

f(z)

∣∣∣∣ ≤ B[T (2r, f)]k+1, j = 1, . . . , k. (4.21)
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If f is a non-zero meromorphic solution of equation (1.1), then

∣∣A0 (z)
∣∣ ≤

∣∣∣∣
f (k) (z)

f (z)

∣∣∣∣+
∣∣Ak−1 (z)

∣∣
∣∣∣∣
f (k−1) (z)

f (z)

∣∣+ · · · +
∣∣A1 (z)

∣∣
∣∣∣∣
f ′ (z)

f (z)

∣∣∣∣. (4.22)

By the definition of ρ1 = ρ1ϕ(f) and substituting (2.6), (2.7), (4.21) into (4.22), we obtain

ϕ−1((α − ε) log r) ≤ |A0(z)| ≤ k B ϕ−1(β log r)[T (2r, f)]k+1

≤ k B ϕ−1(β log r)
[
ϕ−1

(
(ρ1 +

ε

2
) log 2r

)]k+1

≤
[
ϕ−1

(
(β +

ε

2
) log 2r

)]k+2
≤ ϕ−1((β + ε) log r)

(4.23)

holds for all z satisfying |z| = r ∈ G2 \ ([0, 1] ∪ E1) as |z| = r → +∞. Since G2 \ E1 is a set of
infinite logarithmic measure, then there exists a sequence of points |zn| = rn ∈ G2 \ E1 tending
to +∞. Hence, by (4.23) we have

ϕ−1((α − ε) log rn) ≤ ϕ−1((β + ε) log rn)

holds for all zn satisfying |zn| = rn ∈ G2 \ E1 as |zn| = rn → +∞. By the monotonicity of ϕ−1

and arbitrariness of ε(0 < 2ε < α− β), one can see that α ≤ β which contradicts our assumption.
Then, ρ1ϕ(f) ≥ α.

On the other hand, it follows by a similar proof in Theorem 1 that

ρ1ϕ(f) ≤ α.

Therefore ρ1ϕ(f) = α. In order to show that all solutions f of equation (1.2) satisfy ρ1ϕ(f) = α with
at most one exceptional solution, say f0, satisfying ρ1ϕ(f0) < α, we suppose that there exist two
distinct meromorphic solutions f0 and f∗

0 of equation (1.2) satisfying max
{
ρ1ϕ(f0), ρ

1
ϕ(f

∗
0 )
}
< α.

Then, f = f0 − f∗
0 is also a non-zero meromorphic solution of (1.1) and satisfies

ρ1ϕ(f) = ρ1ϕ(f0 − f∗
0 ) ≤ max

{
ρ1ϕ(f0), ρ

1
ϕ(f

∗
0 )
}
< α

which contradicts the proof of the first part of (ii). By assumptions of Theorem 7, for all solutions f
of equation (1.2) satisfying ρ1ϕ(f) = α, we have by Lemma 9

max{ρ1ϕ(F ), ρ1ϕ(Aj), j = 0, 1, . . . , k − 1} = ρ1ϕ(F ) < α = ρ1ϕ(f).

By using Lemma 8, we obtain λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) and hence

λ̄1
ϕ(f) = λ1

ϕ(f) = ρ1ϕ(f) = α

with at most one exceptional solution f0 satisfying ρ1ϕ(f0) < α.

5. Conclusion

In this paper, by using the concepts of ϕ-order and ϕ-type, we have studied the growth of mero-
morphic solutions of higher order linear differential equations when among meromorphic coefficients
having the maximal ϕ-order, exactly one has its ϕ-type stricly greater than others. Many previous
results due to Chyzhykov–Semochko, Beläıdi, Cao–Xu–Chen, Kinnunen have been extended. Now,
it is interesting to study the growth of meromorphic solutions of such equations by using the con-
cept of (α, β)-order called the generalized order introduced by Sheremeta [20], see the recent paper
of Mulyava–Sheremeta–Trukhan [17].
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