AUTOMORPHISMS OF DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY \{25, 16, 1; 1, 8, 25\} \(^1\)

Konstantin S. Efimov

Ural Federal University, Ekaterinburg, Russia,
Ural State University of Economics, Ekaterinburg, Russia
konstantin.s.efimov@gmail.com

Alexander A. Makhnev

N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Ekaterinburg, Russia,
Ural Federal University, Ekaterinburg, Russia
makhnev@imm.uran.ru

Abstract: Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with \(\lambda = \mu\). They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs of diameter 3 with \(\lambda = \mu\), in which neighborhoods of vertices are strongly regular. In this paper we consider neighborhoods of vertices with parameters \((25, 8, 3, 2)\).

Key words: Strongly regular graph, Distance-regular graph.

Introduction

We consider undirected graphs without loops and multiple edges. Given a vertex \(a\) in a graph \(\Gamma\), we denote by \(\Gamma_i(a)\) the subgraph induced by \(\Gamma\) on the set of all vertices, that are at the distance \(i\) from \(a\). The subgraph \([a] = \Gamma_1(a)\) is called the neighborhood of the vertex \(a\). Let \(\Gamma(a) = \Gamma_1(a)\), \(a^\perp = \{a\} \cup \Gamma(a)\). If graph \(\Gamma\) is fixed, then instead of \(\Gamma(a)\) we write \([a]\). For the set of vertices \(X\) of graph \(\Gamma\) through \(X^\perp\) denote \(\cap_{x \in X} x^\perp\).

Let \(\Gamma\) be an antipodal distance-regular graph of diameter 3 and \(\lambda = \mu\), in which neighborhoods of vertices are strongly-regular graphs. Then \(\Gamma\) has intersection array \(\{k, \mu(r - 1), 1, 1, \mu, k\}\), and spectrum \(k^1, \sqrt{k^f}, -1^k, -\sqrt{k^f}\), where \(f = (k + 1)(r - 1)/2\). In the case \(r = 2\) we obtain Taylor’s graph, in which \(k^1 = 2\mu^\prime\). Conversely, for any strongly regular graph with parameters \((v^\prime, 2\mu^\prime, \lambda^\prime, \mu^\prime)\) there exists a Taylor’s graph, in which neighborhoods of vertices are strongly regular with relevant parameters.

In [1] there were chosen strongly-regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices of antipodal distance-regular graph of diameter 3 and \(\lambda = \mu\). There is provided a research program of the study of vertex-symmetric antipodal distance-regular graphs of diameter 3 with \(\lambda = \mu\), in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

Proposition 1. Let \(\Delta\) be a strongly-regular graph with parameters \((v, k, \lambda, \mu)\). If \((r - 1)k = v - k - 1, v \leq 1000\) and number \((v + 1)(r - 1)\) is even, then either \(r = 2\), or parameters \((v, k, \lambda, \mu, r)\) belong to the following list:

\(^1\)This work is partially supported by RSF, project 14-11-00061-P (Theorem 1) and by the program of the government support of leading universities of Russian Federation, agreement 02.A03.21.0006 from 27.08.2013 (Corollary 1).
(1) (16, 5, 0, 2, 3), (25, 8, 3, 2, 3), (49, 12, 5, 2, 4), (64, 21, 8, 6, 3), (81, 16, 7, 2, 5), (81, 20, 1, 6, 4), (85, 14, 3, 2, 6), (99, 14, 1, 2, 7), (100, 33, 8, 12, 3), (121, 20, 9, 2, 6), (121, 30, 11, 6, 4), (121, 40, 15, 12, 3), (126, 25, 8, 4, 5), (133, 44, 15, 14, 3), (169, 24, 11, 2, 7), (169, 42, 5, 12, 4), (169, 56, 15, 20, 3), (176, 25, 0, 4, 7), (196, 39, 14, 6, 5), (196, 65, 24, 20, 3);

(2) (225, 28, 13, 2, 8), (225, 56, 19, 12, 4), (243, 22, 1, 2, 11), (256, 51, 2, 12, 5), (256, 85, 24, 30, 3), (261, 52, 11, 10, 5), (288, 41, 4, 6, 7), (289, 32, 15, 2, 9), (289, 48, 17, 6, 6), (289, 72, 11, 20, 4), (289, 96, 35, 30, 3), (305, 76, 27, 16, 4), (325, 54, 3, 10, 6), (351, 50, 13, 6, 7), (351, 70, 13, 14, 5), (352, 39, 6, 4, 9), (361, 36, 17, 2, 10), (361, 72, 23, 12, 5), (361, 90, 29, 20, 4), (361, 120, 35, 42, 3);

(3) (400, 57, 20, 6, 7), (400, 133, 48, 42, 3), (441, 40, 19, 2, 11), (441, 88, 7, 20, 5), (441, 110, 19, 30, 4), (484, 161, 48, 56, 3), (495, 38, 1, 3, 13), (505, 84, 3, 16, 6), (507, 46, 5, 4, 11), (512, 73, 12, 10, 7), (529, 44, 21, 12, 2), (529, 66, 23, 6, 8), (529, 88, 27, 12, 6), (529, 132, 41, 30, 4), (529, 176, 63, 56, 3), (540, 49, 8, 4, 11), (576, 115, 18, 24, 5);

(4) (625, 48, 23, 2, 13), (625, 156, 29, 42, 4), (625, 208, 63, 72, 3), (640, 71, 6, 8, 9), (649, 72, 15, 7, 9), (649, 216, 63, 76, 3), (676, 75, 26, 6, 9), (676, 135, 14, 30, 5), (704, 37, 0, 2, 19), (729, 52, 25, 2, 14), (729, 104, 31, 12, 7), (729, 182, 55, 42, 4), (736, 105, 20, 14, 7), (768, 59, 10, 4, 13), (784, 261, 80, 90, 3);

(5) (837, 76, 15, 6, 11), (841, 56, 27, 2, 15), (841, 84, 29, 6, 10), (841, 140, 39, 20, 6), (841, 168, 47, 30, 5), (841, 210, 41, 56, 4), (841, 280, 99, 90, 3), (847, 94, 21, 9, 9), (848, 121, 24, 16, 7), (901, 60, 3, 4, 15), (961, 60, 29, 2, 16), (961, 120, 35, 12, 8), (961, 160, 9, 30, 6), (961, 192, 23, 42, 5), (961, 240, 71, 56, 4), (961, 320, 99, 100, 3), (1000, 111, 14, 12, 9).

Graphs with local subgraphs having parameters (64, 21, 8, 6, 3), (81, 16, 7, 2, 3), (85, 14, 3, 2) and (99, 14, 1, 2) were investigated in [2], [3], [4] and [5]. In this article we investigate parameters (25, 8, 3, 2, 3), i.e. this graph is locally 5 \times 5-grid. In [6] it is proved that distance-regular locally 5 \times 5-grid of diameter more then 2 is either isomorphic to the Johnson’s graph J(10, 5) or has an intersection array \{25, 16, 1; 1, 8, 25\}.

Theorem 1. Let Γ be a distance-regular graph with intersection array \{25, 16, 1; 1, 8, 25\}, $G = \text{Aut}(\Gamma)$, g is an element of prime order p in G and $\Omega = \text{Fix}(g)$ contains exactly s vertices in t antipodal classes. Then $\pi(G) \subseteq \{2, 3, 5, 13\}$ and one of the following assertions holds:

1. Ω is empty graph and $p \in \{2, 3, 13\}$;
2. $p = 5, t = 1, \alpha_2(g) = 0, \alpha_2(g) = 50t + 25$ and $\alpha_2(g) = 50 - 50t$;
3. $p = 3, s = 3, t = 2, 5, 8, \alpha_3(g) = 0, \alpha_4(g) = 30t + 16 - 11t$ and $\alpha_2(g) = 62 - 30t + 8t$;
4. $p = 2$, and either $s = 1, \Omega$ is t-clique, $t = 2, 4, 6, \alpha_3(g) = 2t, \alpha_4(g) = 20t - t + 6$ and $\alpha_2(g) = 72 - 20t - 2t$, or $s = 3, t \leq 8$, t is even, $\alpha_3(g) = 0, \alpha_1(g) = 20t - 11t + 6$ and $\alpha_2(g) = 72 - 20t + 8t$.

Corollary 1. Let Γ be a distance-regular graph with intersection array \{25, 16, 1; 1, 8, 25\} and a group $G = \text{Aut}(\Gamma)$ acts transitively on the set of vertices of Γ. Then one of the following assertions holds:

1. Γ is a Cayley graph, G is the a Frobenius group with the kernel of order 13 and with the complement of order 6;
2. Γ is an arc-transitive Matoni’s graph and the socle of G is isomorphic to $L_2(25)$;
3. G is an extension of a group Q of order 2^{12} by the group $T = L_2(3)$, $|Q : Q_{T_F}| = 2, T_{F_F}$ is an extension of group E_9 by $SL_2(3)$, T acts irreducibly on Q and for an element f of order 13 in G we have $C_Q(f) = 1$.

1. Proof of the Theorem

Note that there is Delsarte boundary (proposition 4.4.6 from [7]) of maximum order of clique in distance-regular graph with intersection array \(\{25, 16, 1; 1, 8, 25\}\) and spectrum \(25^1, 5^{26}, -1^{25}, -5^{26}\) no more than \(1 - k/\theta_d = 1 + 25/5 = 6\). If \(C\) is 6-clique in \(\Gamma\), then each vertex not in \(C\) is adjacent to 0 or to \(b_1/(\theta_d + 1) = 1 - k/\theta_d = 2\) vertices in \(C\).

Lemma 1. Let \(\Gamma\) be a distance-regular graph with intersection array \(\{25, 16, 1; 1, 8, 25\}\), \(G = \text{Aut}(\Gamma)\) and \(g \in G\). If \(\psi\) is the monomial representation of a group \(G\) in \(GL(78, \mathbb{C})\), \(\chi_1\) is the character of the representation \(\psi\) on subspace of eigenvectors of dimension 26, corresponding to the eigenvalue 5, \(\chi_2\) is the character of the representation \(\psi\) on subspace of dimension 25, then \(\chi_1(g) = (10\alpha_0(g) + 2\alpha_1(g) - \alpha_2(g) - 5\alpha_3(g))/30\). Therefore \(\chi_1(g) = 78 - \alpha_0(g) - \alpha_1(g) - \alpha_3(g)\), we obtain \(\chi_1(g) = (11\alpha_0(g) + 3\alpha_1(g) - 4\alpha_3(g))/30 - 13/5\).

Similarly, \(\chi_2(g) = 25\alpha_0(g) - \alpha_1(g) - \alpha_2(g) + 25\alpha_3(g))/78\). Substituting \(\alpha_1(g) + \alpha_2(g) = 78 - \alpha_0(g) - \alpha_3(g),\) we obtain \(\chi_2(g) = (\alpha_0(g) + \alpha_3(g))/3 - 1\).

The remaining assertions follow from Lemma 1 in [8]. The proof is complete. \(\square\)

Let further in the paper \(\Gamma\) be a distance-regular graph with intersection array \(\{25, 16, 1; 1, 8, 25\}\), \(G = \text{Aut}(\Gamma)\), \(g\) is an element of prime order \(p\) in \(G\) and \(\Omega = \text{Fix}(g)\).

Lemma 2. If \(\Omega\) is an empty graph, then either \(p = 13\), \(\alpha_1(g) = 26\) and \(\alpha_2(g) = 52\), or \(p = 3\), \(\alpha_3(g) = 9s + 6, s < 8, \alpha_1(g) = 54 + 12s - 30l\) and \(\alpha_2(g) = 18 - 21s + 30l, l \leq 5\), or \(p = 2\), \(\alpha_3(g) = 0, \alpha_1(g) = 20l + 6\) and \(\alpha_2(g) = 72 - 20l, l \leq 3\).

Proof. Let \(\Omega\) be an empty graph and \(\alpha_i(g) = pw_i\) for \(i > 0\). Since \(v = 78\), we have \(p \in \{2, 3, 13\}\).

Let \(p = 13\). Then \(\alpha_3(g) = 0, \alpha_1(g) + \alpha_2(g) = 78\) and \(\chi_1(g) = (2\alpha_1(g) - \alpha_2(g))/30 = (w_1 - 2)/10\). This implies \(\alpha_1(g) = 26\) and \(\alpha_2(g) = 52\).

Let \(p = 3\). Then \(\chi_2(g) = 25 = \alpha_3(g)/3 - 26\) is divided by 3, \(\alpha_3(g) = 9s + 6, s \leq 8\) and \(\alpha_2(g) = 72 - 9s - \alpha_1(g)\). Furthermore, the number \(\chi_1(g) = (2\alpha_1(g) - \alpha_2(g))/45s - 30)/30 = (3w_1 - 12s - 34)/10\) is congruent to 2 modulo 3. This implies \(\alpha_1(g) = 54 + 12s - 30l\) and \(\alpha_2(g) = 18 - 21s + 30l, l \leq 5\). In case \(s = 8\) we have \(\alpha_3(g) = 78\) and \(\Omega\) acts regularly on each antipodal class. By lemma 4 in [9] 3 must divide \(k + 1 = 26\), we have a contradiction.

Let \(p = 2\). Then \(\alpha_3(g) = 0, \alpha_1(g) + \alpha_2(g) = 78\), the number \(\chi_1(g) = (\alpha_1(g) - 26)/10\) is even, \(\alpha_1(g) = 20l + 6\) and \(\alpha_2(g) = 72 - 20l, l \leq 3\). \(\square\)

In Lemmas 3–6 it is assumed that there are \(t\) antipodal classes intersecting the \(\Omega\) on \(s\) vertices. Then \(p\) divides \(26 - t\) and \(3 - s\). Let \(F\) be an antipodal class, containing the vertex \(a \in \Omega\), \(F \cap \Omega = \{a, a_2, \ldots, a_s\}, b \in \Omega(a)\). By \(F(x)\) we denote an antipodal class containing vertex \(x\).
Lemma 3. The following assertions hold:

1. If \(t = 1 \), then \(p = 5 \), \(\alpha_3(g) = 0 \), \(\alpha_1(g) = 50l + 25 \) and \(\alpha_2(g) = 50 - 50l \);
2. If \(p \) more than \(3 \), then \(p = 5 \) and \(t = 1 \);
3. If \(s = 1 \), then \(p = 2 \), \(t = 2, 4, 6 \), \(\alpha_3(g) = 2t \), \(\alpha_1(g) = 20l - t + 6 \) and \(\alpha_2(g) = 72 - 20l - 2t \).

Proof. If \(s = 3 \), then each vertex from \(\Gamma - \Omega \) is adjacent to \(t \) vertices in \(\Omega \), so \(t \leq 8 \).

Let \(t = 1 \). As \(p \) divides \(26 - t \), then \(p = 5 \), \(s = 3 \), \(\alpha_2(g) = 75 - \alpha_1(g) \), the number \(\chi_1(g) = (\alpha_1(g) - 15)/10 \) is congruent to 1 modulo 5. This implies \(\alpha_1(g) = 50l + 25 \).

Let \(p > 3 \), \(\alpha_1(g) = pw_1 \). Then \(s = 3 \), \(|\Omega| = 3t \), \(\Omega \) is a regular graph by degree \(t - 1 \) and \(p \) divides \(26 - t \).

If \(p > 7 \), then \(\Omega \) is a distance-regular graph with intersection array \(\{t - 1, 16, 1; 1, 8, t - 1\} \), we come to a contradiction.

Let \(p = 7 \). As \(p \) divides \(26 - t \), then \(p = 5 \), \(s = 3 \), \(\alpha_2(g) = 75 - \alpha_1(g) \), the number \(\chi_1(g) = (\alpha_1(g) - 15)/10 \) is congruent to 1 modulo 5. This implies \(\alpha_1(g) = 50l + 25 \).

Proof. Let \(p = 7 \). As \(p \) divides \(26 - t \), then \(t = 1 \). If \(t = 6 \), then the subgraph \(\Omega(b) \) contains 2 vertices in \(a^1 \) and a vertex from \([a_2] \) and from \([a_3] \), so \(\Omega \) is a distance-regular graph with intersection array \(\{4, 1, 1; 1, 1, 4\} \), it is a contradiction with the fact that \(r = 3 \).

Let \(s = 1 \). Then \(p = 2 \), \(t \leq 6 \), \(\alpha_3(g) = 2t \), \(\alpha_2(g) = 78 - \alpha_1(g) - 3t \), and \(\chi_1(g) = (\alpha_1(g) + t - 26)/10 \)

Lemma 4. If \(p = 3 \), then \(s = 3 \), \(t = 2, 5, 8 \), \(\alpha_3(g) = 0 \), \(\alpha_1(g) = 30l + 16 - 11t \) and \(\alpha_2(g) = 62 - 30l + 8t \).

Proof. Let \(p = 3 \). Then \(s = 3 \), \(t = 2, 5, 8 \), \(\alpha_2(g) = 78 - \alpha_1(g) - 3t \), and the number \(\chi_1(g) = (11t + \alpha_1(g) - 26)/10 \) is congruent to 2 modulo 3. This implies that \(\alpha_1(g) = 30l + 16 - 11t \).

In the case \(t = 2 \) graph \(\Omega \) is a union of 3 isolated edges.

Lemma 5. If \(p = 2 \), \(s = 3 \), then \(t \) is even, \(t \leq 8 \), \(\alpha_3(g) = 0 \), \(\alpha_1(g) = 20l - 11t + 6 \) and \(\alpha_2(g) = 72 - 20l + 8t \).

Proof. Let \(p = 2 \), \(s = 3 \). Then \(t \) is even, \(t \leq 8 \), \(\alpha_3(g) = 0 \), \(\alpha_2(g) = 78 - 3t - \alpha_1(g) \).

The number \(\chi_1(g) = (11t + \alpha_1(g) - 26)/10 \) is even, so \(\alpha_1(g) = 20l - 11t + 6 \).

Lemmas 2–5 imply the proof of the Theorem.

2. Proof of Corollary

Let the group \(G \) acts transitively on the set of vertices of the graph \(\Gamma \). Then for a vertex \(a \in \Gamma \) subgroup \(H = G_a \) has index 78 in \(G \). By Theorem we have \(\{2, 3, 13\} \subseteq \pi(G) \subseteq \{2, 3, 5, 13\} \).

Lemma 6. Let \(f \) be an element of order 13 in \(G \). Then \(\text{Fix}(f) \) is an empty graph, \(\alpha_1(f) = 26 \) and the following assertions hold:

1. if \(g \) is an element of prime order \(p \neq 13 \) in \(C_G(f) \), then \(p = 2 \), \(\Omega \) is an empty graph, \(\alpha_1(g) = 26 \) and \(|C_G(f)| \) is not divided by 4;
2. either \(|G| = 78 \) or \(F(G) = \Omega_2(G) \);
3. if \(G \) is nonsolvable group, then the socle \(\bar{T} \) of the group \(\bar{G} = G/F(G) \) is isomorphic to \(L_2(25), L_3(3), U_3(4), L_4(3) \) or \(^2F_4(2)' \).
Lemma 3 in [9] on 12-dimensional module over for the element \(T \) of order 13 of \(G \) we come to a contradiction. So, if \(1 \leq p \leq 16 \) divided by 4 and an involution \(\alpha \) that \(|\langle \alpha \rangle| = 20 \) is an element of order 3 in \(C_G(g) \). From action \(h \) on \(\{ u \mid d(u, u^h) = 1 \} \) it follows that \(\alpha_1(g) = 20l + 6 \) is divided by 3. In each case \(\alpha_1(g) \) is not divided by 4 and \(|G| = 78 \).

If \(p = 3 \), then \(Q \) fixes some antipodal class. This implies that \(Q \) fixes each antipodal class. By Lemma 3 in [9] \(G \) does not contain subgroups of order 3, which are regular on each antipodal class, we come to a contradiction. So, if \(|G| \neq 78 \) we have \(F(G) = O_2(G) \).

Let \(T \) be the socle of the group \(G = G/F(G) \). Note that 13 divides \(|T| \) and by Theorem 1 in [10] group \(T \) is isomorphic to \(L_2(25), L_3(3), U_3(4), L_4(3), 2F_4(2)' \).

Let us to prove the Corollary. As \(T \) contains a subgroup of index dividing 26, then the group \(T \) is isomorphic to \(L_2(25) \) (and \(T_{1(F)} \) is the extension of a group of order 25 by group of order 12) or \(L_3(3) \) (and \(T_{1(F)} \) is the extension of a group of order 9 by \(SL(2,3) \)).

In the first case \(F(G) \) fixes each antipodal class and \(F(G) = 1 \). This implies that \(\Gamma \) is the arc-transitive Matoušek’s graph.

In the second case for \(Q = F(G) \) we have \(|Q : Q_{1(F)}| = 2 \) and \(T \) acts irreducibly on \(Q \). Further, for the element \(f \) of order 13 of \(G \) by Lemma 6 the number \(|C_Q(f)| \) divides 2. As \(Q \) is either 12-dimensional module over \(F_2 \), or 16-dimensional module over \(F_{16} \), or 26-dimensional module over \(F_2 \), then \(|Q| = 2^{12} \) and \(C_Q(f) = 1 \). The Corollary is proved.

3. Conclusion

We found possible automorphisms of a distance regular graph with intersection array \(\{25, 16, 1; 1, 8, 25\} \). This completes the research program of vertex-symmetric antipodal distance-regular graphs of diameter 3 with \(\lambda = \mu \), in which neighborhoods of vertices are strongly regular with parameters from Proposition 1.

REFERENCES

4. Makhnev A.A., Isakova M.M., Tokbaeva A.A. On graphs, in which neighbourhoods of vertices are strongly regular with parameters \((85, 14, 1, 2) \) or \((325, 54, 3, 10) \) // Trudy IMM UrO RAN. 2016. Vol. 22, no. 3, P. 137–143.

