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ASYMPTOTIC EXPANSION OF SOLUTION TO SINGULARLY

PERTURBED OPTIMAL CONTROL PROBLEM WITH

CONVEX INTEGRAL QUALITY FUNCTIONAL WITH

TERMINAL PART DEPENDING ON SLOW AND FAST

VARIABLES

A.R. DANILIN, A.A. SHABUROV

Abstract. We consider an optimal control problem with a convex integral quality func-
tional for a linear system with fast and slow variables in the class of piecewise continuous
controls with smooth constraints on the control⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥̇𝜀 = 𝐴11𝑥𝜀 +𝐴12𝑦𝜀 +𝐵1𝑢, 𝑡 ∈ [0, 𝑇 ], ‖𝑢‖ 6 1,

𝜀𝑦̇𝜀 = 𝐴22𝑦𝜀 +𝐵2𝑢, 𝑥𝜀(0) = 𝑥0, 𝑦𝜀(0) = 𝑦0, ∇𝜙2(0) = 0,

𝐽(𝑢) :=𝜙1 (𝑥𝜀(𝑇 )) + 𝜙2 (𝑦𝜀(𝑇 )) +

𝑇∫︁
0

‖𝑢(𝑡)‖2 𝑑𝑡 → min,

where 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚, 𝑢 ∈ R𝑟; 𝐴𝑖𝑗 and 𝐵𝑖, 𝑖, 𝑗 = 1, 2, are constant matrices of correspond-
ing dimension, and the functions 𝜙1(·), 𝜙2(·) are continuously differentiable in R𝑛,R𝑚,
strictly convex, and cofinite in the sense of the convex analysis. In the general case, for
such problem, the Pontryagin maximum principle is a necessary and sufficient optimality
condition and there exist unique vectors 𝑙𝜀 and 𝜌𝜀 determining an optimal control by the
formula

𝑢𝜀(𝑇 − 𝑡) :=
𝐶*
1,𝜀(𝑡)𝑙𝜀 + 𝐶*

2,𝜀(𝑡)𝜌𝜀

𝑆
(︁
‖𝐶*

1,𝜀(𝑡)𝑙𝜀 + 𝐶*
2,𝜀(𝑡)𝜌𝜀‖

)︁ ,
where

𝐶*
1,𝜀(𝑡) := 𝐵*

1𝑒
𝐴*

11𝑡 + 𝜀−1𝐵*
2𝒲*

𝜀(𝑡), 𝐶*
2,𝜀(𝑡) := 𝜀−1𝐵*

2𝑒
𝐴*

22𝑡/𝜀,

𝒲𝜀(𝑡) := 𝑒𝐴11𝑡

𝑡∫︁
0

𝑒−𝐴11𝜏𝐴12𝑒
𝐴22𝜏/𝜀 𝑑𝜏, 𝑆(𝜉) :=

{︂
2, 0 6 𝜉 6 2,

𝜉, 𝜉 > 2.

The main difference of our problem from the previous papers is that the terminal part
of quality functional depends on the slow and fast variables and the controlled system
is a more general form. We prove that in the case of a finite number of control change
points, a power asymptotic expansion can be constructed for the initial vector of dual state
𝜆𝜀 = (𝑙*𝜀 𝜌

*
𝜀)

*, which determines the type of the optimal control.
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1. Introduction

The paper is devoted to studying the asymptotics of the vector of the dual state in the
problem of optimal control [1, 2, 3] of linear system with fast and slow variables, see survey [4],
with an convex integral quality functional [3, Ch. 3] and smooth geometric constraints on a
control.

In [5, 6], there were considered problems related with a limiting problem for problems of
optimal control by a linear system with fast and slow variables. For other formulation, the
asymptotics of solutions of perturbed control problem were considered in [7]–[9]. We note
that a controlled system of our form but with a terminal quality functional depending on slow
variables only was considered in [8].

In the present work we obtain a complete asymptotic expansion of the vector of dual system
determining the optimal control. The main difference of our problem in comparison with that
considered in [10] is the dependence of the terminal part of the control functional not only on
slow variables but also on fast ones.

2. Formulation of problem and main relations

In the class of piece-wise continuous controls we consider the following optimal control prob-
lem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥̇𝜀 = 𝐴11𝑥𝜀 + 𝐴12𝑦𝜀 + 𝐵1𝑢, 𝑡 ∈ [0, 𝑇 ], ‖𝑢‖ 6 1,

𝜀𝑦̇𝜀 = 𝐴22𝑦𝜀 + 𝐵2𝑢, 𝑥𝜀(0) = 𝑥0, 𝑦𝜀(0) = 𝑦0, ∇𝜙2(0) = 0,

𝐽(𝑢) :=𝜙1 (𝑥𝜀(𝑇 )) + 𝜙2 (𝑦𝜀(𝑇 )) +

𝑇∫︁
0

‖𝑢(𝑡)‖2 𝑑𝑡 → min,

(1)

where 𝑥𝜀 ∈ R𝑛, 𝑦𝜀 ∈ R𝑚, 𝑢 ∈ R𝑟; 𝐴𝑖𝑗, 𝐵𝑖, 𝑖, 𝑗 = 1, 2, are constant matrices of an appropriate
dimension and 𝜙1(·), 𝜙2(·) are continuously differentiable on R𝑛 and R𝑚 functions strictly
convex and cofinite in the sense of the convex analysis [11, Sect. 13]. All spaces R𝑛, R𝑚, R𝑟

are equipped with the Euclidean norm, which is everywhere denoted by the same symbol ‖ · ‖.
We note that the terminal part of the quality functional depends on slow and fast variables.

For each fixed 𝜀 > 0, the controlled system and the quality functional in problem (1) are of
the form: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑧̇𝜀 = 𝒜𝜀𝑧𝜀 + ℬ𝜀𝑢, 𝑡 ∈ [0, 𝑇 ],

𝑧𝜀(0) = 𝑧0, ‖𝑢‖ 6 1,

𝐽(𝑢) :=𝜙 (𝑧𝜀(𝑇 )) +

𝑇∫︁
0

‖𝑢(𝑡)‖2 𝑑𝑡 → min,

where

𝑧𝜀(𝑡) =

(︂
𝑥𝜀(𝑡)
𝑦𝜀(𝑡)

)︂
, 𝑧𝜀(0) := 𝑧0 =

(︂
𝑥0

𝑦0

)︂
, 𝜙 (𝑧𝜀(𝑇 )) := 𝜙1 (𝑥𝜀(𝑇 )) + 𝜙2 (𝑦𝜀(𝑇 )) ,

𝒜𝜀 =

(︂
𝐴11 𝐴12

0 𝜀−1𝐴22

)︂
, ℬ𝜀 =

(︂
𝐵1

𝜀−1𝐵2

)︂
.

We observe that in the considered convex integral quality functional 𝐽 , the terminal part can
be interpreted as a penalty for the error of the control at the final moment of time 𝑇 , while the
second part reflect the energy spent for the realization of the control.

We shall say that a pair of matrices (𝐴,𝐵) is completely controllable if the system 𝑥̇ =
𝐴𝑥 + 𝐵𝑢 is controllable.
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Assumption 1. For all sufficiently small 𝜀 > 0, the pair (𝒜𝜀,ℬ𝜀) is completely controllable,
that is, rank

(︀
ℬ𝜀,𝒜𝜀ℬ𝜀, . . . ,𝒜𝑛+𝑚−1

𝜀 ℬ𝜀) = 𝑛 + 𝑚.

Assumption 2. All eigenvalues of the matrix 𝐴22 have negative real parts.

Under Assumption 1, the Pontryagin maximum principle is necessary and sufficient condition
of the optimality giving the unique solution of problem (1) [3, Sect. 3.5, Thm. 14].

It was shown in [10, Prop. 1, Eq. (1.6)] that the function 𝑢𝜀(𝑡) is the only optimal control in
problem (1), it is of the form

𝑢𝜀(𝑇 − 𝑡) :=
ℬ𝜀

*𝑒𝒜
*
𝜀𝑡𝜆𝜀

𝑆 (‖ℬ𝜀
*𝑒𝒜*

𝜀𝑡𝜆𝜀‖)
, 𝑆(𝜉) :=

{︂
2, 0 6 𝜉 6 2,

𝜉, 𝜉 > 2,
(2)

and the vector 𝜆𝜀 is the unique solution (in view of the cofiniteness of the function 𝜙; [11, Thm.
26.6]) of the equation

∇𝜙*(−𝜆) = 𝑒𝒜𝜀𝑇 𝑧0 +

𝑇∫︁
0

𝑒𝒜𝜀𝜏ℬ𝜀
ℬ*
𝜀𝑒

𝒜*
𝜀𝜏𝜆

𝑆
(︀
‖ℬ*

𝜀𝑒
𝒜*

𝜀𝜏𝜆‖
)︀ 𝑑𝜏. (3)

Here ∇𝜙* is the gradient of the function 𝜙* dual to the function 𝜙 in the sense of the convex
analysis, see [11, Sect. 12].

We note that in the considered case

𝜙*(𝜆) = 𝜙*
1(𝑙) + 𝜙*

2(𝜌) and ∇𝜙*
2(0) = 0. (4)

We shall consider the vector 𝜆𝜀 determining the optimal control in problem (1) as 𝜆𝜀 =

(︂
𝑙𝜀
𝜌𝜀

)︂
,

where 𝑙𝜀 ∈ R𝑛, 𝜌𝜀 ∈ R𝑚.
Straightforward calculation of the matrix exponent of the controlled system in problem (1)

gives:

𝑒𝒜𝜀𝑡 :=

(︂
𝑒𝐴11𝑡 𝒲𝜀(𝑡)

0 𝑒
𝐴22𝑡

𝜀

)︂
, (5)

where 𝒲 ′
𝜀(𝑡) = 𝐴11𝒲𝜀(𝑡) + 𝐴12𝑒

𝐴22𝑡
𝜀 and 𝒲𝜀(0) = 0. This is why

𝒲𝜀(𝑡) := 𝑒𝐴11𝑡

𝑡∫︁
0

𝑒−𝐴11𝜏𝐴12𝑒
𝐴22𝜏

𝜀 𝑑𝜏. (6)

Integrating by parts in the right hand side in identity (6), we obtain

𝒲𝜀(𝑡) = 𝜀
(︁
𝐴12𝑒

𝐴22𝑡
𝜀 − 𝑒𝐴11𝑡𝐴12

)︁
𝐴−1

22 + 𝜀𝐴11𝒲𝜀(𝑡)𝐴
−1
22 ,

and by the boundedness of 𝐴12𝑒
𝐴22𝑡

𝜀 − 𝑒𝐴11𝑡𝐴12 on [0, 𝑇 ],

𝒲𝜀(𝑡) = 𝜀

∞∑︁
𝑘=0

𝜀𝑘𝐴𝑘
11

(︁
𝐴12𝑒

𝐴22𝑡
𝜀 − 𝑒𝐴11𝑡𝐴12

)︁
𝐴

−(𝑘+1)
22 . (7)

We shall make use of the following notation:

𝐶𝜀(𝑡) =

(︂
𝐶1,𝜀(𝑡)
𝐶2,𝜀(𝑡)

)︂
:= 𝑒𝒜𝜀𝑡ℬ𝜀 =

(︂
𝑒𝐴11𝑡𝐵1 + 𝜀−1𝒲𝜀(𝑡)𝐵2

𝜀−1𝑒
𝐴22𝑡

𝜀 𝐵2

)︂
. (8)
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According identity (4) and notation (8), equation (3) is transformed into the system of
equations ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇𝜙*
1(−𝑙𝜀) = 𝑒𝐴11𝑇𝑥0 + 𝒲𝜀(𝑇 )𝑦0 +

𝑇∫︁
0

𝐶1,𝜀(𝑡)𝑢𝜀(𝑇 − 𝑡) 𝑑𝑡,

∇𝜙*
2(−𝜌𝜀) = 𝑒𝐴22𝑇/𝜀𝑦0 +

𝑇∫︁
0

𝐶2,𝜀(𝑡)𝑢𝜀(𝑇 − 𝑡) 𝑑𝑡,

(9)

where

𝑢𝜀(𝑇 − 𝑡) :=
𝐶*

1,𝜀(𝑡)𝑙𝜀 + 𝐶*
2,𝜀(𝑡)𝜌𝜀

𝑆
(︀
‖𝐶*

1,𝜀(𝑡)𝑙𝜀 + 𝐶*
2,𝜀(𝑡)𝜌𝜀‖

)︀ . (10)

Definition 1. A limiting problem for problem (1) is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥̇0 = 𝐴0𝑥0 + 𝐵0𝑢, 𝑡 ∈ [0, 𝑇 ], ‖𝑢‖ 6 1,

𝐴0 :=𝐴11, 𝐵0 :=𝐵1 − 𝐴12𝐴
−1
22 𝐵2, 𝑥0(0) = 𝑥0,

𝐽0(𝑢) :=𝜙1(𝑥0(𝑇 )) +

𝑇∫︁
0

‖𝑢(𝑡)‖2 𝑑𝑡 → min .

Assumption 3. The pairs of matrices (𝐴0, 𝐵0), (𝐴22, 𝐵2) are completely controllable.

By [5], Assumptions 2 and 3 ensure Assumption 1 for all sufficiently small 𝜀.
Formulae (5), (7) and (8) imply

𝐶1,𝜀(𝑡) = 𝐶1,0(𝑡) + 𝐴12𝐴
−1
22 𝑒

𝐴22𝑡
𝜀 𝐵2 + 𝑂(𝜀), 𝜀 → 0, 𝐶1,0(𝑡) := 𝑒𝐴0𝑡𝐵0, (11)

𝜕

𝜕𝑡
𝐶1,𝜀(𝑡) =

𝑑

𝑑𝑡
𝐶1,0(𝑡) + 𝜀−1𝐴12𝑒

𝐴22𝑡
𝜀 𝐵2 + 𝐴11𝐴12𝑒

𝐴22𝑡
𝜀 𝐴−1

22 𝐵2 + 𝑂(𝜀), 𝜀 → 0, (12)

uniformly on the segment [0, 𝑇 ].
We mention the known fact that under Assumption 2 there exist 𝛾 > 0 and 𝐾 > 0 such that

‖𝑒
𝐴22𝑡

𝜀 ‖ 6 𝐾𝑒−
𝛾𝑡
𝜀 . (13)

If a vector function 𝑓𝜀(𝑡) is such that 𝑓𝜀(𝑡) = 𝑂(𝜀𝛼) as 𝜀 → 0 for each 𝛼 > 0 uniformly in
𝑡 ∈ [𝑎, 𝑏], we shall write O instead of 𝑓𝜀(𝑡). In particular,

‖𝑒𝐴22𝑡/𝜀‖ = O, 𝑒−𝛾𝑡/𝜀 = O as 𝑡 ∈ [𝜀𝑝, 𝑇 ], 𝑝 ∈ (0, 1), (14)

where 𝛾 > 0.
It follows from formulae (11), (12) and estimate (13) that there exist 𝐾1 > 0 and 𝜀0 > 0 such

that for 𝜀 ∈ (0, 𝜀0) and 𝑡 ∈ [
√
𝜀, 𝑇 ], the inequalities hold

‖𝐶*
1,𝜀(𝑡) − 𝐶*

1,0(𝑡)‖ 6 𝐾1𝜀,
⃦⃦⃦ 𝜕

𝜕𝑡
𝐶*

1,𝜀(𝑡) −
𝑑

𝑑𝑡
𝐶*

1,0(𝑡)
⃦⃦⃦
6 𝐾1𝜀. (15)

3. Auxiliary statements on cofinite functions

According [11, Thm. 26.6], if 𝑓 is a differentiable strictly convex cofinite function on R𝑛,
then ∇𝑓 : R𝑛 → R𝑛 is a one-to-one correspondence on R𝑛 and 𝑓 * is a differentiable strictly
convex cofinite function on R𝑛.

Lemma 1. Let 𝑓 be a differentiable strictly convex cofinite function on R𝑛, L be a non-
negative linear operator in R𝑛, that is,

⟨L𝑙, 𝑙⟩ > 0 for all 𝑙 ∈ R𝑛.
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Then the 𝑔(𝑙) = 𝑓(𝑙) + 1
2
⟨L𝑙, 𝑙⟩ is a differentiable strictly convex cofinite function on R𝑛 and

∇𝑔(𝑙) = ∇𝑓(𝑙) + L𝑙.

Proof. We begin with proving that 𝑔(𝑙) is a differentiable strictly convex cofinite function on
R𝑛. We calculate the derivative of the scalar product 1

2
⟨L𝑙, 𝑙⟩ along the direction of ∆𝑙:

𝐷

(︂
1

2
⟨L𝑙, 𝑙⟩

)︂
(∆𝑙) =

𝜕

𝜕𝑙

⃒⃒⃒⃒
𝑡=0

⟨L(𝑙 + 𝑡∆𝑙), 𝑙 + 𝑡∆𝑙⟩
2

= ⟨L𝑙,∆𝑙⟩,

and we obtain that ∇
(︀
1
2
⟨L𝑙, 𝑙⟩

)︀
= L𝑙. According the definition [11], a convex function 𝑓 is

cofinite if the following relation holds:

lim
𝜆→+∞

𝑓(𝜆𝑙)

𝜆
= +∞ for all 𝑙 ̸= 0. (16)

Let us show that the function 𝑔(𝑙) obeys this condition.
For each 𝜆 > 0 we have:

𝑔(𝜆𝑙)

𝜆
=

𝑓(𝜆𝑙)

𝜆
+

1

2
· ⟨L(𝜆𝑙), 𝜆𝑙⟩

𝜆
=

𝑓(𝜆𝑙)

𝜆
+

𝜆

2
· ⟨L𝑙, 𝑙⟩ > 𝑓(𝜆𝑙)

𝜆
→ +∞ as 𝜆 → +∞.

Corollary 1. Let a function 𝑓 satisfies the assumptions of Lemma 1, and 𝑓 * is a dual
function for 𝑓 in the sense of the convex analysis. Then the equation ∇𝑓 *(𝑙) + L𝑙 = 𝑑 has the
unique solution for each vector 𝑑.

This corollary follows Lemma 1 and Theorem 26.6 in [11].

4. Limiting values of vectors 𝑙𝜀 and 𝜌𝜀

Theorem 1. Let Assumptions 1 and 2 hold and the vector 𝜆*
𝜀 = (𝑙*𝜀 𝜌*𝜀) is the unique

solution of system (9). Then the vectors 𝑙𝜀, 𝜌𝜀 are bounded and

𝑙𝜀 → 𝑙0 as 𝜀 → +0, (17)

where 𝑙0 is the unique solution of the equation

0 = −∇𝜙*
1(−𝑙) + 𝑒𝐴11𝑇𝑥0 +

𝑇∫︁
0

𝐶1,0(𝑡)
𝐶*

1,0(𝑡)𝑙

𝑆
(︀⃦⃦

𝐶*
1,0(𝑡)𝑙

⃦⃦)︀𝑑𝑡. (18)

Proof. It is known that at the final time 𝑇 , the set of attainability of the controlled system in
problem (1) is bounded uniformly in 𝜀 ∈ (0, 𝜀0], see, for instance, [6, Thm. 3.1]. Hence, the
left hand side of equation (3) is bounded. This is why, as 𝜀 → 0, the quantity ∇𝜙*(−𝜆𝜀) is
bounded as well. Since the function 𝜙* is cofinite, according [11, Lm. 26.7], the vector 𝜆𝜀 is
bounded. Therefore, the vectors 𝑙𝜀, 𝜌𝜀 are bounded.

We partition the interval of integration in the first identity (9) into two pieces: [0,
√
𝜀] and

[
√
𝜀, 𝑇 ]. Taking into consideration identity (6) and the notation (8) being representations of

matrices 𝒲𝜀(𝑡) and 𝐶𝜀(𝑡) in system (9)–(10), we can write the first identity (9) as

∇𝜙*
1(−𝑙𝜀) = 𝑒𝐴11𝑇𝑥0 + 𝑂(

√
𝜀) +

𝑇∫︁
√
𝜀

𝐶1,𝜀(𝑡)
𝐶*

1,𝜀(𝑡)𝑙𝜀

𝑆‖𝐶*
1,𝜀(𝑡)𝑙𝜀‖

𝑑𝑡 as 𝜀 → 0. (19)
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Let 𝑙0 be an arbitrary limiting point of the function 𝑙𝜀 as 𝜀 → 0. Passing to the limit as
𝜀 → 0 in identity (19), by inequalities (15) we obtain the identity

∇𝜙*
1(−𝑙0) = 𝑒𝐴11𝑇𝑥0 +

𝑇∫︁
0

𝐶1,0(𝑡)
𝐶*

1,0(𝑡)𝑙0

𝑆‖𝐶*
1,0(𝑡)𝑙0‖

𝑑𝑡,

that is, 𝑙0 satisfies equation (18). This equation reads as

∇𝜙*
1(−𝑙0) + L(−𝑙0) = 𝑒𝐴11𝑇𝑥0

and L > 0. This is why by Corollary 1 of Lemma 1, this equation possesses the unique solution.
Thus, 𝑙0 is the unique limiting point for 𝑙𝜀 and 𝑙𝜀 → 𝑙0 as 𝜀 → 0.

Theorem 2. Let the assumptions of Theorem 1 hold, and 𝐵2 is a mapping of R𝑟 onto R𝑚;
in particular, 𝑟 > 𝑚. Then 𝜌𝜀 → 0, the quantity {𝑟𝜀} (𝑟𝜀 := 𝜀−1𝜌𝜀) is bounded as 𝜀 → +0 and
all its limiting points 𝑟0 satisfy the equation

0 =

+∞∫︁
0

𝑒𝐴22𝜏𝐵2
𝐵*

0 𝑙0 + 𝐵*
2𝑒

𝐴*
22𝜏 (𝑟0 + (𝐴*

22)
−1𝐴*

12𝑙0)

𝑆 (‖𝐵*
0 𝑙0 + 𝐵*

2𝑒
𝐴*

22𝜏 (𝑟0 + (𝐴*
22)

−1𝐴*
12𝑙0)‖)

𝑑𝜏. (20)

Proof. We change the variable 𝜏 := 𝑡/𝜀 in the integral in the second identity in system (9). We
choose arbitrary 𝛿 > 0 and taking into consideration estimate (13), we rewrite this identity as

∇𝜙*
2(−𝜌𝜀) = O +

𝛿∫︁
0

𝑒𝐴22𝜏𝐵2
𝐵̃(𝜏, 𝜀)𝑙𝜀 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟𝜀

𝑆
(︁
‖𝐵̃(𝜏, 𝜀)𝑙𝜀 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟𝜀‖
)︁ 𝑑𝜏 + 𝑂(𝑒−𝛾𝛿), (21)

where 𝑟𝜀 := 𝜌𝜀/𝜀, and

𝐵̃(𝜏, 𝜀) :=𝐵*
0𝑒

𝐴*
11𝜀𝜏 + 𝐵*

2𝑒
𝐴*

22𝜏 (𝐴*
22)

−1𝐴*
12. (22)

We note that 𝐵̃(𝜏, 𝜀)𝑙𝜀 → 𝐵̃(𝜏, 0)𝑙0 as 𝜀 → 0 uniformly on [0, 𝛿] and 𝐵̃(𝜏, 0) is bounded on
[0,+∞).

Let 𝜌0 be an arbitrary limiting point of 𝜌𝜀 as 𝜀 → 0, that is, there exists {𝜀𝑘} such that
𝜀𝑘 → 0 and 𝜌𝑘 := 𝜌𝜀𝑘 → 𝜌0.

We assume that 𝑟𝑘 := 𝑟𝜀𝑘 is unbounded. Without loss of generality we suppose that

𝑟𝑘 → ∞,
𝑟𝑘

‖𝑟𝑘‖
→ 𝑟, ‖𝑟‖ = 1, 𝜌0 = ‖𝜌0‖𝑟. (23)

Since the function 𝐵*
2𝑒

𝐴*
22𝜏𝑟 is jointly continuous in the variable 𝜏 and vector 𝑟, and as 𝑟 ̸= 0,

by the injectivity of 𝐵*
2 , we have 𝐵*

2𝑒
𝐴*

22𝜏𝑟 ̸= 0, there exists 𝐾0(𝛿) > 0 such that

‖𝐵*
2𝑒

𝐴*
22𝜏𝑟‖ > 𝐾0(𝛿)‖𝑟‖

for all 𝑟 and all 𝜏 ∈ [0, 𝛿]. This is why, by relations (23), for all sufficiently large 𝑘, the inequality
holds: ⃦⃦

𝐶*
1,𝜀𝑘

(𝜀𝜏)𝑙𝜀𝑘 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟𝑘

⃦⃦
> 2,

and identity (21) becomes

∇𝜙*
2(−𝜌𝑘) =

𝛿∫︁
0

𝑒𝐴22𝜏𝐵2

1
‖𝑟𝑘‖

𝐵̃(𝜏, 𝜀𝑘)𝑙𝑘 + 𝐵*
2𝑒

𝐴*
22𝜏 𝑟𝑘

‖𝑟𝑘‖⃦⃦⃦
1

‖𝑟𝑘‖
𝐵̃(𝜏, 𝜀𝑘)𝑙𝑘 + 𝐵*

2𝑒
𝐴*

22𝜏 𝑟𝑘
‖𝑟𝑘‖

⃦⃦⃦ 𝑑𝜏 + O + 𝑂(𝑒−𝛾𝛿). (24)
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We pass to the limit in 𝑘 and then as 𝛿 → +∞ in identity (24). Then in view of relations (23)
we obtain the identity:

∇𝜙*
2(−‖𝜌0‖𝑟) =

+∞∫︁
0

𝑒𝐴22𝜏𝐵2
𝐵*

2𝑒
𝐴*

22𝜏𝑟

‖𝐵*
2𝑒

𝐴*
22𝜏𝑟‖

𝑑𝜏.

We calculate the scalar product of the latter equation with 𝑟 and we obtain:

⟨∇𝜙*
2(−‖𝜌0‖𝑟), 𝑟⟩ =

+∞∫︁
0

⃦⃦
𝐵*

2𝑒
𝐴*

22𝜏𝑟
⃦⃦
𝑑𝜏. (25)

By Assumption 3, the right hand side of the above identity is positive, while the left hand
side is non-positive due to the monotonicity of ∇𝜙*

2 and the identity ∇𝜙*
2(0) = 0; this is a

contradiction. Thus, 𝜌𝜀 → 0. If 𝑟𝜀 is unbounded, reproducing the above arguing, we arrive at
a contradicting inequality similar to (25):

0 =

+∞∫︁
0

⃦⃦
𝐵*

2𝑒
𝐴*

22𝜏𝑟
⃦⃦
𝑑𝜏.

Finally, if 𝑟0 is a limiting point of 𝑟𝜀, then we pass to the limit as 𝜀 → 0 in (21) and then we
pass to the limit as 𝛿 → +∞. In view of notation (22) we obtain identity (20).

Theorem 3. Let the assumptions of Theorem 2 holds. Then equation (20) has the unique
solution 𝑟0 and 𝑟𝜀 → 𝑟0.

Proof. We introduce the notations: 𝑙 :=𝐵*
0 𝑙0, 𝑟 := 𝑟0 + (𝐴*

22)
−1𝐴*

12𝑙0. Then equation (20) casts
into the form:

𝐹 (𝑟) :=

+∞∫︁
0

𝑒𝐴22𝜏𝐵2
𝑙 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟

𝑆 (‖𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟‖)

𝑑𝜏 = 0. (26)

If 𝑙 = 0, we multiply identity (26) by 𝑟 and we obtain:

+∞∫︁
0

‖𝐵*
2𝑒

𝐴*
22𝜏𝑟‖2

𝑆 (‖𝐵*
2𝑒

𝐴*
22𝜏𝑟‖)

𝑑𝜏 = 0.

Since the integrand is continuous and non-negative, we have ‖𝐵*
2𝑒

𝐴*
22𝜏𝑟‖ ≡ 0 and by Assump-

tion 3 this implies 𝑟 = 0.
Let 𝑙 ̸= 0. Assume that there exist two different solutions 𝑟1 ̸= 𝑟2 to equation (26): 𝐹 (𝑟1) =

𝐹 (𝑟2) = 0. By the Lagrange formula,

0 = ⟨𝐹 (𝑟1) − 𝐹 (𝑟2), 𝑟1 − 𝑟2⟩ =

⟨
𝜕

𝜕𝑟
𝐹 (𝑟)

⃒⃒⃒
𝑟=𝑟′

(𝑟1 − 𝑟2), 𝑟1 − 𝑟2

⟩
, (27)

where 𝑟′ ∈ [𝑟1, 𝑟2]. Let us show that as 𝑟1 ̸= 𝑟2, identity (27) is impossible.
We rewrite the integral in (26) as a sum of two integrals over two sets:

𝐸1(𝑟) :={𝜏 ∈ [0,+∞) : ‖𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟‖ 6 2}, 𝐸2(𝑟) :={𝜏 ∈ [0,+∞) : ‖𝑙 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟‖ > 2}.
Then the integral in the right hand side in equation (26) is split into two integrals:

𝐹 (𝑟) =

∫︁
𝐸1(𝑟)

𝑒𝐴22𝜏𝐵2
𝑙 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟

2
𝑑𝜏 +

∫︁
𝐸2(𝑟)

𝑒𝐴22𝜏𝐵2
𝑙 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟

‖𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟‖

𝑑𝜏. (28)

Since 𝐵*
2𝑒

𝐴*
22𝜏𝑟 → 0 as 𝜏 → +∞, the sets 𝐸1(𝑟) and 𝐸2(𝑟) consist of finitely many segments.
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Let us find the derivative 𝐷𝐹 (𝑟′)(∆𝑟) of the function 𝐹 at the point 𝑟′ along the direction
∆𝑟. We employ representation (28) and the known formula:

𝐷

⎛⎜⎝ 𝛽(𝑟)∫︁
𝛼(𝑟)

𝑓(𝑡, 𝑟)𝑑𝑡

⎞⎟⎠ (∆𝑟) =

𝛽(𝑟)∫︁
𝛼(𝑟)

𝜕𝑓(𝑡, 𝑟)

𝜕𝑟
(∆𝑟)𝑑𝑡 + +𝑓(𝛽(𝑟), 𝑟)

𝜕𝛽

𝜕𝑟
(∆𝑟) − 𝑓(𝛼(𝑟), 𝑟)

𝜕𝛼

𝜕𝑟
(∆𝑟).

Since the integrands coincide at the common points of 𝐸1(𝑟) and 𝐸2(𝑟), the final formula for
𝐷𝐹 involves no non-integral terms.

Since
𝜕

𝜕𝑟

(︂
𝑒𝐴22𝜏𝐵2

𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟

2

)︂
(∆𝑟) = 𝐶(𝜏)

𝐶*(𝜏)∆𝑟

2
, 𝐶(𝜏) := 𝑒𝐴22𝜏𝐵2,

and

𝜕

𝜕𝑟

(︂
𝑒𝐴22𝜏𝐵2

𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟

‖𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟‖

)︂
= 𝐶(𝜏)

𝐶*(𝜏)∆𝑟‖𝑙 + 𝐶*(𝜏)𝑟‖2 − ⟨𝐶*(𝜏)∆𝑟, 𝑙 + 𝐶*(𝜏)𝑟⟩(𝑙 + 𝐶*(𝜏)𝑟)

‖𝑙 + 𝐶*(𝜏)𝑟‖3
,

then

𝐷𝐹 (𝑟′)(∆𝑟) = 𝐷𝐹1(𝑟
′)(∆𝑟) + 𝐷𝐹2(𝑟

′)(∆𝑟),

𝐷𝐹1(𝑟
′)(∆𝑟) =

1

2

∫︁
𝐸1(𝑟′)

𝑒𝐴22𝜏𝐵2𝐵
*
2𝑒

𝐴*
22𝜏∆𝑟 𝑑𝜏,

(29)

𝐷𝐹2(𝑟
′)(∆𝑟) =

∫︁
𝐸2(𝑟′)

𝐶(𝜏)
𝐶*(𝜏)∆𝑟‖𝑙 + 𝐶*(𝜏)𝑟‖2 − ⟨𝐶*(𝜏)∆𝑟, 𝑙 + 𝐶*(𝜏)𝑟⟩(𝑙 + 𝐶*(𝜏)𝑟)

‖𝑙 + 𝐶*(𝜏)𝑟‖3
𝑑𝜏.

If 𝐸1(𝑟
′) ̸= ∅, the latter identity in (29) implies 𝐷𝐹1(𝑟

′) > 0. It follows from the Cauchy-
Schwarz inequality and relations (29) that 𝐷𝐹2(𝑟

′) > 0. This is why, if 𝐸1(𝑟
′) ̸= ∅, then

𝐷𝐹 (𝑟′) > 0 and identity (27) is possible only as ∆𝑟 = 𝑟1 − 𝑟2 = 0.
Since ∆𝑟 ̸= 0, it follows from identity (27) that

𝐸1(𝑟
′) = ∅

and by the Cauchy-Schwarz inequality, the vector 𝑙 + 𝐵*
2𝑒

𝐴*
22𝜏𝑟′ is parallel to the vector

𝐵*
2𝑒

𝐴*
22𝜏∆𝑟 for all 𝜏 . The identity 𝐸1(𝑟

′) = ∅ means that

‖𝑙1 + 𝑒𝐴
*
22𝜏𝑟′‖ > 2 for all 𝜏. (30)

By the assumptions of the theorem, 𝐵*
2𝑒

𝐴*
22𝜏∆𝑟 ̸= 0. Hence, there exists a function 𝛽 : R→ R

such that
𝑙 + 𝐵*

2𝑒
𝐴*

22𝜏𝑟′ = 𝛽(𝜏)𝐵*
2𝑒

𝐴*
22𝜏∆𝑟 for all 𝜏.

Hence, 𝑙 reads as 𝐵*
2 𝑙1. Thus, if 𝑙 ̸∈ Im (𝐵*

2), identity (27) is impossible.
By the injectivity of the operator 𝐵*

2 we obtain that

∀ 𝜏 𝑙1 + 𝑒𝐴
*
22𝜏𝑟′ = 𝛽(𝜏)𝑒𝐴

*
22𝜏∆𝑟. (31)

We multiply identity (31) by 𝑒−𝐴*
22𝜏 and we get:

𝑒−𝐴*
22𝜏 𝑙1 + 𝑟′ = 𝛽(𝜏)∆𝑟. (32)

Hence, the function 𝛽(𝜏) is infinitely differentiable. We differentiate identity (32) twice in 𝜏
and we obtain:

−𝐴*
22𝑒

−𝐴*
22𝜏 𝑙1 = 𝛽′(𝜏)∆𝑟, (𝐴*

22)
2𝑒−𝐴*

22𝜏 𝑙1 = 𝛽′′(𝜏)∆𝑟.
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As 𝜏 = 0, this gives the identities:

− 𝐴*
22𝑙1 = 𝛽′(0)∆𝑟, (𝐴*

22)
2𝑙1 = 𝛽′′(0)∆𝑟. (33)

If 𝛽′(0) = 0 or 𝛽′′(0) = 0, then 𝑙1 = 0 that contradicts the assumptions of the theorem.
It follows from identity (33) that

𝛽′′(0)∆𝑟 = (𝐴*
22)

2𝑙1 = −𝐴*
22𝛽

′(0)∆𝑟,

that is, the vector ∆𝑟 is an eigenvector of the matrix 𝐴*
22. Hence,

𝐴*
22∆𝑟 = −𝛼∆𝑟, 𝛼 > 0, (34)

where 𝛼 = 𝛽′′(0)/𝛽′(0) is an eigenvalue of the matrix 𝐴*
22. If the matrix 𝐴*

22 has no real
eigenvalues, identity (27) is impossible.

It follows from identities (33) and (34) that the vector 𝑙1 is parallel to the vector ∆𝑟. This
is why by identity (32) and 𝑟′ is parallel to the vector 𝑙1. Since 𝑟′ = 𝑟1 − 𝛽0∆𝑟 for some 𝛽0, it
follows that the vectors 𝑟1, 𝑟2 are parallel to the vector 𝑙1. Thus, in this case,

𝑟1 = 𝛽1𝑙1, 𝑟2 = 𝛽1𝑙2, 𝑟′ = 𝛽3𝑙1.

and identity (26) being valid for 𝑟𝑖, 𝑖 = 1, 2 after calculating its scalar product with 𝑙1, casts
into the form:

+∞∫︁
0

(︀
1 + 𝛽𝑖𝑒

−𝛼𝜏
)︀
𝑒−𝛼𝜏‖𝐵*

2 𝑙1‖2

𝑆
(︁⃒⃒

1 + 𝛽𝑖𝑒−𝛼𝜏
⃒⃒
· ‖𝐵*

2 𝑙1‖
)︁ 𝑑𝜏 = 0, 𝑖 = 1, 2. (35)

The above identity (35) is impossible if 1 + 𝛽𝑖𝑒
−𝛼𝜏 is sign-definite on [0,+∞). Since 𝑒−𝛼𝜏

is strictly decreasing and 𝑒−𝛼𝜏 → 0 as 𝜏 → +∞, we obtain that 𝛽𝑖 < −1, 𝑖 = 1, 2. By
the relation 𝑟′ ∈ [𝑟1, 𝑟2] this implies that 𝛽3 < −1. But then there exists 𝜏0 > 0 such that⃒⃒
1 + 𝛽3𝑒

−𝛼𝜏0
⃒⃒
· ‖𝐵*

2 𝑙1‖ = 0 and this contradicts inequality (30).

In what follows we suppose that

𝑟 = 𝑚, 𝐴22 = −𝐼, 𝐵2 = 𝐼. (36)

Here 𝐼 stands for the identity mapping of R𝑚 onto R𝑚.

Lemma 2. Let conditions (36) and the assumptions of Theorem 1 are satisfied. Then

𝑟𝜀 → 𝑟0 = 𝐴*
12𝑙0 − 2𝐵*

0 𝑙0 as 𝜀 → 0.

Proof. Under (36), equation (20) becomes

+∞∫︁
0

𝑒−𝜏 𝑙 + 𝑒−𝜏𝑟

𝑆 (‖𝑙 + 𝑒−𝜏𝑟‖)
𝑑𝜏 = 0, (37)

where 𝑙 :=𝐵*
0 𝑙0, 𝑟 := 𝑟0 + (𝐴*

22)
−1𝐴*

12𝑙0. Thanks to Theorem 3, it is sufficient to confirm that
the vector (−2𝑙) is its solution. We substitute 𝑟 = −2𝑙 into the left hand side of equation (37),
we obtain:

+∞∫︁
0

𝑒−𝜏

(︀
1 − 2𝑒−𝜏

)︀
𝑙

𝑆
(︁⃒⃒

1 − 2𝑒−𝜏
⃒⃒
· ‖𝑙‖

)︁ 𝑑𝜏 =
[︁
𝜉 = 𝑒−𝜏

]︁
=

1∫︁
0

(1 − 2𝜉)

𝑆
(︁
|1 − 2𝜉| · ‖𝑙‖

)︁ 𝑑𝜉 𝑙 =
[︁
𝜂 = 1 − 2𝜉

]︁

=
1

2

1∫︁
−1

𝜂

𝑆
(︀
|𝜂| · ‖𝑙‖

)︀ 𝑑𝜂 𝑙 = 0

since the integrand is odd.
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5. Asymptotic expansion of vector 𝜆𝜀 under conditions (36)

We observe that by conditions (36) we have:

𝐵0 = 𝐵1 + 𝐴12, 𝑟0 =
(︀
𝐴*

12 − 2𝐵*
0

)︀
𝑙0, (38)

𝐶*
1,𝜀(𝑡) = 𝐵*

1𝑒
𝐴*

11𝑡 + 𝐴*
12

(︁
𝑒𝐴

*
11𝑡 − 𝑒−

𝑡
𝜀 𝐼
)︁ ∞∑︁

𝑘=0

(−1)𝑘𝜀𝑘(𝐴*
11)

𝑘. (39)

It follows from identities (38) and (39) that

𝐶*
𝜀 (𝑡)𝜆𝜀 =𝐶*

1,0(𝑡)𝑙0 + 𝐶*
1,0∆𝑙 − 𝜀𝐴*

12𝑒
𝐴*

11𝑡𝐴*
11𝑙0−

− 2𝑒−
𝑡
𝜀𝐵*

0 𝑙0 − 𝐴*
12𝑒

− 𝑡
𝜀 ∆𝑙 + 𝜀𝐴*

12𝑒
− 𝑡

𝜀𝐴*
11𝑙0 + 𝑒−

𝑡
𝜀 ∆𝑟 + ℱ2(𝜀,∆𝑙,∆𝑟).

(40)

Here ∆𝑙 := 𝑙𝜀 − 𝑙0, ∆𝑟 := 𝑟𝜀 − 𝑟0, and ℱ2(𝜀,∆𝑙,∆𝑟) is a function of a second order of smallness
in {𝜀,∆𝑙,∆𝑟}.

We begin with the case, when the limiting problem has a single point of the change of the
type of optimal control. Suppose that for the limiting problem and the initial state of the
system 𝑥0 there exists the only moment of time 𝑡 = 𝑡0 ∈ (0, 𝑇 ) such that

‖𝐶*
1,0(𝑡)𝑙0‖ < 2, ‖𝐶*

1,0(𝑡0)𝑙0‖ = 2 for all 𝑡 < 𝑡0,

‖𝐶*
1,0(𝑡)𝑙0‖ > 2 for all 𝑡 > 𝑡0,

𝑑

𝑑𝑡
‖𝐶*

1,0(𝑡)𝑙0‖2
⃒⃒⃒⃒
𝑡=𝑡0

̸= 0.

(41)

Lemma 3. If the condition

‖𝐵*
0 𝑙0‖ < 2 (42)

holds, then

∀ 𝑙𝜀 → 𝑙0 ∀ 𝑟𝜀 →
(︀
𝐴*

12 − 2𝐵*
0

)︀
𝑙0 ∃ 𝜀0 > 0 ∀ 𝜀 ∈ (0, 𝜀0) ∀ 𝑡 ∈ [0,

√
𝜀] ‖𝐶*

𝜀 (𝑡)𝜆𝜀‖ < 2. (43)

Proof. We assume the opposite; then there exits sequences {𝑡𝑘} ⊂ [0,
√
𝜀] and {𝜀𝑘} such that

𝜀𝑘 → +0 and

‖𝐶*
𝜀𝑘

(𝑡𝑘)𝜆𝜀𝑘‖ > 2. (44)

We let 𝜏𝑘 := 𝑡𝑘/𝜀𝑘, 𝑙𝑘 := 𝑙𝜀𝑘 , 𝑟𝑘 := 𝑟𝜀𝑘 and 𝜆𝑘 :=𝜆𝜀𝑘 . Then by identity (40) we get:

𝐶*
𝜀𝑘

(𝑡𝑘)𝜆𝜀𝑘 = 𝐶*
1,0(𝜀𝑘𝜏𝑘)𝑙0 − 2𝑒−𝜏𝑘𝐵*

0 𝑙0 + ℱ1(𝜀𝑘,∆𝑙𝑘,∆𝑟𝑘), (45)

∆𝑙𝑘 := 𝑙𝑘 − 𝑙0, ∆𝑟𝑘 := 𝑟𝑘 − 𝑟0, ℱ1(𝜀𝑘,∆𝑙𝑘,∆𝑟𝑘) → 0.

Let 𝜏0 be a limiting point of the sequence {𝜏𝑘}; to shorten the notation, we suppose that 𝜏𝑘 → 𝜏0.
If 𝜏0 = +∞, we pass to the limit as 𝑘 → ∞ in identity (45) and taking into consideration that
𝑙𝑘 → 𝑙0, 𝑟𝑘 → (𝐴*

12 − 2𝐵*
0)𝑙0, we obtain: 𝐶*

𝜀𝑘
(𝜀𝑘𝜏𝑘)𝜆𝑘 → 𝐵*

0 𝑙0. But ‖𝐵*
0 𝑙0‖ < 2 by assumption

(41) and this contradicts condition (44).
Thus, all limiting points 𝜏0 are finite. Then 𝜀𝑘𝜏𝑛 → 0 and this is why 𝐶*

𝜀𝑘
(𝜀𝑘𝜏𝑘)𝜆𝑘 →(︀

1 − 2𝑒−𝜏0
)︀
𝐵*

0 𝑙0. But⃦⃦⃦(︀
1 − 2𝑒−𝜏0

)︀
𝐵*

0 𝑙0

⃦⃦⃦
=

⃒⃒
1 − 2𝑒−𝜏0

⃒⃒
· ‖𝐵*

0 𝑙0‖ 6 ‖𝐵*
0 𝑙0‖ < 2,

and this contradicts condition (44).

Theorem 4. Under condition (42), there exists 𝜀0 > 0 such that for each 𝜀 ∈ (0, 𝜀0) there
exists a single point 𝑡𝜀 of the change of the type of optimal control in problem (1), that is,

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖ < 2, ‖𝐶*

𝜀 (𝑡𝜀)𝜆𝜀‖ = 2 for all 𝑡 < 𝑡𝜀, ‖𝐶*
𝜀 (𝑡)𝜆𝜀‖ > 2 for all 𝑡 > 𝑡𝜀.

At that, 𝑡𝜀 → 𝑡0 as 𝜀 → 0.
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Proof. We note that by assumption (41) there exists 𝛿0 > 0 such that

𝑑

𝑑𝑡
‖𝐶*

1,0(𝑡)𝑙0‖2
⃒⃒⃒⃒
𝑡=𝑡0

> 0 for all 𝑡 ∈ [𝑡0 − 𝛿0, 𝑡0 + 𝛿0].

By (17) and (15) and since ‖𝐶*
1,0(𝑡0 − 𝛿0)𝑙0‖ < 2 and ‖𝐶*

1,0(𝑡0 + 𝛿0)𝑙0‖ > 2, there exists 𝜀1 > 0
such that for all 𝜀 ∈ (0, 𝜀1) and 𝑡 ∈ [𝑡0 − 𝛿0, 𝑡0 + 𝛿0] the inequalities hold:

‖𝐶*
𝜀 (𝑡0 − 𝛿0)𝜆𝜀‖ < 2, ‖𝐶*

𝜀 (𝑡0 + 𝛿0)𝜆𝜀‖ > 2,
𝜕

𝜕𝑡

(︀
‖𝐶*

𝜀 (𝑡)𝜆𝜀‖2
)︀
> 0.

This implies the existence of a single point 𝑡𝜀 ∈ [𝑡0 − 𝛿0, 𝑡0 + 𝛿0] such that ‖𝐶*
𝜀 (𝑡𝜀)𝜆𝜀‖ = 2.

Let us show that for all sufficiently small 𝜀 > 0 (0 < 𝜀 < 𝜀0 6 𝜀1) there are no other points 𝑡
obeying identity ‖𝐶*

𝜀 (𝑡)𝜆𝜀‖ = 2.
By condition (41) there exists 𝛾 > 0 such that as |𝑡− 𝑡0| > 𝛿0, the estimate holds:⃒⃒

‖𝐶*
1,0(𝑡)𝑙0‖ − 2

⃒⃒
> 𝛾 > 0.

Then it follows from estimate (11) and condition (17) that for all sufficiently small 𝜀 > 0,
𝑡 ∈ [

√
𝜀, 𝑇 ] and ‖𝑡− 𝑡0‖ > 𝛿0 the inequality holds:⃒⃒

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖ − 2

⃒⃒
>

𝛾

2
> 0.

Hence, ‖𝐶*
𝜀 (𝑡)𝜆𝜀‖ ≠ 2 for such 𝜀 and 𝑡. On the remaining segment [0,

√
𝜀], the relation

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖ ≠ 2 holds thanks to condition (43).

Thus, in the considered case, the integral in (3) is also split into the sum of two integrals:

𝑇∫︁
0

𝐶𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆

𝑆 (‖𝐶*
𝜀 (𝑡)𝜆‖)

𝑑𝑡 =
1

2

𝑡𝜀∫︁
0

𝐶𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆 𝑑𝑡 +

𝑇∫︁
𝑡𝜀

𝐶𝜀(𝑡)
𝐶*

𝜀 (𝑡)𝜆

‖𝐶*
𝜀 (𝑡)𝜆‖

𝑑𝑡. (46)

Let ∆𝑙𝜀 := 𝑙𝜀 − 𝑙0, ∆𝑟𝜀 := 𝑟𝜀 − 𝑟0, ∆𝑡𝜀 := 𝑡𝜀 − 𝑡0. Then

𝜆𝜀 =

(︂
𝑙0 + ∆𝑙𝜀

𝜀(𝑟0 + ∆𝑟𝜀)

)︂
, ∆𝑙𝜀 = 𝑜(1), ∆𝑟𝜀 = 𝑜(1), ∆𝑡𝜀 = 𝑜(1)

as 𝜀 → 0, and by identities (2), (3), (46) and Theorem 4, the triple {∆𝑙𝜀, ∆𝑟𝜀 ∆𝑡𝜀} solves the
following system of equations depending on the parameter 𝜀:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =𝐹1(𝜀,∆𝑙,∆𝑟,∆𝑡) :=−∇𝜙*
1(−𝑙𝜀) + ∇𝜙*

1(−𝑙0)

+ 𝒲𝜀(𝑇 )𝑦0 +
1

2

𝑡𝜀∫︁
0

𝐶1,𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆𝜀 𝑑𝑡 +

𝑇∫︁
𝑡𝜀

𝐶1,𝜀(𝑡)
𝐶*

𝜀 (𝑡)𝜆𝜀

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖

𝑑𝑡,

0 =𝐹2(𝜀,∆𝑙,∆𝑟,∆𝑡) :=−∇𝜙*
2(−𝜀𝑟𝜀) + ∇𝜙*

2(0)

+
1

2

𝑡𝜀∫︁
0

𝜀−1𝐶2,𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆𝜀 𝑑𝑡 +

𝑇∫︁
𝑡𝜀

𝜀−1𝐶2,𝜀(𝑡)
𝐶*

𝜀 (𝑡)𝜆𝜀

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖

𝑑𝑡,

0 =𝐺(𝜀,∆𝑙,∆𝑟,∆𝑡) := ‖𝐶*
𝜀 (𝑡 + △𝑡)𝜆𝜀‖2 − ‖𝐶*

1,0(𝑡0)𝑙0‖2.

(47)

We note that the functions 𝐹1, 𝐹2 and 𝐺 are continuous, and 𝐺 is infinitely differentiable. Let
us study their asymptotic expansions with respect to infinitesimals ∆𝑙, ∆𝑟 and ∆𝑡.



ASYMPTOTIC EXPANSION OF SOLUTION TO SINGULARLY PERTURBED PROBLEM. . . 93

By the infinite differentiability of the functions 𝜙*
1 and 𝜙*

2 and in view of identity 𝜙*
2(0) = 0

we obtain:

−∇𝜙*
1(−𝑙0 − ∆𝑙) + ∇𝜙*

1(−𝑙0) ∼ 𝐷2𝜙*
1(−𝑙0)∆𝑙 +

∞∑︁
𝑘=2

Φ1,𝑘(∆𝑙),

−∇𝜙*
2(−𝜀𝑟𝜀) + ∇𝜙*

2(0) ∼ 𝐷2𝜙*
2(0)𝑟0𝜀 +

∞∑︁
𝑘=2

Φ2,𝑘(𝜀,∆𝑟),

(48)

where 𝐷2𝜙*
1(−𝑙0) and𝐷2𝜙*

2(0) are second order differentials of 𝜙*
1 and 𝜙*

2 at the points (−𝑙0)
and 0, respectively, and Φ1,𝑘(∆𝑙) and Φ2,𝑘(𝜀,∆𝑙) are homogeneous functions of order 𝑘, namely,
polynomials of the components of the vector ∆𝑙 and 𝜀.

By identity (7),

𝒲𝜀(𝑇 )𝑦0 ∼ 𝜀𝑒𝐴11𝑇𝐴12𝑦0 +
∞∑︁
𝑘=2

𝜀𝑘𝑦𝑘, (49)

where 𝑦𝑘 are known vectors.
We split each integral in the first and second identity in system of equations (47) into two

parts
𝑡0+Δ𝑡∫︁
0

=

𝑡0∫︁
0

+

𝑡0+Δ𝑡∫︁
𝑡0

,

𝑇∫︁
𝑡0+Δ𝑡

=

𝑡0∫︁
𝑡0+Δ𝑡

+

𝑇∫︁
𝑡0

and we denote the integrals by 𝐼1(𝜀,∆𝜆), 𝐼2(𝜀,∆𝜆), 𝐼3(𝜀,∆𝜆) and 𝐼4(𝜀,∆𝜆), respectively.
We note that by identity (7), the asymptotics of integrands in 𝐼2 – 𝐼4 is power in 𝜀 and the

components of the vector ∆𝜆 with coefficients smoothly depending on 𝑡.
To expand the integrals 𝐼2 and 𝐼3 in ∆𝑡, we should additionally expand the coefficients

depending on 𝑡 into the Taylor series at the point 𝑡0 and to integrate the obtained expansions
over the mentioned segments.

We observe that in 𝐼2 and 𝐼3, the terms of the first order of smallness in ∆𝑡 are of the form:

𝐶1,0(𝑡0)𝐶
*
1,0(𝑡0)𝑙0

2
∆𝑡, −

𝐶1,0(𝑡0)𝐶
*
1,0(𝑡0)𝑙0

‖𝐶*
1,0(𝑡0)𝑙0‖

∆𝑡,

respectively. Since

‖𝐶*
1,0(𝑡0)𝑙0‖ = 2, 𝐼2(𝜀,∆𝜆) = 𝑂(∆𝑡), 𝐼2(𝜀,∆𝜆) = 𝑂(∆𝑡),

the expansions of the 𝐼2 + 𝐼3 contains no terms of the first order of smallness in ∆𝑙, ∆𝑟, ∆𝑡
and 𝜀.

By estimate (14) and identity (39), on [𝑡0, 𝑇 ] we have asymptotic identities:

𝐶*
1,𝜀(𝑡) = 𝐵*

1(𝑡)𝑒𝐴
*
11𝑡 + 𝐴*

12𝑒
𝐴*

11𝑡

∞∑︁
𝑘=0

(−1)𝑘𝜀𝑘(𝐴*
11)

𝑘, 𝐶*
2,𝜀(𝑡) = O as 𝜀 → 0. (50)

Hence,

1

2

𝑡𝜀∫︁
0

𝜀−1𝐶2,𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆𝜀 𝑑𝑡 +

𝑇∫︁
𝑡𝜀

𝜀−1𝐶2,𝜀(𝑡)
𝐶*

𝜀 (𝑡)𝜆𝜀

‖𝐶*
𝜀 (𝑡)𝜆𝜀‖

𝑑𝑡 =
1

2

𝑡0∫︁
0

𝜀−1𝐶2,𝜀(𝑡)𝐶
*
𝜀 (𝑡)𝜆𝜀 𝑑𝑡 + O

=:𝐼5(𝜀,∆𝜆) + O,

while the power asymptotics of the integrals 𝐼𝑖, 𝑖 = 2, 3, 4 contains no ∆𝑟.
We introduce the notation:

(︀
𝐼𝑖(𝜀,∆𝜆)

)︀
1

is a linear in ∆𝑙, ∆𝑟, ∆𝑡 and 𝜀 part of the integral
𝐼𝑖(𝜀,∆𝜆).
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By Theorem 4, identities (50) and

𝑡0∫︁
0

𝑒−
𝑡
𝜀𝑓(𝑡, 𝑙𝜀, 𝑟𝜀) 𝑑𝑡 = 𝑂(𝜀),

if 𝑓(𝑡, 𝑙𝜀, 𝑟𝜀) is uniformly bounded on [0, 𝑡0], by simple calculations we get:

(︀
𝐼1(𝜀,∆𝜆)

)︀
1

=
1

2

𝑡0∫︁
0

𝐶1,0(𝑡)𝐶
*
1,0(𝑡) 𝑑𝑡∆𝑙 + 𝜀𝑓1 =: 𝐷11∆𝑙 + 𝜀𝑓1, (51)

(︀
𝐼3(𝜀,∆𝜆)

)︀
1

=

𝑇∫︁
𝑡0

𝐶1,0(𝑡)
𝐶*

1,0(𝑡)△𝑙‖𝐶*
1,0(𝑡)𝑙0‖2 − ⟨𝐶*

1,0(𝑡)△𝑙, 𝐶*
1,0(𝑡)𝑙0⟩𝐶*

1,0(𝑡)𝑙0

‖𝐶*
1,0(𝑡)𝑙0‖3

𝑑𝑡

+ 𝜀𝑓3 =: 𝐷12∆𝑙 + 𝜀𝑓3,

(52)

(︀
𝐼5(𝜀,∆𝜆)

)︀
1

=
1

4
∆𝑟 +

1

4

(︀
2𝐵*

0 − 𝐴*
12

)︀
∆𝑙 + 𝜀𝑓5, (53)

where 𝑓1, 𝑓3 and 𝑓5 are uniquely calculated by 𝑙0. At that, by assumption (36) and Cauchy-
Schwarz inequality we have:

𝐷11 > 0, 𝐷12 > 0. (54)

By identity (50) we can find the asymptotics for the function 𝐺(𝜀,∆𝑙,∆𝑡) as ∆𝑙, ∆𝑡 and 𝜀
tend to zero:

𝐺(𝜀,∆𝑙,∆𝑡) ∼2⟨𝐶*
1,0(𝑡0)𝑙0, 𝐶

*
1,0(𝑡0)∆𝑙 + (𝐶*

1,0)
′(𝑡0)𝑙0∆𝑡 + 𝜀𝐴*

11𝑒
𝐴*

11𝑡0𝑙0⟩

+
∞∑︁
𝑘=2

𝐺𝑘(𝜀,∆𝑙,∆𝑡), (𝐶*
1,0)

′(𝑡0) :=
𝑑

𝑑𝑡
𝐶*

1,0(𝑡)

⃒⃒⃒⃒
𝑡=𝑡0

,
(55)

where 𝐺𝑘(𝜀,∆𝑙,∆𝑡) are some homogeneous functions of order 𝑘 in 𝜀 and the components of the
vectors ∆𝑙 and ∆𝑟.

Thus, by identities (48), (49), (51)–(53) and (55), the system for the first corrector of (47)
reads as ⎧⎪⎪⎨⎪⎪⎩

𝜀𝑔1 = 𝐷2𝜙*
1(−𝑙0)∆𝑙1 + 𝐷11∆𝑙1 + 𝐷12∆𝑙1

𝜀𝑔2 =
1

4
∆𝑟1 +

1

4

(︀
2𝐵*

0 − 𝐴*
12

)︀
∆𝑙1

𝜀𝑔3 = 2⟨𝐶*
1,0(𝑡0)𝑙0, 𝐶

*
1,0(𝑡0)∆𝑙1⟩ + ⟨𝐶*

1,0(𝑡0)𝑙0, (𝐶
*
1,0)

′(𝑡0)𝑙0⟩∆𝑡1.

(56)

By the convexity of 𝜙1 and inequalities (54), we have

𝐷2𝜙*
1(−𝑙0) + 𝐷11 + 𝐷12 > 0,

and this is why the first equation in system (56) determines uniquely ∆𝑙1 = 𝜀𝑙1. After that by
the second equation in system (56) we uniquely find ∆𝑟1 = 𝜀𝑟1. Finally, by conditions (41),
the coefficient at ∆𝑡1 is non-zero and hence, by the third equation in system (56) we uniquely
determine ∆𝑡1 = 𝜀𝑡1. Thus, the linear operator of the first corrector for system (56), that is,
the operator

𝒟

⎛⎝∆𝑙1
∆𝑟1
∆𝑡1

⎞⎠ =

⎛⎝ 𝐷2𝜙*
1(−𝑙0)∆𝑙1 + 𝐷11∆𝑙1 + 𝐷12∆𝑙1
1
4
∆𝑟1 + 1

4

(︀
2𝐵*

0 − 𝐴*
12

)︀
∆𝑙1

2⟨𝐶*
1,0(𝑡0)𝑙0, 𝐶

*
1,0(𝑡0)∆𝑙1⟩ + ⟨𝐶*

1,0(𝑡0)𝑙0, (𝐶
*
1,0)

′(𝑡0)𝑙0⟩∆𝑡1

⎞⎠
is continuously invertible.
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The process of determining next terms in the expansions of ∆𝑙, ∆𝑟 and ∆𝑡 is continued in a
standard way. Assume that we have approximations of ∆𝑙, ∆𝑟 and ∆𝑡 up to 𝑁th order. Then
the quantities

∆𝑙𝑁+1 := ∆𝑙 −
𝑁∑︁
𝑘=1

𝜀𝑘𝑙𝑘, ∆𝑟𝑁+1 := ∆𝑟 −
𝑁∑︁
𝑘=1

𝜀𝑘𝑟𝑘, ∆𝑡𝑁+1 := ∆𝑡−
𝑁∑︁
𝑘=1

𝜀𝑘𝑡𝑘

satisfy the relations

𝒟

⎛⎝∆𝑙𝑁+1

∆𝑟𝑁+1

∆𝑡𝑁+1

⎞⎠ = 𝑂
(︀
𝜀𝑁+1

)︀
+ 𝑂

(︀
𝜀‖𝑧𝑁+1‖

)︀
+ 𝑂

(︀
‖𝑧𝑁+1‖2), 𝑧𝑁+1 :=

⎛⎝∆𝑙𝑁+1

∆𝑟𝑁+1

∆𝑡𝑁+1

⎞⎠ . (57)

By the continuous invertibility of the operator 𝒟, by relations (57) we obtain:

𝑧𝑁+1 = 𝑂
(︀
𝜀𝑁+1

)︀
+ 𝑂

(︀
𝜀‖𝑧𝑁+1‖

)︀
+ 𝑂

(︀
‖𝑧𝑁+1‖2). (58)

As it was shown in [10, Stat. 2], it follows from (58) that 𝑧𝑁+1 = 𝑂
(︀
𝜀𝑁+1

)︀
. Thus, we have

proved the following theorem.

Theorem 5. Let Assumptions 2 and 3 be satisfied as well as conditions (41) and (42). Then
the vectors 𝑙𝜀, 𝑟𝜀 and the moment of time 𝑡𝜀 are expanded into power asymptotic series

𝑙𝜀
𝑎𝑠
= 𝑙0 +

∞∑︁
𝑘=1

𝜀𝑘𝑙𝑘, 𝑟𝜀
𝑎𝑠
=

(︀
𝐴*

12 − 2𝐵*
0

)︀
𝑙0 +

∞∑︁
𝑘=1

𝜀𝑘𝑟𝑘, 𝑡𝜀
𝑎𝑠
= 𝑡0 +

∞∑︁
𝑘=1

𝜀𝑘𝑡𝑘, 𝜀 → 0,

whose coefficients can be found in a recurrent way.

Similar results are true in a more general case, when there exist finitely many points
{𝑡1, 𝑡2, . . . , 𝑡𝑝} ⊂ (0, 𝑇 ) such that

‖𝐶*
0(𝑡)𝑙0‖ ≠ 2, ‖𝐶*

0(𝑡𝑖)𝑙0‖2 = 4,
𝑑

𝑑𝑡
‖𝐶*

0(𝑡𝑖)𝑙0‖2
⃒⃒⃒⃒
𝑡=𝑡𝑖

̸= 0, (59)

for all 𝑡 ∈ [0, 𝑇 ] ∖ {𝑡𝑖}𝑝𝑖=1 and condition (42) holds true.
In this case an analogue of Theorem 4 reads as follows.

Theorem 6. Let Assumptions (36), (42) and (59) hold true. Then there exists 𝜀0 > 0 such
that for each 𝜀 ∈ (0, 𝜀0) there exist the points {𝑡1,𝜀, 𝑡2,𝜀, . . . , 𝑡𝑝,𝜀} ⊂ (0, 𝑇 ) of the change of the
type of optimal control in problem (1). There are no other points of the change of the type of
optimal control and 𝑡𝑖,𝜀 → 𝑡𝑖 as 𝜀 → 0 for each 𝑖 = 1, . . . , 𝑝.

The proof of this theorem is similar to that of Theorem 4.
We note that in this case the system of equations similar to system (47) contains a set of

𝑝 equations 0 = 𝐺𝑝 instead of one scalar equation 0 = 𝐺; these equations correspond to the
points 𝑡𝑖,𝜀 and the unknowns are ∆𝑙, ∆𝑟 and ∆𝑡𝑖, 𝑖 = 1, . . . , 𝑝.

Similar to Theorem 5, we can prove the following final theorem.

Theorem 7. Let Assumptions 2 and 3 are satisfied as well as conditions (36), (42) and
(59). Then the vectors 𝑙𝜀, 𝑟𝜀 and the moments of time {𝑡1,𝜀, 𝑡2,𝜀, . . . , 𝑡𝑝,𝜀} are expanded into
power asymptotic series

𝑙𝜀
𝑎𝑠
= 𝑙0 +

∞∑︁
𝑘=1

𝜀𝑘𝑙𝑘, 𝑟𝜀
𝑎𝑠
=

(︀
𝐴*

12 − 2𝐵*
0

)︀
𝑙0 +

∞∑︁
𝑘=1

𝜀𝑘𝑟𝑘,

𝑡𝑖,𝜀
𝑎𝑠
= 𝑡𝑖 +

∞∑︁
𝑘=1

𝜀𝑘𝑡𝑖,𝑘, 𝑖 = 1, . . . , 𝑝, 𝜀 → 0,

whose coefficients can be found in a recurrent way.
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