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Abstract: A problem of the analysis and prevention of catastrophic shifts in stochastically
forced ecosystems is considered. For the solution of this problem, a new mathematical approach
based on the analysis and synthesis of the stochastic sensitivity of dynamic regimes in population
models is suggested. Technical details of this approach are discussed for the conceptual
stochastically forced Bazykin-Berezovskaya predator-prey model with the Allee effect. For this
population model, a phenomenon of the noise-induced extinction is analysed by the method of
confidence domains. By reducing these domains we provide a stabilization of the persistence

regime for both interacting species.
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1. INTRODUCTION

Even small inevitable deterministic or stochastic distur-
bances can cause the abrupt catastrophic shifts in ecosys-
tems (see e.g. Ridolfi et al. (2011); Rietkerk et al. (2004);
Scheffer et al. (2001)). Mathematically, such shifts can be
explained by the coexistence of alternative stable states,
nonuniformity of phase portraits, and a high sensitivity of
attractors of the corresponding dynamic models (Bashkirt-
seva et al. (2018)).

Under the random disturbances, the solution of the mul-
tistable system can leave a basin of attraction of one
attractor, cross the separatrix and continue to operate near
another attractor. An analysis of the interplay between
nonlinearity, multistability and stochasticity is an attrac-
tive problem of the modern theoretical ecology (Lande
et al. (2003); Schreiber et al. (2003); Bashkirtseva et al.
(2017b)).

Currently, for mathematical modeling of dynamics in ran-
domly forced ecological systems, the stochastic differential
equations are widely used (Spagnolo et al. (2004); Valenti
et al. (2006); Bashkirtseva et al. (2017¢)).

The detailed probabilistic description of the stochastic
dynamics in these models is given by Kolmogorov-Fokker-
Planck equation (Freidlin et al. (1984)). However, it is hard
to use this equation directly, even in 2D case. In these
circumstances, approximations and asymptotics based on
stochastic sensitivity analysis are widely used (Bashkirt-
seva et al. (2016, 2017a)).

Along with the analysis of unwanted shifts in live systems,
problems of the prevention of such shifts by controlling
ecosystems with the help of additional artificial feedbacks
are also highly relevant (Folke et al. (2005)).
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In the present paper, we show how the stochastic sen-
sitivity analysis can be used for the study and preven-
tion of undesirable shifts in ecosystems. To demonstrate
the mathematical technique of our approach, we consider
the conceptual predator-prey population model (Bazykin
(1998)) suggested by Bazykin and Berezovskaya (BB-
model for short).

2. DETERMINISTIC MODEL

Consider the BB-model (Bazykin (1998)) of the interacting
prey-predator population system

z=rz(x —1)(k—z) — xy,
{ (1)

y=ylz—m),

where = and y are densities of the prey and predator. The
parameter r characterizes an intrinsic growth, [ is defined
a prey survival threshold corresponding to Allee effect, k
is a carrying capacity, and m describes a mortality of the
predator. All parameters are positive, and [ < k.

The deterministic system (1) possesses four equilibria
MO(Ov 0)7 Ml(m7r(m - l)(k - m))a MZ(Z7O)7 M3(k7 0)
The nontrivial equilibrium M; has a biological sense for

l<m<k.

For any values of parameters, the trivial equilibrium M,
is stable, and the equilibrium M, is unstable. Stability of
equilibria M7 and M3 depends on the mortality parameter
m: M3 is stable for m > mg = k, and unstable for m < ms;
M, is stable for mga = (I + k)/2 < m < mg3, and unstable
otherwise.

When the parameter m crosses the point my of Andronov-
Hopf bifurcation from right to left, the equilibrium M;
loses its stability, and a stable limit cycles appears. As
parameter m decreases from my, this limit cycle enlarges,
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Fig. 1. Phase portraits of the deterministic model for a)
m = 0.78, b) m = 0.74. Separatrices are shown by
red dashed lines, stable equilibria by black circles,
unstable equilibria by unfilled circles.

and for m = mj, the cycle is destroyed: a lower part of
the cycle coalesces with the line y = 0 in the interval
between equilibria Ms and M3, and upper part adheres
to the separatrix. In the present paper, we fix r = k =
1, I = 0.5. Corresponding bifurcation points are as follows:
my = 0.73544, mo = 0.75, and mgz = 1.

In the interval m; < m < mag, system (1) exhibits a
coexistence of the stable equilibrium M, and stable limit
cycle. In the interval ms < m < mg, this system has the
stable equilibrium M, and stable equilibrium M;j. Their
basins of attraction are separated by the stable manifold
of the saddle Ms. So, the system behavior depends on the
choice of the initial point: if the starting point belongs to
the basin of attraction of My then both populations go
to extinction, otherwise both species coexist in the equi-
librium or oscillatory regime. These deterministic regimes
are illustrated in Fig. 1. Here, the separatrix is plotted by
red dashed line.

Under the random disturbances, this population system is
subject to the ecological shifts. Inevitable noise can tran-
sit the system from the persistence to extinction regime.
Underlying reasons and condition of such ecological catas-
trophe are considered below.

3. NOISE-INDUCED EXTINCTION

Consider the BB-model in presence of parametric random
disturbances:

{s’c =rz(x—[l+e&(t)]) (k—2x) — zy,
y=ylz—[m+e&(t)]).

Here, &(t) (i =
noises with parameters (¢;(t)) = 0,

(2)

1,2) are white uncorrelated Gaussian

(& )&i(r) = o(t —
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Fig. 2. Stochastic trajectories of the stochastic system with
m = 0.78 for a) € = 0.05, b) € = 0.15.
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Fig. 3. Stochastic trajectories of the stochastic system with
m = 0.74 for a) e = 0.005, b) € = 0.015.

7), and ¢ is the noise intensity. These noises model random
fluctuations of the prey Allee parameter | and predator
mortality m.

Under the random disturbances, trajectories leave the
deterministic attractor. For small noise, the stochastic
trajectories are concentrated near the initial attractor. As
noise intensity increases, a dispersion of random trajecto-
ries increases too. In bistable systems, for the quite large
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noise, stochastic trajectories can exit from the basin of
attraction of the initial attractor, cross the separatrix, and
fall into the basin of another attractor. Such scenario is
demonstrated in Figs. 2,3.

The Fig. 2 illustrates these two variants of the stochastic
dynamics for m = 0.78. For small noise € = 0.05, random
trajectories are concentrated near the stable non-trivial
equilibrium M;. So, populations of prey and predator ex-
hibit small-amplitude stochastic oscillations (see Fig. 2a).
For larger noise (¢ = 0.05), the stochastic trajectories exit
from the basin of attraction of M, cross the separatrix,
and tend to the trivial equilibrium My (see Fig. 2b).

A similar scenario can be seen in Fig. 3 for m = 0.74 when
non-trivial attractor is the stable limit cycle. Note that
here the noise-induced extinction occurs for smaller noise
intensities.

A parametric study of these phenomena can be carried out
on the basis of the stochastic sensitivity function technique
and confidence domains method. In the present paper, we
consider in detail a case of stochastically forced equilibria.

4. ANALYSIS OF THE STOCHASTIC SENSITIVITY

Consider a general nonlinear stochastic system
& = f(x) +eo(x), (3)

where z is an n-dimensional vector, £ is an m-dimensional
Gaussian white noise satisfying (£(¢)) = 0, (£(t)é(7)) =
0(t — 7)1, I is an identity matrix, o(z) is n X m-matrix
function of random disturbances with scalar intensity e.

Let Z be an exponentially stable equilibrium of the corre-
sponding deterministic system with ¢ = 0. For stochastic
system (3) with small noise, random trajectories are con-
centrated near T with the stationary probabilistic distri-
bution p(z,¢). For p(z,e), one can write (Freidlin et al.
(1984)) the following Gaussian approximation:

p(z,6) ~ K - exp (_ (z -2, VZ;(”” - "””))) .

Here, the stochastic sensitivity matrix W is a unique
solution of the equation

FW+WF" +8=0, F:g(i’),

o S =o(x)o " (7). (4)

A dispersion of random states around Z can be approxi-
mated by the following formula

E(z —Z)(z —7)" ~&*W.
FEigenvalues of the matrix W can be considered as scalar

characteristics of the stochastic sensitivity of the equilib-
rium.

In two-dimensional case, this matrix defines the corre-
sponding confidence ellipse

(x—z, Wz — 7)) = 2%.
Here, ¢ = —In(1 — P), and P is a fiducial probability.
The confidence ellipse allows us to describe a spatial
arrangement of random states near the stable equilibrium,

and can be used in parametric analysis of noise-induced
transitions.
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Fig. 4. Stochastic system with m = 0.78: confidence
ellipses and time series for € = 0.03 (blue), € = 0.07
(green). Separatrix is shown by red dashed line.

Consider how this theory can be applied to the analysis of
the noise-induced extinction in the BB-model. In Fig. 3a,
we show confidence ellipses for system (2) with m = 0.78
and two values of the noise intensity. For weak noise ¢ =
0.03, the confidence ellipse plotted by blue color entirely
belongs to the basin of the attraction of the equilibrium
M, and corresponding random trajectories (see Fig. 3b)
demonstrate small-amplitude oscillations near M;.

With increasing noise, confidence ellipses expand, cross the
separatrix (dashed line), and begin to occupy a basin of
attraction of trivial equilibrium My. For ¢ = 0.07, the
ellipse is plotted by green in Fig. 3a. This means that
random trajectories with a high probability can leave the
basin of attraction of My and tend to My (see time series
in Fig. 3b). Note that a size of the ellipse is defined
by the noise intensity and stochastic sensitivity of the
equilibrium Mj. For considered here m = 0.78, eigenvalues
of the stochastic sensitivity matrix W are following: A; =
0.83, A2 = 0.066.

In controlled systems we can change the stochastic sen-
sitivity by the choice of the appropriate regulator. To
prevent the undesired noise-induced extinction, it is re-
quired to reduce the sensitivity of the equilibrium to noise.
A mathematical background of the corresponding control
theory is presented below.

5. PREVENTING ECOLOGICAL CATASTROPHES
BY THE STOCHASTIC SENSITIVITY SYNTHESIS

Consider a nonlinear stochastic system with the control:
i = f(z,u) +eo(z)¢. (5)

Here, f(x,u) is a continuously differentiable vector-
function, and u is a control input. Let Z be an equilibrium
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Fig. 5. Time series of the stochastic system with m =
0.78, ¢ = 0.07 without control (green) and with
control (black) providing a) w = 0.1, b) w = 0.001.

of the corresponding deterministic system (5) (with e =0
and u = 0). A stability of Z is not assumed.

Here, we will use a feedback regulator
u(z) = K(z — 7). (6)

The equilibrium Z of the closed-loop system (5), (6) is
exponentially stable if the feedback matrix K belongs to
the following set (see Wonham (1979)):
K = {K|ReX;(F + BK) < 0}.
0 of

H F=—(z,0 B =——(%,0).

ere? ax ("177 )7 au (SC, )
The aim of the control is to provide an assigned stochastic
sensitivity matrix W of this stable equilibrium by the
choice of the appropriate matrix K of the regulator (6).

The stochastic sensitivity matrix W for system (5), (6) is a
solution of the following equation (Ryashko et al. (2008))

(F+BEK)W +W(F+BK)" +S=0. (7)

So, the feedback matrix K providing the assigned stochas-
tic sensitivity matrix W can be found from the equation:

BEKW+WK'B" +S+FW +WF' =0. (8)

A detailed mathematical description of the solution of this
equation can be found in (Ryashko et al. (2008)).

Here, we present the basic results for rank(B) = n. In this
case, there exists the matrix B~!, and for any assigned
positive defined matrix W it holds that

1
K=-B! <F+§SW1>. (9)
Consider how this control theory can be applied to the

stabilization of the population dynamics in the stochastic
BB-model.

To protect this population system from unwanted noise-
induced ecological shifts, we will construct a feedback in
such a way as to decrease the stochastic sensitivity of the
equilibrium M;. Remember that in uncontrolled system
with m = 0.78, the stochastic sensitivity matrix W has
eigenvalues A\; = 0.83, Ay = 0.066.

To decrease the stochastic sensitivity, let us assign the

diagonal matrix W:
w 0
W=10w

with the smaller value w. In Fig. 5, we plot time series
of the uncontrolled system (2) with m = 0.78, ¢ = 0.07
by green color, and time series of the controlled system
(5),(6) (by black color) with the regulators providing the
stochastic sensitivity w = 0.1 and w = 0.001.

As one can see, a synthesis of the small stochastic sensitiv-
ity results in the localization of random trajectories near
the equilibrium M;. Note that the smaller the assigned
stochastic sensitivity, the smaller the dispersion of random
trajectories. So, using the constructed regulator, one can
successfully solve the problem of prevention of undesired
ecological shifts.

CONCLUSION

Our paper is devoted to the important problem how to
prevent unwanted catastrophic shifts in stochastic ecosys-
tems on the basis of the modern control theory. We have
shown that the underlying reason of such shifts is in the
high stochastic sensitivity of attractors of ecosystems. In
our paper, a new mathematical approach based on the syn-
thesis of the reduced stochastic sensitivity was developed.
For general control systems, the necessary mathematical
background was given. An efficiency of the proposed ap-
proach has been illustrated for the stochastically forced
predator-prey model with the Allee effect.
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