
Theoretical Computer Science 636 (2016) 56–65
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Finding the leftmost critical factorization on unordered

alphabet

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2015
Received in revised form 30 March 2016
Accepted 28 April 2016
Available online 6 May 2016
Communicated by D. Perrin

Keywords:
Critical factorization
Critical points
Leftmost critical point
Unordered alphabet
Crochemore–Perrin algorithm

We present a linear time and space algorithm computing the leftmost critical factorization
of a given string on an unordered alphabet.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stringology and combinatorics on words are closely related fields that intensively interact with each other. One of the
most famous examples of their interaction is the surprising application of the so-called critical factorization, a notion that
was created inside the field of combinatorics on words for purely theoretic reasons (the precise definition is presented
below). Critical factorizations are at the core of the constant space string matching algorithm by Crochemore and Perrin [3]
and its real time variation by Breslauer, Grossi, and Mignosi [1], which are, perhaps, the most elegant and simple string
matching algorithms with such time and space bounds.

It is known that a critical factorization can be found in linear time and constant space when the input string is drawn
from an ordered alphabet, i.e., when the alphabet is totally ordered and we can use symbol comparisons that test for
the relative order of symbols (see [3,4]). In [1] it was posed as an open problem whether it is possible to find in linear
time a critical factorization of a given string over an arbitrary unordered alphabet, i.e., when our algorithm is allowed to
perform only equality comparisons. In this paper we answer this question affirmatively; namely, we describe a linear time
algorithm finding the leftmost critical factorization of a given string on an unordered alphabet. A similar result is known
for unbordered conjugates, a concept related to the critical factorizations: Duval et al. [6] proposed a linear algorithm
that allows to find an unbordered conjugate of a given string on an arbitrary unordered alphabet. It is worth noting that
all known so far algorithms working on general alphabets could find only some critical factorization while our algorithm
always finds the leftmost one. However, for the case of integer alphabet, there is a linear algorithm finding the leftmost
critical factorization [5] but it uses some structures (namely, the Lempel–Ziv decomposition) that cannot be computed in
linear time on a general (even ordered) alphabet [10].

E-mail address: dkosolobov@mail.ru.
http://dx.doi.org/10.1016/j.tcs.2016.04.037
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.04.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:dkosolobov@mail.ru
http://dx.doi.org/10.1016/j.tcs.2016.04.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.04.037&domain=pdf

D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65 57
Fig. 1. Internal, right external, and left external local periods of the string abbaabba.

The paper is organized as follows. Section 2 contains some basic definitions and facts used throughout the text. In
Section 3 we present our first algorithm and prove that its running time is O (n log n)1 in Section 4, where n is the length of
the input string. A more detailed analysis of this algorithm is given in Section 5. In Section 6 we improve our first solution
to obtain a linear algorithm. Finally, we conclude with some remarks in Section 7.

2. Preliminaries

We need the following basic definitions. A string w over an alphabet � is a map {1, 2, . . . , n} �→ �, where n is referred to
as the length of w , denoted by |w|. We write w[i] for the ith letter of w and w[i.. j] for w[i]w[i + 1] · · · w[j]. Let w[i.. j] be
the empty string for any i > j. A string u is a substring (or a factor) of w if u = w[i.. j] for some i and j. The pair (i, j) is not
necessarily unique; we say that i specifies an occurrence of u in w . A string can have many occurrences in another string.
A substring w[1.. j] [respectively, w[i..n]] is a prefix [respectively, suffix] of w . For integers i and j, the set {k ∈ Z : i ≤ k ≤ j}
(possibly empty) is denoted by [i.. j]. Denote [i.. j) = [i.. j − 1], (i.. j] = [i + 1.. j], and (i.. j) = [i + 1.. j − 1]. Our notation for
arrays is similar to that for strings: for example, a[i.. j] denotes an array indexed by the numbers i, i + 1, . . . , j.

Throughout the paper, we intensively use different periodic properties of strings. A string u is called a border of a string
w if u is both a prefix and a suffix of w . A string is unbordered if it has only trivial borders: the empty string and the string
itself. An integer p is a period of w if 0 < p ≤ |w| and w[i] = w[i + p] for all i = 1, 2, . . . , |w| − p. It is well known that
p > 0 is a period of w iff w has a border of the length |w| − p. A string of the form xx, where x is a nonempty string, is
called a square. Let w[i.. j] = xx for some i, j and a nonempty string x; the position i + |x| is called the center of the square
w[i.. j]. A string w is primitive if w �= xk for any string x and any integer k > 1. A string v is a conjugate of a string w if
v = w[i..|w|]w[1..i − 1] for some i.

Lemma 1 (See [12]). A string w is primitive iff w has an unbordered conjugate.

Now we can introduce the main notion of this paper. The local period at a position i (or centered at a position i) of w is
the minimal positive integer μ(i) such that the substring w[max{1, i −μ(i)}.. min{|w|, i +μ(i) −1}] has the period μ(i) (see
Fig. 1). Informally, the local period at a given position is the size of the smallest square centered at this position. We say
that the local period μ(i) is left external [respectively, right external] if i −μ(i) < 1 [respectively, i +μ(i) − 1 > |w|]; the local
period is external if it is either left external or right external. The local period is internal if it is not external. Obviously, the
local period at any position of w is less than or equal to the minimal period of w . A position i of w with the local period
that is equal to the minimal period of w is called a critical point; the corresponding factorization w[1..i − 1] · w[i..|w|] is
called a critical factorization. The following remarkable theorem holds.

Theorem 1 (See [2,12]). Let w be a string with the minimal period p > 1. Any sequence of p − 1 consecutive positions of w contains
a critical point.

Theorem 1 implies that any string with the minimal period p has a critical point among the positions 1, 2, . . . , p. Clearly,
the local period corresponding to any such critical point is left external. The following lemmas are straightforward.

Lemma 2. If the local period at a position of a given string is both left external and right external, then this position is a critical point.

Lemma 3. If the local period μ(i) at a position i of a given string w is not right external [respectively, left external], then the string
w[i..i + μ(i) − 1] [respectively, w[i − μ(i)..i − 1]] is unbordered.

3. O (n log n) algorithm

Our construction is based on the following observation.

Lemma 4. Let w be a string with the minimal period p > 1. Denote k = max{l : w[1..l] = w[j.. j + l − 1] for some j ∈ (1..p]}. The
leftmost critical point of w is the leftmost position i > k + 1 with external local period.

Proof. Denote by j a position such that j ∈ (1..p] and w[1..k] = w[j.. j + k − 1]. Obviously, each of the positions 1, 2, . . . ,
k + 1 has the local period that is at most j − 1 < p (see Fig. 2) and hence cannot be a critical point.

1 For brevity, log denotes the logarithm with the base 2.

58 D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65
Fig. 2. The local period at a position i ∈ [1..k + 1].

Consider a position i with left external local period μ(i) < p. By Lemma 2, μ(i) is not right external. So, we have
w[1..i − 1] = w[μ(i) + 1..i + μ(i) − 1]. Since μ(i) + 1 ≤ p, by the definition of k, we have i − 1 ≤ k. Hence, any position
i > k + 1 with left external local period is a critical point.

Now consider a position i with right external local period μ(i) < p. By Lemma 2, μ(i) is not left external. It is easy to see
that for any i′ ∈ (i..|w|], we have μ(i′) ≤ μ(i) and i′ − μ(i′) ≥ 1. Since Theorem 1 implies that w must have a critical point
with left external local period, the position i cannot be the leftmost position in (k + 1..|w|] with external local period. �

Hereafter, w denotes the input string of length n with the minimal period p. We process the trivial case p = 1 separately,
so, assume p > 1. According to Theorem 1 and Lemma 4, our algorithm processes only the first p positions of w from left
to right starting from the position k + 2, where k is defined as in Lemma 4, and when a local period at a given position
i is computed, then the following positions are skipped while they have at most the same local period. This leads to an
O (n log n) time algorithm. To get a linear time algorithm, some local periods are reported from previous positions due to
some local properties that are discussed in details in Section 6. More precisely, our O (n logn) algorithm is as follows.

Algorithm 1
1: compute k = max{l : w[1..l] = w[j.. j + l − 1] for some j ∈ (1..p]}
2: i ← k + 2;
3: while true do
4: compute μ(i);
5: if μ(i) is external then
6: i is the leftmost critical point; stop the algorithm;

7: μ ← μ(i);
8: while w[i − 1] = w[i + μ − 1] do
 skip positions that have local period at most μ
9: i ← i + 1;

Obviously, the positions that the algorithm skips in lines 8–9 have the local period at most μ < p and therefore cannot
be critical points. So, Lemma 4 immediately implies the correctness of Algorithm 1.

To calculate the number k in O (n) time, we utilize the following fact.

Lemma 5 (See [8, Chapter 1.5]). For any strings u and w, one can compute in O (|u|) time an array b[1..|u|] such that b[j] =
max{l : u[j.. j + l − 1] = w[1..l]} for j ∈ [1..|u|].

To complete our construction, we describe an algorithm calculating the local period μ(i) at a given position i provided
μ(i) is internal. If this algorithm fails to compute μ(i), we decide that the local period is external.

Lemma 6. One can compute the internal local period μ(i) at a given position i in O (μ(i)) time and space.

Proof. Fix an integer x < i. Let us first describe an algorithm that finds μ(i) in O (x) time and space provided μ(i) ≤ x.
Using Lemma 5, our algorithm constructs in O (x) time an array b[i − x..i − 1] (for clarity, the indices start with i − x) of
the length x such that b[j] = max{l : l ≤ x and w[j.. j + l − 1] = w[i..i + l − 1]} for j ∈ [i − x..i). It is straightforward that
μ(i) = i − j for the rightmost j ∈ [i − x..i) such that b[j] ≥ i − j.

Now, to compute μ(i), we consecutively execute the above algorithm for x = 20, 21, 22, . . . , 2�log(i−1)� and, finally, for
x = i − 1 until we find μ(i). Thus, the algorithm runs in O (

∑
log μ(i)�
j=0 2 j) = O (μ(i)) time and space. �

4. O (n log n) time bound

During the execution, Algorithm 1 calculates local periods at some positions. Let S be the sequence of all such positions
in the input string w in increasing order. It is easy to see that the running time of the whole algorithm is O (n +∑

i∈S μ(i)).
Thus, to prove that Algorithm 1 works in O (n log n) time, it suffices to show that

∑
i∈S μ(i) = O (n log n). Simplifying the

discussion, we exclude from S all positions i such that μ(i) = 1.
Fix an arbitrary number q. Denote by T (q) the maximal sum

∑
i∈S ′ μ(i) among all contiguous subsequences S ′ of S such

that μ(i) ≤ q for each i ∈ S ′ . We are to show that T (q) = O (q log q), which immediately implies
∑

i∈S μ(i) = O (n log n) since
the number q is arbitrary and T (n) = ∑

i∈S μ(i).
For further investigation, we need three additional combinatorial lemmas. Consider a position i of w with internal local

period μ(i) > 1. Informally, Lemma 7 shows that at the positions (i..i + μ(i)) any internal local period that “intersects” the
position i and is not equal to μ(i) is either “very short” (< 1 μ(i)) or “very long” (≥ 2μ(i)). Lemma 8 claims that always
2

D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65 59
Fig. 3. Two impossible cases in Lemma 7: (a) μ(i)/2 < μ(j) < μ(i), (b) μ(i) < μ(j) < 2μ(i).

Fig. 4. The positions i j + 1, i j + 2, . . . , r j − μ(i j) are shaded.

there is a “long” local period centered at (i..i + μ(i)); moreover, this local period either is equal to μ(i) or is “very long”
(≥ 2μ(i)). Lemma 9 connects the bounds on the internal local periods that “intersect” the position i, as in Lemma 7, and
those local periods that do not “intersect” the position i. Now let us formulate these facts precisely.

Lemma 7. Let i be a position of w with internal local period μ(i) > 1. For any j ∈ (i..i +μ(i)) such that j −μ(j) < i and μ(j) �= μ(i),
we have either μ(j) < 1

2 μ(i) or μ(j) ≥ 2μ(i).

Proof. The proof is essentially the same as in [14, Lemma 2]. Let μ(j) ≥ 1
2 μ(i). Suppose μ(j) = 1

2 μ(i). Since, by Lemma 3,
the string w[i..i +μ(i)−1] is unbordered and hence cannot have the period μ(j) < μ(i), we obtain j +μ(j) < i +μ(i). The
string w[j − μ(j).. j + μ(j) − 1] is not primitive and has the length μ(i). Thus, the string w[i..i + μ(i) − 1] is a conjugate
of w[j − μ(j).. j + μ(j) − 1] and therefore is not primitive, a contradiction.

Now suppose μ(i)/2 < μ(j) < μ(i). As above, we have j + μ(j) < i + μ(i). Thus, the string w[j.. j + μ(j) − 1] has
an occurrence w[j − μ(i).. j − μ(i) + μ(j) − 1] that overlaps the string w[j − μ(j).. j − 1] = w[j.. j + μ(j) − 1] because
2μ(j) > μ(i) (see Fig. 3a). But, by Lemma 3, w[j − μ(j).. j − 1] is unbordered and therefore cannot overlap its own copy.
This is a contradiction.

Finally, suppose μ(j) > μ(i). By Lemma 3, w[j −μ(j).. j −1] is unbordered. If j −μ(j) ≥ i −μ(i), then w[j −μ(j).. j −1]
has the period μ(i) < μ(j), a contradiction. Hence, we have j − μ(j) < i − μ(i). If μ(j) < 2μ(i), then the string w[j..i +
μ(i) − 1], which is a suffix of w[i..i + μ(i) − 1], has an occurrence w[j − μ(j)..i + μ(i) − μ(j) − 1] that overlaps w[i −
μ(i)..i −1] = w[i..i +μ(i) −1] (see Fig. 3b). This is a contradiction because, by Lemma 3, w[i −μ(i)..i −1] is unbordered. �
Lemma 8. Let i be a position of w with internal local period μ(i) > 1. Then there exists j ∈ (i..i + μ(i)) such that either μ(j) = μ(i)
or μ(j) ≥ 2μ(i).

Proof. By Lemma 3, the string w[i..i + μ(i) − 1] is unbordered and its minimal period is μ(i). For any position j ∈ (i..i +
μ(i)), denote by μ′(j) the local period in j with respect to the substring w[i..i + μ(i) − 1]. Observe that μ′(j) ≤ μ(j). By
Theorem 1, there is j ∈ (i..i + μ(i)) such that μ′(j) = μ(i) and j − μ′(j) < i. Hence, we have μ(j) ≥ μ(i) and, moreover, if
μ(j) > μ(i), then, by Lemma 7, μ(j) ≥ 2μ(i). �
Lemma 9. Let i be a position of w with internal local period μ(i) > 1. Fix j ∈ (i..i +μ(i)). Then, for any h ∈ (i.. j] such that μ(h) > 1,
we have μ(h) ≤ max{μ(h′) : h′ ∈ (i.. j] and h′ − μ(h′) < i}.

Proof. Suppose, to the contrary, there is h ∈ (i.. j] such that μ(h) > 1 and μ(h) > max{μ(h′) : h′ ∈ (i.. j] and h′ − μ(h′) < i};
let h be the leftmost such position. Then, we have h − μ(h) ≥ i. Using a symmetrical version of Lemma 8, we obtain
h′ ∈ (h −μ(h)..h) such that μ(h′) ≥ μ(h). Since μ(h′) ≥ μ(h), by the definition of h, we have h′ −μ(h′) ≥ i. This contradicts
to the choice of h as the leftmost position with the given properties because h′ < h and h′ ∈ (i.. j]. �

Hereafter, S ′ = {i1, i2, . . . , iz} denotes a contiguous subsequence of S such that μ(i j) ≤ q for each j ∈ [1..z] and T (q) =∑z
j=1 μ(i j). We associate with each i j the numbers r j = max{r : w[i j −μ(i j)..r − 1] has the period μ(i j)} and c j = max{c ≤

r j − μ(i j) : w[c..c + μ(i j) − 1] is unbordered} (see Fig. 4). By Lemma 3, the string w[i j ..i j + μ(i j) − 1] is unbordered and
therefore c j ≥ i j . Since w[c j ..c j + μ(i j) − 1] is unbordered and w[c j − μ(i j)..c j − 1] = w[c j ..c j + μ(i j) − 1], we have
μ(c j) = μ(i j). Since w[r j − μ(i j)..r j − 1] is primitive, it follows from Lemma 1 that c j > r j − 2μ(i j). Algorithm 1 skips the
positions i j + 1, i j + 2, . . . , r j − μ(i j) in the loop in lines 8–9.

Lemma 10. For any j ∈ [1..z] and i ∈ (c j ..c j + μ(c j)), we have μ(i) �= μ(c j).

60 D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65
Fig. 5. The strings a and b.

Proof. For converse, suppose μ(i) = μ(c j). Since w[i − μ(i)..i − 1] = w[i..i + μ(i) − 1] and μ(i) = μ(c j) = μ(i j), by the
definition of r j , we have i ≤ r j − μ(i j). It follows from Lemma 3 that w[i..i + μ(i) − 1] is unbordered. This contradicts to
the definition of c j because c j < i ≤ r j − μ(i j). �

To estimate the sum
∑z

j=1 μ(i j), we construct a subsequence is1 , is2 , . . . , ist by the following inductive process. Choose
is1 = i1. Suppose we have already constructed a subsequence is1 , is2 , . . . , is j . Choose the minimal number i′ ∈ (cs j ..cs j +
μ(cs j)) such that μ(i′) ≥ μ(cs j). By Lemma 8, such number always exists. If i′ > iz , we set t = j and stop the process. Let
i′ ≤ iz . It follows from Lemma 10 that μ(i′) �= μ(cs j). Hence, by Lemma 8, μ(i′) ≥ 2μ(cs j) = 2μ(is j). Since μ(i′) > μ(is j), it
follows from the definition of rs j that i′ > rs j −μ(is j). Therefore, Algorithm 1 does not skip i′ and i′ ∈ S . Since {i1, i2, . . . , iz}
is a contiguous subsequence of S , we have i′ = i j′ for some j′ ∈ [1..z]. Set is j+1 = i j′ .

Now we can prove that the running time of Algorithm 1 is O (n log n). For any j ∈ [1..t), we have μ(is j+1) ≥ 2μ(is j) and
therefore

∑t
j=1 μ(is j) ≤ μ(ist) + 1

2 μ(ist) + 1
22 μ(ist) + · · · ≤ 2μ(ist) ≤ 2q. Further, let h ∈ [1..z] and is j < ih < is j+1 for some

j ∈ [1..t). Since Algorithm 1 skips the positions (is j ..cs j] and is j+1 ∈ (cs j ..cs j + μ(cs j)), it follows that ih ∈ (cs j ..cs j + μ(cs j)).
Recall that is j+1 is the minimal number from (cs j ..cs j + μ(cs j)) such that μ(is j+1) ≥ μ(cs j). Thus, by Lemmas 7 and 9, we
have μ(ih) < 1

2 μ(cs j) = 1
2 μ(is j). In the same way, for h ∈ [1..z] such that ih > ist , we have μ(ih) < 1

2 μ(ist). So, we obtain
the following recursion:

T (q) ≤ 2q + T

(
1

2
μ(is1)

)
+ T

(
1

2
μ(is2)

)
+ · · · + T

(
1

2
μ(ist)

)
. (1)

Consider a recursion T (q) = O (q) +∑t
j=1 T (q j). It is well known that if the sum of the terms from the parentheses of T (. . .)

in the right hand side of this recursion (i.e.,
∑t

j=1 q j) is less than or equal to q and each of those terms (i.e., each q j) is
less than or equal to 1

2 q, then the recursion has a solution T (q) = O (q log q). Thus, since the sum of the terms from the
parentheses of T (. . .) in the right hand side of (1) is equal to 1

2

∑t
j=1 μ(is j) ≤ q and each of these terms is less than or

equal to 1
2 q, we obtain T (q) = O (q log q).

5. Problems with linearity

To obtain T (q) = O (q), we might prove that if 2μ(ist−1) and μ(ist) are close enough (namely, 7
3 μ(ist−1) > μ(ist)), the

term T (1
2 μ(ist)) in (1) is actually T (2

3 μ(ist−1)) ≤ T (1
3 μ(ist)); this fact would imply that the sum of the terms in the

parentheses of T (. . .) in the right hand side of (1) is less than αq for some constant α < 1 and therefore T (q) = O (q).
Unfortunately, this is not true for Algorithm 1. Nevertheless, we prove a restricted version of the mentioned claim. It reveals
problems that may arise in the current solution and points out a way to improvements.

Lemma 11. Let i ∈ (cst ..cst + μ(cst)). Suppose μ(i′) < μ(cst) and μ(i′) �= μ(ist−1) for each i′ ∈ (cst ..i]. If 7
3 μ(ist−1) > μ(ist), then

μ(i) < 2
3 μ(ist−1).

Proof. Recall that 2μ(cst−1) ≤ μ(ist). Denote a = w[cst−1 ..cst−1 + μ(cst−1) − 1] and b = w[cst−1 + μ(cst−1)..cst−1 − μ(cst−1) +
μ(ist) − 1] (see Fig. 5). Note that μ(cst−1) = |a| and μ(cst) = |aab|. It follows from Lemma 3 that a is unbordered. Since,
by Lemma 3, the string w[ist ..ist + μ(ist) − 1] is unbordered, the string b is not empty. The inequality 7

3 |a| = 7
3 μ(ist−1) >

μ(ist) = |baa| implies |b| < 1
3 |a|.

In view of Lemma 9, it suffices to prove the lemma only for the positions i such that i − μ(i) < cst . So, assume i −
μ(i) < cst . Since μ(i) < μ(cst), it follows from Lemma 7 that μ(i) < 1

2 μ(cst) = 1
2 |baa| < |ab|. Since, by Lemma 3, w[cst ..cst +

μ(cst) −1] is unbordered and thus cannot have the period μ(i) < μ(cst), we obtain i +μ(i) < cst +μ(cst). So, w[i −μ(i)..i +
μ(i) − 1] is a substring of the string w[ist − μ(ist)..rst − 1]. Therefore, since w[ist − μ(ist)..rst − 1] has the period μ(ist) =
μ(cst) = |aab|, the string w[i − μ(i)..i + μ(i) − 1] is a substring of the string u = aabaabaab (see Fig. 5). Thus, to finish the
proof, it suffices to prove the following claim.

Claim. Let i be a position of u with internal local period μ(i) (the local period at i is with respect to the string u). If μ(i) < |ab| and
μ(i) �= |a|, then μ(i) < 2

3 |a|.

Let i be a position of u with internal local period μ(i) such that μ(i) < |ab| and μ(i) �= |a|. Consider two cases.

D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65 61
Fig. 6. The impossible case i ∈ (|aaba|..|aabaa|] and i − μ(i) > |aaba| from the proof of Lemma 11.

Fig. 7. The impossible cases for i ∈ (|aa|..|aab|] in the proof of Lemma 11: (a) i − μ(i) > |a|; (b) i − μ(i) ≤ |a|.

1) Suppose i lies in an occurrence of a in u = aabaabaab. Without loss of generality, consider the case i ∈ (|aaba|..|aabaa|];
all other cases are similar. If i − μ(i) ≤ |aaba|, then, by Lemma 7, we have either μ(i) < 1

2 |a| or μ(i) ≥ 2|a|. The lat-
ter is impossible because μ(i) < |ab| < 2|a| while the former implies μ(i) < 2

3 |a| as required. Now let i − μ(i) > |aaba|.
Assume, by a contradiction, that μ(i) ≥ 2

3 |a|. Then w[i − μ(i)..i − 1] is a substring of a and thus it has an occurrence
v = w[i − μ(i) + |ab|..i − 1 + |ab|] (see Fig. 6). Since 2μ(i) ≥ 4

3 |a| > |ab|, the string w[i..i + μ(i) − 1], which is also an
occurrence of w[i − μ(i)..i − 1], overlaps v . This is a contradiction because w[i − μ(i)..i − 1] is unbordered by Lemma 3.

2) Suppose i lies in an occurrence of b in u = aabaabaab. Without loss of generality, consider the case i ∈ (|aa|..|aab|].
Assume, by a contradiction, that μ(i) ≥ 2

3 |a|. Suppose i −μ(i) > |a| (see Fig. 7a). Then the string w[i −μ(i)..|aa|], which is a
suffix of a, has an occurrence v = w[i..|aa| + μ(i)]. Since μ(i) ≥ 2

3 |a| > |b|, v overlaps w[|aab| + 1..|aaba|] = a. Hence, a has
a nontrivial border, clearly a contradiction. Suppose i − μ(i) ≤ |a| (see Fig. 7b). Then the string w[|a| + 1..|aa|] = a has an
occurrence v = w[|a| + 1 +μ(i)..|aa| +μ(i)]. Since μ(i) < |ab| and μ(i) +|a| ≥ 5

3 |a| > |ab|, the string w[|aab| + 1..|aaba|] = a
overlaps v = a. This is a contradiction because a is unbordered. �

Let us consider how one might use Lemma 11 to obtain T (q) = O (q). Suppose t > 1, 7
3 μ(ist−1) > μ(ist), and μ(ih) �=

μ(ist−1) for all h ∈ (st ..z]. Lemma 11 implies that μ(ih) < 2
3 μ(ist−1) ≤ 1

3 μ(ist) for each h ∈ (st ..z]. So, combining Lem-
mas 7, 9, 11, one can deduce the following recursion:

T (q) ≤
t∑

j=1

μ(is j) + T

(
1

2
μ(is1)

)
+ · · · + T

(
1

2
μ(ist−1)

)
+ T

(
1

3
μ(ist)

)
. (2)

Let us estimate the sum of the terms from the parentheses of T (. . .) in the right hand side of (2). Since
∑t−1

j=1 μ(is j) ≤ q,
we have 1

2 μ(is1) + · · · + 1
2 μ(ist−1) + 1

3 μ(ist) ≤ 1
2 q + 1

3 q = 5
6 q. The sum

∑t
j=1 μ(is j) is bounded by 2q. It is well known that

such recursion has a solution T (q) ≤ 2q + 5
6 2q + (5

6)22q + · · · = O (q). Unfortunately, a fatal problem arises when there is
h ∈ (st ..z] such that μ(ih) = μ(ist−1). Exploiting this case, we construct a string on which Algorithm 1 performs �(n log n)

operations.

Example. Let ai and bi be sequences of strings inductively defined as follows: a0 = a, b0 = b and ai+1 = ai$iai , bi+1 =
biai$iaibi , where a, b, $0, $1, $2, . . . are distinct letters. Denote wi = aibiai . Note that wi+1 = ai$i wi$i wi$iai ; this recursive
structure of wi+1 is very important for us. Our counterexample is the string w = #wi+1#ai+1#, where # is a unique special
letter. Clearly, the minimal period of w is |w| − 1. Since w = #ai+1bi+1ai+1#ai+1#, it is easy to see that the number k =
max{l : w[1..l] = w[j.. j + l −1] for some j ∈ (1..|w|)} is equal to |#ai+1|. So, Algorithm 1 starts with the position |#ai+1| +2.
Now consider some combinatorial properties of wi .

Lemma 12. The string wi = aibiai satisfies the following conditions:

(1) the local period at each of the positions [|ai| + 2..|aibi |] is internal;
(2) the local period at position |aibi | + 1 is right external.

Proof. The proof is by induction on i. The base case w0 = aba is obvious. The inductive step is wi+1 = ai+1bi+1ai+1 = ai$iai ·
biai$iaibi · ai$iai = ai$i wi$i wi$iai . Consider condition (1). The positions [|ai+1| + 2..|ai+1bi |] correspond to the positions
[|ai | +2..|aibi |] of the first occurrence of the string wi = aibiai in wi+1. Hence, by the inductive hypothesis, the local periods
at these positions are internal. It is obvious that p = |ai$iaibi | is a period of wi+1 and therefore the positions (p..|w| − p +1]
all have internal local periods. So, it suffices to consider the positions [|w| − p +2..|ai+1bi+1|] = [|ai+1biai$iai | +2..|ai+1bi+1|].
Similarly, these positions correspond to the positions [|ai | + 2..|aibi |] of the second occurrence of the substring wi = aibiai
in w . Therefore, by the inductive hypothesis, all these positions have internal local periods. Consider condition (2). Denote

62 D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65
Fig. 8. j − m[j] ≥ i − m[i] and r[j] + m[i] < r[i].

j = |ai+1bi+1 + 1|. By the inductive hypothesis, μ(j) > |ai |. Now since w[j + |ai |] = $i , it is easy to see that μ(j) > |ai+1|,
i.e., μ(j) is right external. �

The main loop of Algorithm 1 starts with the position |#ai+1| + 2 = |ai$iai | + 2, i.e., with the position |ai | + 2 inside
the first occurrence of wi in wi+1 = ai$i wi$i wi$iai . By Lemma 12, we process wi until the position |aibi | + 1 in wi that
corresponds to the position j = |#ai$iaibi | + 1 in w is reached. By Lemma 12, we have μ(j) > |ai |. Hence, it is straightfor-
ward that μ(j) = |ai$iaibi |, which is a period of the whole string wi+1. Algorithm 1 calculates μ(j) and then skips some
positions in the loop in lines 8–9 until it reaches the position j′ = |#ai$i wi$iai | + 2, all in �(|wi+1|) time. The position j′
corresponds to the position |ai | + 2 inside the second occurrence of wi in wi+1 = ai$i wi$i wi$iai . So, we have some kind
of recursion here. Denote by ti+1 the time required to process the substring wi+1 of w; it follows from our discussion that
ti+1 can be expressed by the following recursive formula: ti+1 = �(|wi+1|) + 2ti (with t0 = 0). For simplicity, assume that
the constant under the � is 1, so, ti+1 = |wi+1| + 2ti .

To estimate ti+1, we first solve the following recursions: |ai+1| = 2|ai | + 1, |bi+1| = 2|bi | + 2|ai | + 1, |wi | = 2|ai | + |bi |
(with |a0| = |b0| = 1). Obviously |ai | = 2i+1 − 1. Then |bi+1| = 2i+2 − 1 + 2|bi |. By a simple substitution, one can show that
|bi | = i2i+1 + 1. So, we obtain |wi| = i2i+1 + 2i+2 − 1 and therefore ti = i2i+1 + 2i+2 − 1 + 2ti−1. By a substitution, one can
prove that ti = i22i + 5i2i − 2i + 1: indeed, substituting ti−1 = (i − 1)22i−1 + 5(i − 1)2i−1 − 2i−1 + 1, we obtain

ti = i2i+1 + 2i+2 − 1 + 2ti−1

= i2i+1 + 2i+2
��� − 1 + ((i − 1)22i + 5(i−1)2i

����
− 2i

� + 2)

= i22i − ��2i2i + ��2i + ���i2i+1 + 5i2i + 2i+2
��� − 5 · 2i

���
− ��2i

� + 1

= i22i + 5i2i − 2i
� + 1 .

Finally, since |wi+1| = (i + 1)2i+2 + 2i+3 − 1 = �(i2i) and log |wi+1| = �(i), we obtain ti+1 = (i + 1)22i+1 + 5(i + 1)2i+1 −
2i+1 + 1 = �(i22i) = �(|wi+1| log |wi+1|) = �(|w| log |w|).

6. Linear algorithm

To overcome the issues addressed in the previous section, we introduce two auxiliary arrays m[1..n] and r[1..n] that are
initially filled with zeros; their meaning is clarified by Lemma 13 below. In Algorithm 2 below we use the three-operand
for loop like in the C language.

Algorithm 2
1: compute k = max{l : w[1..l] = w[j.. j + l − 1] for some j ∈ (1..p]}
2: i ← k + 2;
3: while true do
4: if m[i] = 0 then
 m[i] is not computed
5: compute μ(i);
6: if μ(i) is external then
7: i is the leftmost critical point; stop the algorithm;

8: m[i] ← μ(i);
9: r[i] ← i + m[i];

10: while w[r[i] − m[i]] = w[r[i]] do
11: r[i] ← r[i] + 1;
12: for (j ← i − m[i]; j < r[i] − m[i]; j ← j + 1) do
13: if m[j] �= 0 and j − m[j] ≥ i − m[i] and r[j] + m[i] < r[i] then
14: m[j + m[i]] ← m[j];
15: r[j + m[i]] ← r[j] + m[i];
16: i ← r[i] − m[i] + 1;

Lemma 13. If m[i] �= 0 for some position i during the execution of Algorithm 2, then m[i] = μ(i) and r[i] = max{r : w[i..r −1] has the
period μ(i)}.

Proof. For each position j, denote r j = max{r : w[j..r − 1] has the period μ(j)}. It suffices to show that the assignments in
lines 14–15 always assign μ(j + m[i]) to m[j + m[i]] and r j+m[i] to r[j + m[i]]. Suppose Algorithm 2 performs line 14 for
some j. Evidently, the string w[i − m[i]..r[i] − 1] has the period m[i] (see Fig. 8). Further, by the condition in line 13, the
strings w[j − m[j]..r[j]] and w[j − m[j] + m[i]..r[j] + m[i]] are substrings of w[i − m[i]..r[i] − 1] and therefore they are

D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65 63
Fig. 9. The internal structure of the string x from the proof of Lemma 15.

equal. Hence, we have μ(j) = μ(j + m[i]) and r j + m[i] = r j+m[i] provided μ(j) = m[j] and r j = r[j]. Now one can prove
the desired claim by a simple induction. �

By Lemma 13, the assignment in line 16 skips exactly the same set of positions as the loop in lines 7–9 in Algorithm 1.
Thus, Lemma 13 implies that the values m[i] = μ(i) computed by Algorithm 2 coincide with the same values computed by
Algorithm 1 and hence are correct. However, now we do not compute some local periods but copy them from the array m
instead. It turns out that this is crucial for the time analysis.

As above, let S be the sequence of all positions that Algorithm 2 does not skip in line 16. Again, we exclude from S
all positions i such that μ(i) = 1. Evidently, the resulting sequence is exactly the same as the sequence S in Section 4 but,
in contrast to Algorithm 1, the new algorithm copies local periods at some positions of S from the array m rather than
calculates them explicitly. Denote by Ŝ the subsequence of all positions of S for which Algorithm 2 computes local periods
explicitly in line 5.

Due to the assignment in line 16, obviously, the loop in lines 10–11 performs at most n iterations in total. The loop
in lines 12–15 performs exactly the same number of iterations as the loop in lines 10–11 plus μ(i) iterations for an
appropriate i ∈ Ŝ . Hence, the running time of the whole algorithm is O (n + ∑

i∈ Ŝ μ(i)). Thus, to prove that Algorithm 2 is
linear, it suffices to show that

∑
i∈ Ŝ μ(i) = O (n).

Fix an arbitrary number q. Denote by T (q) the maximal sum
∑

i∈S ′∩Ŝ μ(i) among all contiguous subsequences S ′ of S

such that μ(i) ≤ q for each i ∈ S ′ (note that we sum only through the positions of Ŝ). We are to show that T (q) = O (q),
which immediately implies

∑
i∈ Ŝ μ(i) = O (n) since the number q is arbitrary and T (n) = ∑

i∈ Ŝ μ(i).
We need one additional combinatorial fact.

Lemma 14. Let i be a position of w with internal local period μ(i) > 1. Suppose j is a position from (i..i +μ(i)) such that μ(j′) < μ(i)
for each j′ ∈ (i.. j]; then w[j − μ(j).. j + μ(j) − 1] is a substring of w[i − μ(i)..i + μ(i) − 1].

Proof. Assume, by a contradiction, that j +μ(j) > i +μ(i). For each h ∈ [i..i +μ(i)), denote by μ′(h) the local period at the
position h with respect to the substring w[i..i +μ(i) −1]. Clearly μ′(h) ≤ μ(h). By Lemma 3, w[i..i +μ(i) −1] is unbordered
and hence its minimal period is μ(i). By Theorem 1, there is h ∈ [i..i + μ(i)) such that μ′(h) = μ(i). But for each h ∈ [i.. j],
we have μ′(h) < μ(i) and moreover, for each h ∈ (j..i + μ(i)), μ′(h) ≤ μ(j) < μ(i) because the local period μ′(j) is right
external with respect to w[i..i + μ(i) − 1], a contradiction. �

Choose a contiguous subsequence S ′ = {i1, i2, . . . , iz} of S such that μ(i j) ≤ q for each j ∈ [1..z] and
∑

i∈S ′∩Ŝ μ(i) = T (q).
As above, we associate with each i j the values c j and r j defined in Section 4. By an inductive process described in Section 4,
we construct a subsequence {is j }t

j=1 of S ′ . The following result complements Lemma 11.

Lemma 15. Let h ∈ (st ..z] and μ(ih) = μ(ist−1). If 7
3 μ(ist−1) > μ(ist), then for each h′ ∈ (h..z], we have ih′ /∈ Ŝ .

Proof. We are to show that, informally, Algorithm 2 processes the position ih in the same manner as it processed ist−1

and the loop in lines 12–15 copies all required local periods μ(ih′) for h′ ∈ (h..z] to the array m immediately after the
computation of r[ist]. (Thus ih′ /∈ Ŝ for h′ ∈ (h..z].)

Denote a = w[cst−1 ..cst−1 + μ(cst−1) − 1] and b = w[cst−1 + μ(cst−1)..cst−1 − μ(cst−1) + μ(ist) − 1] (see Fig. 9). Note that
μ(cst−1) = μ(ist−1) = |a| and μ(cst) = μ(ist) = |aab|. Since 7

3 |a| = 7
3 μ(ist−1) > μ(ist) = |aab|, we have |b| < 1

3 |a|. By Lemma 3,
the string a is unbordered. Denote x = w[ist − |aab|..cst + |aab| − 1] (see Fig. 9). Clearly, x is a substring of the infinite string
aab ·aab ·aab · · · and the length of x is at least 2|aab| (recall that cst can coincide with ist). Notice that the distance between
ist and cst can be arbitrarily large.

Without loss of generality, assume that ih is equal to the leftmost position i > cst such that μ(i) = μ(ist−1) = |a|. (Since
{i1, . . . , iz} is a contiguous subsequence of S , i is certainly equal to ih for some h ∈ (st ..z].) Obviously ih ∈ (cst ..cst + |aab|).
It follows from the definition of ih and from Lemma 11 that for each i ∈ (cst ..ih), we have μ(i) < 2

3 |a|. So, Lemma 9 implies
that ih − μ(ih) = ih − |a| < cst . Since by Lemma 3 the string w[cst ..cst + |aab| − 1] is unbordered and thus cannot have the
period |a| < |aab|, we obtain rh < cst + |aab|. Thus, the string w[ih − |a|..rh] is a substring of x (see Fig. 10). Now we must
specify where the position ih can occur in x.

By Lemma 10, for any i ∈ (cst−1 ..cst−1 + |a|), we have μ(i) �= |a|. Hence ih /∈ (cst−1 ..cst−1 + |a|). Moreover, since x is a
substring of the infinite string aab · aab · aab · · · and w[ih − |a|..ih + |a| − 1] is a substring of x, in the same way one can
prove that ih does not lie in the segments (cst−1 + |aba|..cst−1 + |abaa|), (cst−1 + |abaaba|..cst−1 + |abaabaa|), . . . (see Fig. 10),
i.e., informally, ih cannot lie in the right half of an occurrence of aa in x.

64 D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65
Fig. 10. A location of ih , ch , and rh inside x from the proof of Lemma 15.

Fig. 11. Local similarities between cst−1 and ch in the proof of Lemma 15; for brevity, denote g = st−1. Here z = h + 3.

Suppose ih ∈ [cst−1 + |a|..cst−1 + |ab|). Then, the string w[ih − |a|..cst−1 + |a|], which is a suffix of a, has an occurrence
v = w[ih..cst−1 + |aa|] (see Fig. 7a with i = ih). Since μ(ih) = |a| > |b|, v overlaps w[cst−1 + |ab|..cst−1 + |aba| − 1] = a. Thus,
a has a nontrivial border, a contradiction. By the same argument, one can show that ih does not lies in the segments
[cst−1 + |abaa|..cst−1 + |abaab|), [cst−1 + |abaabaa|..cst−1 + |abaabaab|), . . .; in other words, ih cannot lie in an occurrence of b
in x.

We have proved that ih lies in the left half of an occurrence of aa in x, precisely, in one of the segments [cst−1 +
|ab|..cst−1 + |aba|], [cst−1 + |abaab|..cst−1 + |abaaba|], Fig. 10 illustrates the case ih ∈ [cst−1 + |ab|..cst−1 + |aba|]; all other
cases are similar. First, we show that ch is equal to cst−1 + |aba|, i.e., ch is the center of an occurrence of aa in x (see
Fig. 10). Obviously, the string w[ih − |a|..cst−1 + |abaa| − 1] has the period |a| and therefore cst−1 + |abaa| ≤ rh . The strings
w[cst−1 + |ab|..rh − 1] and w[cst−1 − |a|..rst−1 − 1] are similar: they both have the period |a|, and w[rh] �= w[rh − |a|] and
w[rst−1] �= w[rst−1 − |a|]. Note that the starting positions of these strings differ by |aab|. Furthermore, since rh < cst + |aab|,
the strings w[cst−1 + |ab|..rh] and w[cst−1 − |a|..rst−1] both are substrings of x and hence they are equal because x has the
period |aab|. Now since w[cst−1 + |ab|..rh] is a suffix of w[ih − |a|..rh], it is straightforward that ch = cst−1 + |aba|.

To finish the proof, it suffices to show that Algorithm 2 does not compute explicitly the local periods at the positions
ih+1, ih+2, . . . , iz but obtains those local periods from the array m. For this purpose, let us first prove that for each h′ ∈ (h..z],
the string w[ih′ −μ(ih′)..ih′ +μ(ih′) − 1] is a substring of w[ch −|a|..ch +|a| − 1]. This fact implies that, in a sense, after the
processing of the position ch Algorithm 2 is in a situation that locally resembles the situation in which the algorithm was
after the processing of the position cst−1 (see Fig. 11), i.e., Algorithm 2 examines exactly the same positions ih+1, ih+2, . . . , iz

shifted by δ = ch − cst−1 or, more formally, ist−1+1 = ih+1 − δ, ist−1+2 = ih+2 − δ, . . . , ist−1+z−h = iz − δ.
Let i be the leftmost position from (ch..ch + |a|) such that μ(i) ≥ μ(ch). Lemmas 8 and 10 imply that such position

always exists and μ(i) ≥ 2μ(ch) = |aa|. Since i ∈ (cst ..cst + μ(cst)) and |aa| > 1
2 |aab| = 1

2 μ(cst), it follows from Lemmas 7
and 10 that μ(i) ≥ 2μ(cst). Hence, by the definition of the subsequence {is j }t

j=1, we have i > iz . Thus, for each h′ ∈ (h..z],
we have μ(ih′) < μ(ch) and ih′ ∈ (ch..i). Therefore, by Lemma 14, the string w[ih′ − μ(ih′)..ih′ + μ(ih′) − 1] is a substring of
w[ch − |a|..ch + |a| − 1].

Suppose ist ∈ Ŝ . Summing up the established facts, we obtain that since δ = ch − cst−1 is a multiple of μ(ist) = |aab|,
the loop in lines 12–15 performed immediately after the computation of the local period at the position ist in line 5
copies m[ih+1 − δ], m[ih+2 − δ], . . . , m[iz − δ], which are certainly filled with nonzero values, to m[ih+1], m[ih+2], . . . , m[iz],
respectively. Thus, Algorithm 2 does not compute explicitly the local periods at the positions ih+1, ih+2, . . . , iz .

Suppose ist /∈ Ŝ , i.e., m[ist] and r[ist] are nonzero at the time the algorithm reaches ist . It follows from Algorithm 2 that
the values m[ist] and r[ist] are obtained from values m[i′] and r[i′] for some position i′ < ist such that w[i′ − m[i′]..r[i′]] =
w[ist − m[ist]..r[ist]]. Suppose i′ ∈ Ŝ . Thus, when Algorithm 2 had calculated μ(i′), it passed through the positions ist +1 − δ,

ist+2 − δ, . . . , iz − δ, where δ = ist − i′ , stored the corresponding local periods in m[ist +1 − δ], m[ist+2 − δ], . . . , m[iz − δ], and
then copied those values to m[ist+1], m[ist+2], . . . , m[iz], respectively, when copied m[i′] to m[ist]. Finally, suppose i′ /∈ Ŝ .
By an obvious induction, one can prove that in this case m[ist+1 − δ], m[ist+2 − δ], . . . , m[iz − δ] are also filled with correct
values and thus the same argument shows that m[ist +1], m[ist+2], . . . , m[iz] are eventually set to nonzero values. �

Suppose t > 1 and 7
3 μ(ist−1) ≤ μ(ist). As in Section 4, T (q) is determined by the recursion (1). Let us estimate the sum

of the terms from the parentheses of T (. . .) in the right hand side of (1). Since μ(ist−1) ≤ 3
7 μ(ist), we have 1

2 μ(is1) + · · · +
1
2 μ(ist) ≤ 3

7 μ(ist)(
1
2 + 1

22 + 1
23 + · · ·) + 1

2 μ(ist) ≤ 3
7 q + 1

2 q = 13
14 q.

Suppose t > 1, 7
3 μ(ist−1) > μ(ist). Let h be the minimal number from (st ..z] such that μ(ih) = μ(ist−1) (if it does not

exist, assume that h = z). By the definition of the subsequence {is j }t
j=1, we have ih ∈ (cst ..cst + μ(cst)). Lemma 11 implies

that μ(i) < 2
3 μ(ist−1) ≤ 1

3 μ(ist) for each i ∈ (cst ..ih). Further, by Lemma 15, we have ih′ /∈ Ŝ for each h′ ∈ (h..z] and thus we
can ignore these positions in our analysis. So, combining Lemmas 7, 9, 11, 15, one can deduce the following recursion:

T (q) ≤
t∑

μ(is j) + μ(ih) + T

(
1

2
μ(is1)

)
+ · · · + T

(
1

2
μ(ist−1)

)
+ T

(
1

3
μ(ist)

)
. (3)
j=1

D. Kosolobov / Theoretical Computer Science 636 (2016) 56–65 65
Let us estimate the sum of the terms from the parentheses of T (. . .) in the right hand side of (3). Since
∑t−1

j=1 μ(is j) ≤ q,
we have 1

2 μ(is1) + · · · + 1
2 μ(ist−1) + 1

3 μ(ist) ≤ 1
2 q + 1

3 q = 5
6 q. Clearly, the sum

∑t
j=1 μ(is j) + μ(ih) is bounded by 3q.

Finally, in the case t = 1 we have, by Lemmas 7 and 9, T (q) ≤ μ(is1) + T (1
2 μ(is1)). Obviously, 1

2 μ(is1), the term from the
parentheses of T (. . .), is less than or equal to 1

2 q.
Putting everything together, it is easy to see that T (q) is determined by the recursion T (q) ≤ 3q + ∑r

j=1 T (q j) for some
terms {q j}r

j=1 such that
∑r

j=1 q j ≤ αq, where α = min{ 13
14 , 56 , 12 } < 1. It is well known that such recursion has the solution

T (q) ≤ 3q + α3q + α23q + · · · = 3q
1−α = O (q). Thus, the above analysis of Algorithm 2 proves the following theorem.

Theorem 2. There is a linear time and space algorithm finding the leftmost critical point of a given string on an arbitrary unordered
alphabet.

7. Conclusion

We have shown that the problems of the computation of a critical factorization on unordered and ordered alphabets
both have linear time solutions. This is in contrast with the seemingly related problem of finding repetitions in strings
(squares, in particular) for which it is known that in the case of unordered alphabet one cannot even check in o(n log n)

time whether the input string of length n contains some repetitions while in the case of ordered alphabet there are fast
o(n log n) time checking algorithms (see [9–11,13]). The search of similarities between those problems was actually our
primary motivation for the present work although our result shows that the restriction to the case of unordered alphabets
does not add considerable computational difficulties to the problem of the calculation of a critical factorization unlike the
problem of finding repetitions, so, they are not similar in this aspect.

As a byproduct, we have obtained the first generalization of the constant space string matching algorithm of Crochemore
and Perrin [3] to unordered alphabets. However, this generalization requires nonconstant space in the preprocessing step.
So, it is still an open question to find a linear time and constant space algorithm computing a critical factorization (not
necessarily the leftmost one) of a given string on an arbitrary unordered alphabet. Using such tool, one can possibly obtain a
constant space string matching algorithm that is simpler and faster than the well-known algorithm of Galil and Seiferas [7].

Acknowledgements

The author would like to thank Arseny M. Shur for helpful discussions and the invaluable help in the preparation of this
paper.

References

[1] D. Breslauer, R. Grossi, F. Mignosi, Simple real-time constant-space string matching, in: CPM 2011, in: Lecture Notes in Comput. Sci., vol. 6661, Springer,
2011, pp. 173–183.

[2] Y. Césari, M. Vincent, Une caractérisation des mots périodiques, C. R. Acad. Sci. Paris 286 (A) (1978) 1175–1177.
[3] M. Crochemore, D. Perrin, Two-way string-matching, J. ACM 38 (3) (1991) 650–674.
[4] J.-P. Duval, Factorizing words over an ordered alphabet, J. Algorithms 4 (4) (1983) 363–381.
[5] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, A. Lefebvre, Linear-time computation of local periods, Theoret. Comput. Sci. 326 (1) (2004) 229–240.
[6] J.-P. Duval, T. Lecroq, A. Lefebvre, Linear computation of unbordered conjugate on unordered alphabet, Theoret. Comput. Sci. 522 (2014) 77–84.
[7] Z. Galil, J. Seiferas, Time-space-optimal string matching, J. Comput. System Sci. 26 (3) (1983) 280–294.
[8] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
[9] D. Kosolobov, Computing runs on a general alphabet, arXiv:1507.01231.

[10] D. Kosolobov, Lempel–Ziv factorization may be harder than computing all runs, in: STACS 2015, in: LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, vol. 30, 2015, pp. 582–593.

[11] D. Kosolobov, Online detection of repetitions with backtracking, in: CPM 2015, in: Lecture Notes in Comput. Sci., vol. 9133, Springer, 2015, pp. 295–306.
[12] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1997.
[13] M.G. Main, R.J. Lorentz, Linear time recognition of squarefree strings, in: Combinatorial Algorithms on Words, Springer, 1985, pp. 271–278.
[14] A.M. Shur, E.A. Petrova, On the tree of ternary square-free words, in: Proc. 10th Internat. Conf. on Words, WORDS 2015, in: Lecture Notes in Comput.

Sci., vol. 9304, Springer, 2015, pp. 223–236.

http://refhub.elsevier.com/S0304-3975(16)30110-4/bib427265736C6175657247726F7373694D69676E6F7369s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib427265736C6175657247726F7373694D69676E6F7369s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib43657361726956696E63656E74s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib43726F6368656D6F726550657272696Es1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib447576616Cs1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib447576616C4574416Cs1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib447576616C4C6563726F714C65666562767265s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib47616C696C5365696665726173s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4775736669656C64s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4B6F736F6C6F626F7634s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4B6F736F6C6F626F76s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4B6F736F6C6F626F76s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4B6F736F6C6F626F7632s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4C6F746861697265s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib4D61696E4C6F72656E747As1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib53687572506574726F7661s1
http://refhub.elsevier.com/S0304-3975(16)30110-4/bib53687572506574726F7661s1

	Finding the leftmost critical factorization on unordered alphabet
	1 Introduction
	2 Preliminaries
	3 O(nlogn) algorithm
	4 O(nlogn) time bound
	5 Problems with linearity
	6 Linear algorithm
	7 Conclusion
	Acknowledgements
	References

