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ASYMPTOTIC EXPANSION OF SOLUTION TO SINGULARLY
PERTURBED OPTIMAL CONTROL PROBLEM WITH
CONVEX INTEGRAL QUALITY FUNCTIONAL WITH
TERMINAL PART DEPENDING ON SLOW AND FAST

VARIABLES

A.R. DANILIN, A.A. SHABUROV

Abstract. We consider an optimal control problem with a convex integral quality func-
tional for a linear system with fast and slow variables in the class of piecewise continuous
controls with smooth constraints on the control

te = An1ze + A2y + Biu, t€[0,T], ul| <1,
e = Aoy + Bou, x.(0) = 2°, y=(0) = 3", Vo (0) =0,

T
() i= o1 (2:(T)) + 2 (4-(T)) + / Ju(#)|2 dt — min,
0

where z € R", y € R™, u € R"; A;; and B;, 1,7 = 1,2, are constant matrices of correspond-
ing dimension, and the functions ¢i(-),2(-) are continuously differentiable in R"”, R™,
strictly convex, and cofinite in the sense of the convex analysis. In the general case, for
such problem, the Pontryagin maximum principle is a necessary and sufficient optimality
condition and there exist unique vectors I and p. determining an optimal control by the
formula

Cie (t)lE + C;,s (t)pg
$ (I (1 + C5. ()l

ue(T —t) ==

where

Ot (1) = BieMht 4 e BYW (), C5.(t) = & Byl
t

2, 0<E<2,
We(t) == eA“t/e_A“TAlgeAzQT/8 dr, S(&):= {

&  &>2

The main difference of our problem from the previous papers is that the terminal part
of quality functional depends on the slow and fast variables and the controlled system
is a more general form. We prove that in the case of a finite number of control change
points, a power asymptotic expansion can be constructed for the initial vector of dual state
Ae = (I pf)*, which determines the type of the optimal control.
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1. INTRODUCTION

The paper is devoted to studying the asymptotics of the vector of the dual state in the
problem of optimal control [1I, 2] 3] of linear system with fast and slow variables, see survey [4],
with an convex integral quality functional [3, Ch. 3] and smooth geometric constraints on a
control.

In [5, [6], there were considered problems related with a limiting problem for problems of
optimal control by a linear system with fast and slow variables. For other formulation, the
asymptotics of solutions of perturbed control problem were considered in [7]-[9]. We note
that a controlled system of our form but with a terminal quality functional depending on slow
variables only was considered in [g].

In the present work we obtain a complete asymptotic expansion of the vector of dual system
determining the optimal control. The main difference of our problem in comparison with that
considered in [10] is the dependence of the terminal part of the control functional not only on
slow variables but also on fast ones.

2. FORMULATION OF PROBLEM AND MAIN RELATIONS

In the class of piece-wise continuous controls we consider the following optimal control prob-

lem:
(:tg = AHIE + A12y5 + Blu, t e [O,T], ||UH < ]_,

eYe = Axpy. + Bau, fEs(O) = 1‘07 ye(o) = ?JO» VSDQ(O) =0,
(1)

T
J(u) =1 (2(T)) + @2 (4=(T)) + / [u(t)||* dt — min,
\ 0
where z. € R", y. € R™, v € R"; A;j, B;, i, j = 1,2, are constant matrices of an appropriate
dimension and ¢;(+), pa(+) are continuously differentiable on R™ and R™ functions strictly
convex and cofinite in the sense of the convex analysis [I1, Sect. 13]. All spaces R™, R™, R"
are equipped with the Euclidean norm, which is everywhere denoted by the same symbol || - ||.
We note that the terminal part of the quality functional depends on slow and fast variables.
For each fixed € > 0, the controlled system and the quality functional in problem are of
the form:
(. = A.z. + B, t €[0,7],

2(0)=2" Jul| <1,
T

J(u):=p (z(T)) + / |lu(t)||* dt — min,

\

)= (50)). w2 = (N, Pl = D) 4 (D)),

(A A _( B
Ac = ( 0 €1A22) ’ B. = (8lBQ> '

We observe that in the considered convex integral quality functional .J, the terminal part can
be interpreted as a penalty for the error of the control at the final moment of time 7', while the
second part reflect the energy spent for the realization of the control.

We shall say that a pair of matrices (A, B) is completely controllable if the system & =
Ax + Bu is controllable.
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Assumption 1. For all sufficiently small € > 0, the pair (A, Be) is completely controllable,
that is, rank (BE, AB, .. ATTIB ) = n+m.

Assumption 2. All eigenvalues of the matriz Ass have negative real parts.

Under Assumption 1, the Pontryagin maximum principle is necessary and sufficient condition
of the optimality giving the unique solution of problem [3, Sect. 3.5, Thm. 14].

It was shown in [I0, Prop. 1, Eq. (1.6)] that the function u.(t) is the only optimal control in
problem , it is of the form

u. (T —

Bg*eA;t)\E 27 0 < § < 27
S (IIB:7e A & €>2

and the vector A, is the unique solution (in view of the cofiniteness of the function ; [I1, Thm.
26.6]) of the equation

T
BreAT\
V(=) = etT20 + /(3“4”15’E 5* dr. (3)
S(IIBzeAmAll)

Here V* is the gradient of the function ¢* dual to the function ¢ in the sense of the convex
analysis, see [11], Sect. 12].
We note that in the considered case

©*(N) =@i(l) +95(p)  and  V3(0) = 0. (4)

We shall consider the vector \. determining the optimal control in problem as A\, = <ég> ,

£

where [. € R", p. € R™.
Straightforward calculation of the matrix exponent of the controlled system in problem

gives:
Aqrt
nt oW (t
et = (6 Az(zt)> ) (5)
0 e e

where W.(t) = ApnWe(t) + Ape and W.(0) = 0. This is why
t
AgoT

We(t) == eA“t/e_A“TAwe = dr. (6)
0

Integrating by parts in the right hand side in identity @, we obtain

Agot

W5<t) = €<A12€ £ — GAHtAlg)A;; -+ €A11W5(t)A521,

Agot

and by the boundedness of Ajse <

— e/t Ay, on (0,7,

- Agot _
We(t) =e Z et Ay (14126 s — €A“tz412>1422(k+1)- (7)
k=0

We shall make use of the following notation:

(Cic®N g, (€MBL AT WL(H) By
Cu(t) = (CQ’E@) - e | (8)
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According identity and notation , equation is transformed into the system of

equations
(

Vei(=le) = e + W(T)y +/Clg Yue(T — t) dt,

T
vge&%—“”“°+/ﬁk —f)dt,
\ 0
where o L O
F () +C5 () pe
weT — 1) = 1’*( ) 2ellPe (10)
S (I3 (1)l + C5 . ()p-|l)
Definition 1. A limiting problem for problem 18
(29 = Ao + Bou, t€[0,1], Jull <1
AO = A117 Bo = Bl — A12A521BQ, m()(()) = .’L'O,
Jo(u) := 1 (zo(T /||u (t)||* dt — min .
(
Assumption 3. The pairs of matrices (Ao, By), (Asgg, B2) are completely controllable.
By [5], Assumptions 2 and 3 ensure Assumption 1 for all sufficiently small .
Formulae , @ and imply
Cl’g(t) = 0170(75) —+ A12A2_21€A252t BQ + 0(5), E — 0, 0170(75) = ertBo, (11)
0 d 1 Agpt Agat 4
acl,a(t) = %01,0(15) +e Ape = By + ApApe = Ay By +0(e), €—0, (12)

uniformly on the segment [0, 7.
We mention the known fact that under Assumption 2 there exist v > 0 and K > 0 such that

He & H Ke™*. (13)

If a vector function f.(t) is such that f.(t) = O(g*) as ¢ — 0 for each o > 0 uniformly in
t € [a,b], we shall write @ instead of f.(¢). In particular,

“€A22t/€” — @’ e*'ﬂf/s =0 as te [EP,T], pE (0, 1), (14)

where v > 0.
It follows from formulae , and estimate that there exist K; > 0 and 9 > 0 such
that for € € (0,e0) and t € [\/e,T], the inequalities hold

70—

3. AUXILIARY STATEMENTS ON COFINITE FUNCTIONS

IC1.(6) = CLoll < Kue, Cro(t) = SCLo(0)| < Kae. (15)

According [I1, Thm. 26.6], if f is a differentiable strictly convex cofinite function on R",
then Vf : R® — R" is a one-to-one correspondence on R™ and f* is a differentiable strictly
convex cofinite function on R".

Lemma 1. Let f be a differentiable strictly convex cofinite function on R™, I be a non-
negative linear operator in R™, that is,

(LI,1) >0 forall  1eR"
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Then the g(I) = f(I) + (LI, 1) is a differentiable strictly convex cofinite function on R"™ and
Vg(l) =Vf()+Li

Proof. We begin with proving that g() is a differentiable strictly convex cofinite function on
R"™. We calculate the derivative of the scalar product (]Ll [y along the direction of Al:

D(%MJOQM) g

and we obtain that V (3(Ll,1)) = LI. According the definition [I1], a convex function f is
cofinite if the following relation holds:
f(\)

Al_l)riloo = +o0 for all [ #0. (16)

(L1 + tAl),l + tAl)
2

= (LI, Al),

Let us show that the function g() obeys this condition.
For each A > 0 we have:

g) _ SO 1 LODN) _JOD | A gy g5 OO gy 5o ce

O

Corollary 1. Let a function f satisfies the assumptions of Lemma 1, and f* is a dual
function for f in the sense of the convex analysis. Then the equation V f*(1) + 1Ll = d has the
unique solution for each vector d.

This corollary follows Lemma |If and Theorem 26.6 in [I1].

4. LIMITING VALUES OF VECTORS [. AND p,

Theorem 1. Let Assumptions 1 and 2 hold and the vector X! = (IX pf) is the unique
solution of system @ Then the vectors l., p. are bounded and

le = 1o as e — +0, (17)

where ly is the unique solution of the equation

Cio(t)!

18
(a0l ™ 1)

T
0=—-Vpi(-I)+ ‘%%ﬁ+/cw
0

Proof. 1t is known that at the final time 7', the set of attainability of the controlled system in
problem is bounded uniformly in € € (0, &), see, for instance, [6, Thm. 3.1]. Hence, the
left hand side of equation (3)) is bounded. This is why, as ¢ — 0, the quantity V*(—A.) is
bounded as well. Since the function ¢* is cofinite, according [I1, Lm. 26.7], the vector A. is
bounded. Therefore, the vectors I., p. are bounded.

We partition the interval of integration in the first identity @ into two pieces: [0,+/2] and
[V, T]. Taking into consideration 1dent1ty @ and the notation . ) being representations of
matrices W, (t) and C.(t) in system (9)—(L0), we can write the first identity () as

Cﬂ)l

Voi(—1) =eMTe0 4 /C ct)s—dt as ¢ —0. 19
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Let [y be an arbitrary limiting point of the function /. as ¢ — 0. Passing to the limit as
€ — 0 in identity , by inequalities we obtain the identity

To()lo

L gy
S|ICt ()]l

T
V@T(-lo) = EAHTI'O -+ /017[)(15)
0

that is, [y satisfies equation . This equation reads as
Voi(—ly) + L(=ly) = e Ta"

and L > 0. This is why by Corollary 1 of LemmalI] this equation possesses the unique solution.
Thus, [y is the unique limiting point for /. and I. — [y as € — 0. O

Theorem 2. Let the assumptions of Theorem[1] hold, and By is a mapping of R" onto R™;
in particular, r > m. Then p. — 0, the quantity {r.} (r-:==e 'p.) is bounded as ¢ — +0 and
all its limiting points ro satisfy the equation

e x * O\ — *
O — / eAQQTBZ Bgio + B;fAjf:—(ro + (AQi) 1;41110) d,]_' (20)
S (| Bglo + BseA2T(rg + (Azy) "1 Afylo)|])

Proof. We change the variable 7 := ¢ /e in the integral in the second identity in system @D We
choose arbitrary 0 > 0 and taking into consideration estimate , we rewrite this identity as

5 -
ls Bx A5 .
VSDZ(—,OE) :@+/€A22TB2 ~(7'7€) + se22’r dT*FO(e_WS), (21)
) S (IB(r,2)l. + Byetiarre]|)
where r.:=p. /e, and
B(7,¢) := Bie*® + BienT(As,) AL, (22)

We note that B(r,)l. — B(7,0)ly as ¢ — 0 uniformly on [0,6] and B(7,0) is bounded on
0, +00).

Let pp be an arbitrary limiting point of p. as € — 0, that is, there exists {ex} such that
er — 0 and py 1= p-, — po.

We assume that 7, :=17, is unbounded. Without loss of generality we suppose that

7 =1, po = llpoll7- (23)

=|

T — 00, —

7]

Since the function Bje 2277 is jointly continuous in the variable 7 and vector 7, and as 7 # 0,
by the injectivity of Bj, we have Bje?227r # 0, there exists Ky(d) > 0 such that
1Bse>Tr|| = Ko(8)]7|
for all 7 and all 7 € [0, 6]. This is why, by relations (23), for all sufficiently large k, the inequality
holds:
|CT o (e7)le,, + BiesTry|| > 2,

and identity becomes

€A22TB2 [l |l [l dr + 0) + 0(6_75). (24)

1 A* r
B(T, ek )l + BietaT by ’

Vs(—pr) =

/6 L B(1, ex)lx + Bjetsr
0

7l
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We pass to the limit in k£ and then as 6 — 400 in identity . Then in view of relations
we obtain the identity:

—+00

. 3 . B* GAZQTF
vmwmzﬁM&Q
0

B

We calculate the scalar product of the latter equation with 7 and we obtain:

+o0
wmwmwm:/ww%ww (25)
0

By Assumption 3, the right hand side of the above identity is positive, while the left hand
side is non-positive due to the monotonicity of V} and the identity V3(0) = 0; this is a
contradiction. Thus, p. — 0. If r. is unbounded, reproducing the above arguing, we arrive at
a contradicting inequality similar to :

“+o0o
0= / |Byeiarr|| dr.
0

Finally, if ¢ is a limiting point of r., then we pass to the limit as ¢ — 0 in and then we
pass to the limit as § — +o00. In view of notation (22)) we obtain identity . m

Theorem 3. Let the assumptions of Theorem@ holds. Then equation (@) has the unique
solution ro and ro — 19.

Proof. We introduce the notations: [:= Bjly, r:=ro + (A3y) ' A}ylo. Then equation casts

into the form:
+oo .
[+ B;‘eAmTT

F(r):= AT B dr = 0. 2
= [ e By gty = (26)
0

If I = 0, we multiply identity by r and we obtain:

e B* Al 2
227
[ e,
S ([ Bse=mrl)
0
Since the integrand is continuous and non-negative, we have || Bje22"r|| = 0 and by Assump-
tion 3 this implies r = 0.

Let [ # 0. Assume that there exist two different solutions r # 9 to equation (26)): F(r) =
F(ry) = 0. By the Lagrange formula,

0= (F(r)) — F(rg),r —r) = <%F(7‘) (ry —re),ry — r2> , (27)

where ' € [rq,75]. Let us show that as r; # ro, identity is impossible.
We rewrite the integral in as a sum of two integrals over two sets:
Ei(r):={r €[0,+00) : ||l + Bje=Tr| <2}, Ey(r):={r € [0, +00) : ||l + Bye=Tr|| > 2}.
Then the integral in the right hand side in equation is split into two integrals:
| + BjeAzT | + BreAsT
F(r) = / R R Ll P / Aurg, LT Ty (28)

2 11+ Byederr| ©"
Ei(r) Esx(r)

r=r!

Since Bje227r — 0 as T — +00, the sets E;(r) and Ey(r) consist of finitely many segments.
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Let us find the derivative DF(r")(Ar) of the function F' at the point 7’ along the direction
Ar. We employ representation and the known formula:

T B(r)
/ f(t,r)dt | (Ar) = / %(Ar)dt + +f(B(r), T)g—r(AT) — fla(r),r)=—(Ar).
«a a(r)

Since the integrands coincide at the common points of Ey(r) and Es(r), the final formula for
DF involves no non-integral terms.

Since " A
% (eA”TBQ—l *BZ; - 7’) (Ar) = o(r) AT <;> L O(r) =B,

and

* AST
g (6A22732 Z+B2€ 2'r >

or |l + ByeAsTr||
_ o C*(T)Ar||l + C*(1)r|]?2 — (C*(T)Ar, L+ C*(1)r) (I + C*(7)r)
1+ C*(r)r|? ’
then
DF(r'")(Ar) = DF (") (Ar) + DFy(r")(Ar),
DE (r')(Ar) _ 1 / A2T By BrednT Ar dr, 29)
2E1(r’
ATl + C*(7)r||> — (C*(1)Ar, I + C*(1)r) (L + C* (7))
DF2 AT‘ E(/ C ||l +C*(T)T||3 dr.

If E1(r") # 0, the latter identity in implies DFy(r') > 0. Tt follows from the Cauchy-
Schwarz inequality and relations that DF,y(r') > 0. This is why, if Ey(r') # 0, then
DF(r") > 0 and identity is possible only as Ar =ry —ry = 0.
Since Ar # 0, it follows from identity that
El(T,) = (Z)
and by the Cauchy-Schwarz inequality, the vector | + Bje“2™r' is parallel to the vector
BjeA2T Ar for all 7. The identity F;(r') = () means that

Iy + e?27¢/|| > 2 for all 7. (30)

By the assumptions of the theorem, Bje422™Ar # 0. Hence, there exists a function 3: R — R
such that
|+ Bie’2"r' = B(1)Bje 2" Ar for all 7.
Hence, [ reads as Bjly. Thus, if [ € Im (Bj), identity is impossible.
By the injectivity of the operator B; we obtain that

V1 ol + ety = B(r)et2" Ar (31)
We multiply identity by e~42:7 and we get:
e 2] 41" = B(T)Ar. (32)

Hence, the function §(7) is infinitely differentiable. We differentiate identity twice in T
and we obtain:
— A e 42T = B(T)Ar,  (A,)%e 271 = B"(1)Ar.
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As 7 = 0, this gives the identities:
— Ay = B(0)Ar,  (A3)%L = B"(0)Ar. (33)
If 5'(0) =0 or 5”(0) = 0, then /; = 0 that contradicts the assumptions of the theorem.
It follows from identity that
B"(0)Ar = (A3,)°l = — A3,/ (0)Ar,
that is, the vector Ar is an eigenvector of the matrix A3,. Hence,

AL Ar = —aAr, o> 0, (34)
where a = 7(0)/0'(0) is an eigenvalue of the matrix Aj,. If the matrix A3, has no real
eigenvalues, identity is impossible.

It follows from identities and that the vector [y is parallel to the vector Ar. This

is why by identity and 7’ is parallel to the vector [;. Since ' = r; — BoAr for some [y, it
follows that the vectors r1, 79 are parallel to the vector [;. Thus, in this case,

r = 5111, o = 51527 r = 53l1.

and identity being valid for r;, i = 1,2 after calculating its scalar product with [;, casts

into the form:
“+o0

/ (L+ Bie*)e || B3 1*
LS|+ ieer| 1 Bsull)
The above identity is impossible if 1 + f;e7%7 is sign-definite on [0, +00). Since e 7
is strictly decreasing and e " — 0 as 7 — 400, we obtain that 3; < —1, i« = 1,2. By
the relation r’ € [ry,ro] this implies that 3 < —1. But then there exists 7 > 0 such that
|1 + 536’“0| - || B3l1]| = 0 and this contradicts inequality . O

dr =0, i=1,2. (35)

In what follows we suppose that
r=m, Ayp=-1, By=1I. (36)
Here I stands for the identity mapping of R™ onto R™.
Lemma 2. Let conditions (@ and the assumptions of Theorem are satisfied. Then
re = 19 = Allo —2B3ly as ¢ — 0.

Proof. Under , equation becomes

—+00

/6_75(l+6 " dr= 0, (37)
0

11+ e=7r]])

where [:= Bgly, r:=rq + (A%y) ' Alylp. Thanks to Theorem [3] it is sufficient to confirm that
the vector (—2I) is its solution. We substitute » = —2[ into the left hand side of equation (37,
we obtain:

“+00 1

- (1—267T>l N PO (1 —2¢) .
/ (2 1) = 0/s(|1_2§|.|u||)d“ oo

0
1 1
n
2/5(\UI-HZH)

-1

since the integrand is odd. O]
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5. ASYMPTOTIC EXPANSION OF VECTOR A. UNDER CONDITIONS ([36])
We observe that by conditions we have:
By = By + A, ro = (Ajy — 2B;)l, (38)

Cralt) = Bie®it + Apy (e — e £1) D0(=1)feH (A1), (39)
k=0
It follows from identities and that
CI(t)Ae =C7 o(t)lo + CT oAl — e AL, eMAT 1) —
— 2 = Bily — Alye Al 4+ e Al < AY Dy + e = Ar + Fole, Al Ar).
Here Al:=1. — ly, Ar:=r. —rg, and Fa(e, Al, Ar) is a function of a second order of smallness
in {e, Al, Ar}.
We begin with the case, when the limiting problem has a single point of the change of the

type of optimal control. Suppose that for the limiting problem and the initial state of the
system z¥ there exists the only moment of time t = t, € (0, T) such that

HCT,O(t)ZOH <2, HCio(?fo)loH =2 forall t<t,
||Ci0(t)l0|| >2 forall t> to,

(40)

) (4n)
%HCiO(t)lOH? » # 0.
Lemma 3. If the condition
| Bolo|| <2 (42)
holds, then
Vi. = lgVre — (A5, — 2B5)ly eg > 0Ve € (0,60) Vi € [0,Ve] |CEE)A| < 2. (43)

Proof. We assume the opposite; then there exits sequences {t,} C [0, /2] and {&,} such that
er — +0 and

1C2, (Ek)Asc || 2 2. (44)
We let 7, =1ty /ek, I =1, 7 :=7rc, and A\, :=A.,. Then by identity we get:
C:k (tk>)\€k = Cio({ika)lg — 26777“38[0 -+ ./—"1 <5k7 Alk, A?"k), (45)

Al =1, — 1o, Ary =1 — T, Fi(er, Aly, Arg) — 0.

Let 7 be a limiting point of the sequence {7 }; to shorten the notation, we suppose that 7, — 7.
If 79 = 400, we pass to the limit as £ — oo in identity and taking into consideration that
Ik = lo, 7 — (Afy — 2B§)lo, we obtain: C7 (exm) A\ — Bglo. But || Bilo|| < 2 by assumption
and this contradicts condition .

Thus, all limiting points 79 are finite. Then &7, — 0 and this is why CZ (ep7)\ —
(1 —2e7™)Bjly. But

(1= 267) Blo| = [1 = 267 1 Bgloll < I1B5loll <2
and this contradicts condition (44)). O]

Theorem 4. Under condition ([{9), there exists €g > 0 such that for each € € (0,g) there
exists a single point t. of the change of the type of optimal control in problem , that is,

|ICE ()N < 2, |CE(t)Xe|| =2 forall t<t., |ICX(t)A|| > 2 for all t > t..
At that, t. — tg as € — 0.
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Proof. We note that by assumption there exists dp > 0 such that

d
EHCT,O(t)lOHQ >0 forall te [to - (50, t() + 50]

t=to

By and and since [|Cf,(to — do)lo|| < 2 and [|C (o + do)lo|| > 2, there exists £, > 0
such that for all € € (0,£1) and t € [ty — do, to + do] the inequalities hold:

0
1C2 (0 — do)Aell <2, [|CZ(to + do) Al > 2, §(||C§(t)>\a||2) >0

This implies the existence of a single point t. € [ty — d, to + do] such that ||C*(t.)A\|| = 2.

Let us show that for all sufficiently small € > 0 (0 < ¢ < g9 < &;) there are no other points ¢
obeying identity [|CX(t)A:|| = 2.

By condition (41]) there exists v > 0 such that as |t — to| > dp, the estimate holds:

1CT o ()] — \v>0

Then it follows from estimate (1)) and condition that for all sufficiently small ¢ > 0,
t € [\/&,T] and ||t — to|| = 0o the inequality holds:
IC2 ()| = 2] = = > 0.

Hence, [|C*(t)A\|| # 2 for such € and t. On the remaining segment [0,+/2], the relation
|Cx(t)Ac|| # 2 holds thanks to condition ({43]). O
Thus, in the considered case, the integral in is also split into the sum of two integrals:

te T

1 . Cx(t)A
/ Sean 50/ c.mezona+ [ .oy (46)

€

Let Al. =1, — ly, Ar. :=r. —r9, At.:=t. — tg. Then

(AL B B B
Ae = (8(7“0 L ATE)) , Al. = o(1), Ar. = o(1), At. = o(1)

as € = 0, and by identities (2), (3). and Theorem 4] the triple {Al., Ar. At.} solves the
following system of equations depending on the parameter ¢:

(0 =Fy (2, AL Ar, Af) = — Vit (-, )+w;(_z0>
W)y + /015 JOH ()M dt+/01€ % n

0 =Fy(e, tAl, Ar, At) = —Vgog(—sraT) + V902( ) (47)
+; 0/ 10y (O (D dt + / =1y (t )%

0 =Ge, AL Ar, A1) = [[C2 (1 + DONIP — [T ot ol

We note that the functions F}, F;, and G are continuous, and G is infinitely differentiable. Let
us study their asymptotic expansions with respect to infinitesimals Al, Ar and At.
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By the infinite differentiability of the functions ¢} and ¢} and in view of identity ¢3(0) = 0
we obtain:

—Vi(—lo — Al) + Vi(—lo) ~ D*gi(—lo) AL+ Y Py 4(Al),

h=2 (48)

—Vp3(—ere) + Vigs(0) ~ D*05(0)ros + Y Boi(e, Ar),
k=2
where D%¢3(—1ly) andD?p3(0) are second order differentials of ¢} and ¢} at the points (—lo)
and 0, respectively, and @4 x(Al) and ®5 (e, Al) are homogeneous functions of order k, namely,
polynomials of the components of the vector Al and e.

By identity ,

(o)
WE(T>yQ ~ €€A11TA12y0 + ZEkyk, (49)
k=2
where y, are known vectors.
We split each integral in the first and second identity in system of equations into two
parts

to+At to to+At T to T
0 0 to to+At to+At to

and we denote the integrals by I1(e, AN), Ir(e, AN), I3(e, AX) and I4(e, AN), respectively.

We note that by identity , the asymptotics of integrands in Iy — I is power in € and the
components of the vector A\ with coefficients smoothly depending on t.

To expand the integrals I, and I3 in At, we should additionally expand the coefficients
depending on t into the Taylor series at the point ¢y and to integrate the obtained expansions
over the mentioned segments.

We observe that in I, and I3, the terms of the first order of smallness in At are of the form:

Cro(t)Co(to)lo ~ Cro(to)Co(to)lo

) AZ(:7
2 1T o(to)lol|

respectively. Since
1CY o(to)lol| = 2, Ly(e, AN) = O(At), Ly(e, AN) = O(At),

the expansions of the I, 4+ I3 contains no terms of the first order of smallness in Al, Ar, At
and e.
By estimate and identity , on [tg, T] we have asymptotic identities:

Cr.(t) = Bi(t)e*it! + Apeint Y “(—1)Fek(A7)F,  C3.()=0 as e—0.  (50)
k=0
Hence,
i r C(t)A i
*(t

— [ e 1Cy.()CH ()N dt /105t5—5dt:—/ 1O, (OCH ()N dt + O

5 [ iemczon s [ a =5 [ e mez o

0 te 0

—=:I5(, A\) + O,

while the power asymptotics of the integrals I;, ¢ = 2, 3,4 contains no Ar.
We introduce the notation: (Ii(e, A)\)) is a linear in Al, Ar, At and ¢ part of the integral
]i (E, A)\)

1
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By Theorem [4] identities (50)) and
lg
ettty at = o)
0
if f(t,l.,r.) is uniformly bounded on [0, ts], by simple calculations we get:

to
1
(]1(€,A/\))1 = 5/0170(15)011(]@) dt Al —|—6f1 = DnAl —|—€f1, (51)

0
Co(O U Cio (O = (1oL Cro(®lo) Croft)l
(RO (52)

(13(6, A)\))l :/0170(15)

to

—|— Efg = DlgAl + €f3,
1 1
(I5(e, A)\))l = ZAr + Z(QBE; — AL Al +efs, (53)

where fi, f3 and f5 are uniquely calculated by ly. At that, by assumption (36) and Cauchy-
Schwarz inequality we have:

D > 0, Dy > 0. (54)
By identity we can find the asymptotics for the function G(e, Al, At) as Al, At and ¢
tend to zero:
G(e, Al At) ~2(C5 o(to)lo, Cf o(to) AL+ (C5 o) (to) oAt + e A7 e "0l
= . d (55)
+ DG ALAY, () () = ZChot)]

k=2 t=to

where Gy(g, Al, At) are some homogeneous functions of order k in € and the components of the
vectors Al and Ar.

Thus, by identities , , — and , the system for the first corrector of

reads as
£qgy = D2§0T<—ZQ)AZ1 + DllAll + DlgAll
1 1
€go = ZAH + Z(QBS — Afp) Al (56)
egs = 2(Cto(to)lo, C7 o (to) Alr) + (CTo(t0)lo, (C1 ) (to)lo) Aty
By the convexity of ¢, and inequalities , we have
Dz(pi(—lo) + D1+ Do > 0,

and this is why the first equation in system determines uniquely Al; = €l;. After that by
the second equation in system (56)) we uniquely find Ary = er;. Finally, by conditions ,
the coefficient at At; is non-zero and hence, by the third equation in system (56)) we uniquely
determine At; = et;. Thus, the linear operator of the first corrector for system , that is,
the operator

All DQQOT(—lo)All + DllAll + DlgAll
D|Ar | = LAr + 1(2B — Ap,) AL
Aty 2(CF o (to)lo, CF o (to) Alr) + (CT o (to)lo, (C1 ) (to)lo) Ata

is continuously invertible.
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The process of determining next terms in the expansions of Al, Ar and At is continued in a
standard way. Assume that we have approximations of Al, Ar and At up to Nth order. Then
the quantities

N N N
Al :=Al — Zaklk, Aryi:=Ar — Zekrk, Aty :=At — Zektk

k=1 k=1 k=1
satisfy the relations
Alniq Alny
D | Aryyr | = O(EY) + O(ellansall) + O(lzn+all?), ani1i= [ Arygr | (57)
Aty Aty
By the continuous invertibility of the operator D, by relations we obtain:
a1 = 0™ + O(ellznsall) + O(llansal®). (58)

As it was shown in [I0, Stat. 2], it follows from that zy41 = O(eN™). Thus, we have
proved the following theorem.

Theorem 5. Let Assumptions 2 and 3 be satisfied as well as conditions and (@ Then
the vectors l., r. and the moment of time t. are expanded into power asymptotic series

l0+Z8 lk, Tgas ATQ 28* l()‘i‘zg Tk, Ue —t0+28tk, 8—)0,

whose coeﬂiczents can be found in a recurrent way.

Similar results are true in a more general case, when there exist finitely many points
{t1,t2,...,t,} C (0,T) such that

d
|Co (D)o # 2, 1Cat)lo|)* = 4, —|CG ()l
dt

for all ¢t € [0, 7]\ {t;}}_, and condition holds true.
In this case an analogue of Theorem {4 reads as follows.

Theorem 6. Let Assumptions @, (@ and @) hold true. Then there exists g > 0 such
that for each € € (0,e0) there exist the points {t1c,tac, ... tpc} C (0,T) of the change of the
type of optimal control in problem . There are no other points of the change of the type of
optimal control and t;. —t; ase — 0 for each it =1,...,p.

£0, (59)

t=t;

The proof of this theorem is similar to that of Theorem [4]

We note that in this case the system of equations similar to system contains a set of
p equations 0 = G, instead of one scalar equation 0 = G these equations correspond to the
points ¢; . and the unknowns are Al, Ar and At;, i =1,...,p.

Similar to Theorem [5, we can prove the following final theorem.

Theorem 7. Let Assumptions 2 and 3 are satisfied as well as conditions @, (@ and
@. Then the vectors l., . and the moments of time {t1,tac, ..., t,c} are expanded into
power asymptotic series

LE S (28 3
—1 k=1

gti+28kti7k, 1=1,...,p, e — 0,

whose coefficients can be found in a recurrent way.
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