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1. Introduction

Stringology and combinatorics on words are closely related fields that intensively interact with each other. One of the 
most famous examples of their interaction is the surprising application of the so-called critical factorization, a notion that 
was created inside the field of combinatorics on words for purely theoretic reasons (the precise definition is presented 
below). Critical factorizations are at the core of the constant space string matching algorithm by Crochemore and Perrin [3]
and its real time variation by Breslauer, Grossi, and Mignosi [1], which are, perhaps, the most elegant and simple string 
matching algorithms with such time and space bounds.

It is known that a critical factorization can be found in linear time and constant space when the input string is drawn 
from an ordered alphabet, i.e., when the alphabet is totally ordered and we can use symbol comparisons that test for 
the relative order of symbols (see [3,4]). In [1] it was posed as an open problem whether it is possible to find in linear 
time a critical factorization of a given string over an arbitrary unordered alphabet, i.e., when our algorithm is allowed to 
perform only equality comparisons. In this paper we answer this question affirmatively; namely, we describe a linear time 
algorithm finding the leftmost critical factorization of a given string on an unordered alphabet. A similar result is known 
for unbordered conjugates, a concept related to the critical factorizations: Duval et al. [6] proposed a linear algorithm 
that allows to find an unbordered conjugate of a given string on an arbitrary unordered alphabet. It is worth noting that 
all known so far algorithms working on general alphabets could find only some critical factorization while our algorithm 
always finds the leftmost one. However, for the case of integer alphabet, there is a linear algorithm finding the leftmost 
critical factorization [5] but it uses some structures (namely, the Lempel–Ziv decomposition) that cannot be computed in 
linear time on a general (even ordered) alphabet [10].
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Fig. 1. Internal, right external, and left external local periods of the string abbaabba.

The paper is organized as follows. Section 2 contains some basic definitions and facts used throughout the text. In 
Section 3 we present our first algorithm and prove that its running time is O (n log n)1 in Section 4, where n is the length of 
the input string. A more detailed analysis of this algorithm is given in Section 5. In Section 6 we improve our first solution 
to obtain a linear algorithm. Finally, we conclude with some remarks in Section 7.

2. Preliminaries

We need the following basic definitions. A string w over an alphabet � is a map {1, 2, . . . , n} �→ �, where n is referred to 
as the length of w , denoted by |w|. We write w[i] for the ith letter of w and w[i.. j] for w[i]w[i + 1] · · · w[ j]. Let w[i.. j] be 
the empty string for any i > j. A string u is a substring (or a factor) of w if u = w[i.. j] for some i and j. The pair (i, j) is not 
necessarily unique; we say that i specifies an occurrence of u in w . A string can have many occurrences in another string. 
A substring w[1.. j] [respectively, w[i..n]] is a prefix [respectively, suffix] of w . For integers i and j, the set {k ∈ Z : i ≤ k ≤ j}
(possibly empty) is denoted by [i.. j]. Denote [i.. j) = [i.. j − 1], (i.. j] = [i + 1.. j], and (i.. j) = [i + 1.. j − 1]. Our notation for 
arrays is similar to that for strings: for example, a[i.. j] denotes an array indexed by the numbers i, i + 1, . . . , j.

Throughout the paper, we intensively use different periodic properties of strings. A string u is called a border of a string 
w if u is both a prefix and a suffix of w . A string is unbordered if it has only trivial borders: the empty string and the string 
itself. An integer p is a period of w if 0 < p ≤ |w| and w[i] = w[i + p] for all i = 1, 2, . . . , |w| − p. It is well known that 
p > 0 is a period of w iff w has a border of the length |w| − p. A string of the form xx, where x is a nonempty string, is 
called a square. Let w[i.. j] = xx for some i, j and a nonempty string x; the position i + |x| is called the center of the square 
w[i.. j]. A string w is primitive if w �= xk for any string x and any integer k > 1. A string v is a conjugate of a string w if 
v = w[i..|w|]w[1..i − 1] for some i.

Lemma 1 (See [12]). A string w is primitive iff w has an unbordered conjugate.

Now we can introduce the main notion of this paper. The local period at a position i (or centered at a position i) of w is 
the minimal positive integer μ(i) such that the substring w[max{1, i −μ(i)}.. min{|w|, i +μ(i) −1}] has the period μ(i) (see 
Fig. 1). Informally, the local period at a given position is the size of the smallest square centered at this position. We say 
that the local period μ(i) is left external [respectively, right external] if i −μ(i) < 1 [respectively, i +μ(i) − 1 > |w|]; the local 
period is external if it is either left external or right external. The local period is internal if it is not external. Obviously, the 
local period at any position of w is less than or equal to the minimal period of w . A position i of w with the local period 
that is equal to the minimal period of w is called a critical point; the corresponding factorization w[1..i − 1] · w[i..|w|] is 
called a critical factorization. The following remarkable theorem holds.

Theorem 1 (See [2,12]). Let w be a string with the minimal period p > 1. Any sequence of p − 1 consecutive positions of w contains 
a critical point.

Theorem 1 implies that any string with the minimal period p has a critical point among the positions 1, 2, . . . , p. Clearly, 
the local period corresponding to any such critical point is left external. The following lemmas are straightforward.

Lemma 2. If the local period at a position of a given string is both left external and right external, then this position is a critical point.

Lemma 3. If the local period μ(i) at a position i of a given string w is not right external [respectively, left external], then the string 
w[i..i + μ(i) − 1] [respectively, w[i − μ(i)..i − 1]] is unbordered.

3. O (n log n) algorithm

Our construction is based on the following observation.

Lemma 4. Let w be a string with the minimal period p > 1. Denote k = max{l : w[1..l] = w[ j.. j + l − 1] for some j ∈ (1..p]}. The 
leftmost critical point of w is the leftmost position i > k + 1 with external local period.

Proof. Denote by j a position such that j ∈ (1..p] and w[1..k] = w[ j.. j + k − 1]. Obviously, each of the positions 1, 2, . . . ,
k + 1 has the local period that is at most j − 1 < p (see Fig. 2) and hence cannot be a critical point.

1 For brevity, log denotes the logarithm with the base 2.
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Fig. 2. The local period at a position i ∈ [1..k + 1].

Consider a position i with left external local period μ(i) < p. By Lemma 2, μ(i) is not right external. So, we have 
w[1..i − 1] = w[μ(i) + 1..i + μ(i) − 1]. Since μ(i) + 1 ≤ p, by the definition of k, we have i − 1 ≤ k. Hence, any position 
i > k + 1 with left external local period is a critical point.

Now consider a position i with right external local period μ(i) < p. By Lemma 2, μ(i) is not left external. It is easy to see 
that for any i′ ∈ (i..|w|], we have μ(i′) ≤ μ(i) and i′ − μ(i′) ≥ 1. Since Theorem 1 implies that w must have a critical point 
with left external local period, the position i cannot be the leftmost position in (k + 1..|w|] with external local period. �

Hereafter, w denotes the input string of length n with the minimal period p. We process the trivial case p = 1 separately, 
so, assume p > 1. According to Theorem 1 and Lemma 4, our algorithm processes only the first p positions of w from left 
to right starting from the position k + 2, where k is defined as in Lemma 4, and when a local period at a given position 
i is computed, then the following positions are skipped while they have at most the same local period. This leads to an 
O (n log n) time algorithm. To get a linear time algorithm, some local periods are reported from previous positions due to 
some local properties that are discussed in details in Section 6. More precisely, our O (n logn) algorithm is as follows.

Algorithm 1
1: compute k = max{l : w[1..l] = w[ j.. j + l − 1] for some j ∈ (1..p]}
2: i ← k + 2;
3: while true do
4: compute μ(i);
5: if μ(i) is external then
6: i is the leftmost critical point; stop the algorithm;

7: μ ← μ(i);
8: while w[i − 1] = w[i + μ − 1] do 
 skip positions that have local period at most μ
9: i ← i + 1;

Obviously, the positions that the algorithm skips in lines 8–9 have the local period at most μ < p and therefore cannot 
be critical points. So, Lemma 4 immediately implies the correctness of Algorithm 1.

To calculate the number k in O (n) time, we utilize the following fact.

Lemma 5 (See [8, Chapter 1.5]). For any strings u and w, one can compute in O (|u|) time an array b[1..|u|] such that b[ j] =
max{l : u[ j.. j + l − 1] = w[1..l]} for j ∈ [1..|u|].

To complete our construction, we describe an algorithm calculating the local period μ(i) at a given position i provided 
μ(i) is internal. If this algorithm fails to compute μ(i), we decide that the local period is external.

Lemma 6. One can compute the internal local period μ(i) at a given position i in O (μ(i)) time and space.

Proof. Fix an integer x < i. Let us first describe an algorithm that finds μ(i) in O (x) time and space provided μ(i) ≤ x. 
Using Lemma 5, our algorithm constructs in O (x) time an array b[i − x..i − 1] (for clarity, the indices start with i − x) of 
the length x such that b[ j] = max{l : l ≤ x and w[ j.. j + l − 1] = w[i..i + l − 1]} for j ∈ [i − x..i). It is straightforward that 
μ(i) = i − j for the rightmost j ∈ [i − x..i) such that b[ j] ≥ i − j.

Now, to compute μ(i), we consecutively execute the above algorithm for x = 20, 21, 22, . . . , 2�log(i−1)� and, finally, for 
x = i − 1 until we find μ(i). Thus, the algorithm runs in O (

∑
log μ(i)�
j=0 2 j) = O (μ(i)) time and space. �

4. O (n log n) time bound

During the execution, Algorithm 1 calculates local periods at some positions. Let S be the sequence of all such positions 
in the input string w in increasing order. It is easy to see that the running time of the whole algorithm is O (n +∑

i∈S μ(i)). 
Thus, to prove that Algorithm 1 works in O (n log n) time, it suffices to show that 

∑
i∈S μ(i) = O (n log n). Simplifying the 

discussion, we exclude from S all positions i such that μ(i) = 1.
Fix an arbitrary number q. Denote by T (q) the maximal sum 

∑
i∈S ′ μ(i) among all contiguous subsequences S ′ of S such 

that μ(i) ≤ q for each i ∈ S ′ . We are to show that T (q) = O (q log q), which immediately implies 
∑

i∈S μ(i) = O (n log n) since 
the number q is arbitrary and T (n) = ∑

i∈S μ(i).
For further investigation, we need three additional combinatorial lemmas. Consider a position i of w with internal local 

period μ(i) > 1. Informally, Lemma 7 shows that at the positions (i..i + μ(i)) any internal local period that “intersects” the 
position i and is not equal to μ(i) is either “very short” (< 1 μ(i)) or “very long” (≥ 2μ(i)). Lemma 8 claims that always 
2
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Fig. 3. Two impossible cases in Lemma 7: (a) μ(i)/2 < μ( j) < μ(i), (b) μ(i) < μ( j) < 2μ(i).

Fig. 4. The positions i j + 1, i j + 2, . . . , r j − μ(i j) are shaded.

there is a “long” local period centered at (i..i + μ(i)); moreover, this local period either is equal to μ(i) or is “very long” 
(≥ 2μ(i)). Lemma 9 connects the bounds on the internal local periods that “intersect” the position i, as in Lemma 7, and 
those local periods that do not “intersect” the position i. Now let us formulate these facts precisely.

Lemma 7. Let i be a position of w with internal local period μ(i) > 1. For any j ∈ (i..i +μ(i)) such that j −μ( j) < i and μ( j) �= μ(i), 
we have either μ( j) < 1

2 μ(i) or μ( j) ≥ 2μ(i).

Proof. The proof is essentially the same as in [14, Lemma 2]. Let μ( j) ≥ 1
2 μ(i). Suppose μ( j) = 1

2 μ(i). Since, by Lemma 3, 
the string w[i..i +μ(i)−1] is unbordered and hence cannot have the period μ( j) < μ(i), we obtain j +μ( j) < i +μ(i). The 
string w[ j − μ( j).. j + μ( j) − 1] is not primitive and has the length μ(i). Thus, the string w[i..i + μ(i) − 1] is a conjugate 
of w[ j − μ( j).. j + μ( j) − 1] and therefore is not primitive, a contradiction.

Now suppose μ(i)/2 < μ( j) < μ(i). As above, we have j + μ( j) < i + μ(i). Thus, the string w[ j.. j + μ( j) − 1] has 
an occurrence w[ j − μ(i).. j − μ(i) + μ( j) − 1] that overlaps the string w[ j − μ( j).. j − 1] = w[ j.. j + μ( j) − 1] because 
2μ( j) > μ(i) (see Fig. 3a). But, by Lemma 3, w[ j − μ( j).. j − 1] is unbordered and therefore cannot overlap its own copy. 
This is a contradiction.

Finally, suppose μ( j) > μ(i). By Lemma 3, w[ j −μ( j).. j −1] is unbordered. If j −μ( j) ≥ i −μ(i), then w[ j −μ( j).. j −1]
has the period μ(i) < μ( j), a contradiction. Hence, we have j − μ( j) < i − μ(i). If μ( j) < 2μ(i), then the string w[ j..i +
μ(i) − 1], which is a suffix of w[i..i + μ(i) − 1], has an occurrence w[ j − μ( j)..i + μ(i) − μ( j) − 1] that overlaps w[i −
μ(i)..i −1] = w[i..i +μ(i) −1] (see Fig. 3b). This is a contradiction because, by Lemma 3, w[i −μ(i)..i −1] is unbordered. �
Lemma 8. Let i be a position of w with internal local period μ(i) > 1. Then there exists j ∈ (i..i + μ(i)) such that either μ( j) = μ(i)
or μ( j) ≥ 2μ(i).

Proof. By Lemma 3, the string w[i..i + μ(i) − 1] is unbordered and its minimal period is μ(i). For any position j ∈ (i..i +
μ(i)), denote by μ′( j) the local period in j with respect to the substring w[i..i + μ(i) − 1]. Observe that μ′( j) ≤ μ( j). By 
Theorem 1, there is j ∈ (i..i + μ(i)) such that μ′( j) = μ(i) and j − μ′( j) < i. Hence, we have μ( j) ≥ μ(i) and, moreover, if 
μ( j) > μ(i), then, by Lemma 7, μ( j) ≥ 2μ(i). �
Lemma 9. Let i be a position of w with internal local period μ(i) > 1. Fix j ∈ (i..i +μ(i)). Then, for any h ∈ (i.. j] such that μ(h) > 1, 
we have μ(h) ≤ max{μ(h′) : h′ ∈ (i.. j] and h′ − μ(h′) < i}.

Proof. Suppose, to the contrary, there is h ∈ (i.. j] such that μ(h) > 1 and μ(h) > max{μ(h′) : h′ ∈ (i.. j] and h′ − μ(h′) < i}; 
let h be the leftmost such position. Then, we have h − μ(h) ≥ i. Using a symmetrical version of Lemma 8, we obtain 
h′ ∈ (h −μ(h)..h) such that μ(h′) ≥ μ(h). Since μ(h′) ≥ μ(h), by the definition of h, we have h′ −μ(h′) ≥ i. This contradicts 
to the choice of h as the leftmost position with the given properties because h′ < h and h′ ∈ (i.. j]. �

Hereafter, S ′ = {i1, i2, . . . , iz} denotes a contiguous subsequence of S such that μ(i j) ≤ q for each j ∈ [1..z] and T (q) =∑z
j=1 μ(i j). We associate with each i j the numbers r j = max{r : w[i j −μ(i j)..r − 1] has the period μ(i j)} and c j = max{c ≤

r j − μ(i j) : w[c..c + μ(i j) − 1] is unbordered} (see Fig. 4). By Lemma 3, the string w[i j ..i j + μ(i j) − 1] is unbordered and 
therefore c j ≥ i j . Since w[c j ..c j + μ(i j) − 1] is unbordered and w[c j − μ(i j)..c j − 1] = w[c j ..c j + μ(i j) − 1], we have 
μ(c j) = μ(i j). Since w[r j − μ(i j)..r j − 1] is primitive, it follows from Lemma 1 that c j > r j − 2μ(i j). Algorithm 1 skips the 
positions i j + 1, i j + 2, . . . , r j − μ(i j) in the loop in lines 8–9.

Lemma 10. For any j ∈ [1..z] and i ∈ (c j ..c j + μ(c j)), we have μ(i) �= μ(c j).
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Fig. 5. The strings a and b.

Proof. For converse, suppose μ(i) = μ(c j). Since w[i − μ(i)..i − 1] = w[i..i + μ(i) − 1] and μ(i) = μ(c j) = μ(i j), by the 
definition of r j , we have i ≤ r j − μ(i j). It follows from Lemma 3 that w[i..i + μ(i) − 1] is unbordered. This contradicts to 
the definition of c j because c j < i ≤ r j − μ(i j). �

To estimate the sum 
∑z

j=1 μ(i j), we construct a subsequence is1 , is2 , . . . , ist by the following inductive process. Choose 
is1 = i1. Suppose we have already constructed a subsequence is1 , is2 , . . . , is j . Choose the minimal number i′ ∈ (cs j ..cs j +
μ(cs j )) such that μ(i′) ≥ μ(cs j ). By Lemma 8, such number always exists. If i′ > iz , we set t = j and stop the process. Let 
i′ ≤ iz . It follows from Lemma 10 that μ(i′) �= μ(cs j ). Hence, by Lemma 8, μ(i′) ≥ 2μ(cs j ) = 2μ(is j ). Since μ(i′) > μ(is j ), it 
follows from the definition of rs j that i′ > rs j −μ(is j ). Therefore, Algorithm 1 does not skip i′ and i′ ∈ S . Since {i1, i2, . . . , iz}
is a contiguous subsequence of S , we have i′ = i j′ for some j′ ∈ [1..z]. Set is j+1 = i j′ .

Now we can prove that the running time of Algorithm 1 is O (n log n). For any j ∈ [1..t), we have μ(is j+1 ) ≥ 2μ(is j ) and 
therefore 

∑t
j=1 μ(is j ) ≤ μ(ist ) + 1

2 μ(ist ) + 1
22 μ(ist ) + · · · ≤ 2μ(ist ) ≤ 2q. Further, let h ∈ [1..z] and is j < ih < is j+1 for some 

j ∈ [1..t). Since Algorithm 1 skips the positions (is j ..cs j ] and is j+1 ∈ (cs j ..cs j + μ(cs j )), it follows that ih ∈ (cs j ..cs j + μ(cs j )). 
Recall that is j+1 is the minimal number from (cs j ..cs j + μ(cs j )) such that μ(is j+1 ) ≥ μ(cs j ). Thus, by Lemmas 7 and 9, we 
have μ(ih) < 1

2 μ(cs j ) = 1
2 μ(is j ). In the same way, for h ∈ [1..z] such that ih > ist , we have μ(ih) < 1

2 μ(ist ). So, we obtain 
the following recursion:

T (q) ≤ 2q + T

(
1

2
μ(is1)

)
+ T

(
1

2
μ(is2)

)
+ · · · + T

(
1

2
μ(ist )

)
. (1)

Consider a recursion T (q) = O (q) +∑t
j=1 T (q j). It is well known that if the sum of the terms from the parentheses of T (. . .)

in the right hand side of this recursion (i.e., 
∑t

j=1 q j) is less than or equal to q and each of those terms (i.e., each q j ) is 
less than or equal to 1

2 q, then the recursion has a solution T (q) = O (q log q). Thus, since the sum of the terms from the 
parentheses of T (. . .) in the right hand side of (1) is equal to 1

2

∑t
j=1 μ(is j ) ≤ q and each of these terms is less than or 

equal to 1
2 q, we obtain T (q) = O (q log q).

5. Problems with linearity

To obtain T (q) = O (q), we might prove that if 2μ(ist−1 ) and μ(ist ) are close enough (namely, 7
3 μ(ist−1 ) > μ(ist )), the 

term T ( 1
2 μ(ist )) in (1) is actually T ( 2

3 μ(ist−1 )) ≤ T ( 1
3 μ(ist )); this fact would imply that the sum of the terms in the 

parentheses of T (. . .) in the right hand side of (1) is less than αq for some constant α < 1 and therefore T (q) = O (q). 
Unfortunately, this is not true for Algorithm 1. Nevertheless, we prove a restricted version of the mentioned claim. It reveals 
problems that may arise in the current solution and points out a way to improvements.

Lemma 11. Let i ∈ (cst ..cst + μ(cst )). Suppose μ(i′) < μ(cst ) and μ(i′) �= μ(ist−1 ) for each i′ ∈ (cst ..i]. If 7
3 μ(ist−1 ) > μ(ist ), then 

μ(i) < 2
3 μ(ist−1 ).

Proof. Recall that 2μ(cst−1 ) ≤ μ(ist ). Denote a = w[cst−1 ..cst−1 + μ(cst−1 ) − 1] and b = w[cst−1 + μ(cst−1 )..cst−1 − μ(cst−1 ) +
μ(ist ) − 1] (see Fig. 5). Note that μ(cst−1 ) = |a| and μ(cst ) = |aab|. It follows from Lemma 3 that a is unbordered. Since, 
by Lemma 3, the string w[ist ..ist + μ(ist ) − 1] is unbordered, the string b is not empty. The inequality 7

3 |a| = 7
3 μ(ist−1 ) >

μ(ist ) = |baa| implies |b| < 1
3 |a|.

In view of Lemma 9, it suffices to prove the lemma only for the positions i such that i − μ(i) < cst . So, assume i −
μ(i) < cst . Since μ(i) < μ(cst ), it follows from Lemma 7 that μ(i) < 1

2 μ(cst ) = 1
2 |baa| < |ab|. Since, by Lemma 3, w[cst ..cst +

μ(cst ) −1] is unbordered and thus cannot have the period μ(i) < μ(cst ), we obtain i +μ(i) < cst +μ(cst ). So, w[i −μ(i)..i +
μ(i) − 1] is a substring of the string w[ist − μ(ist )..rst − 1]. Therefore, since w[ist − μ(ist )..rst − 1] has the period μ(ist ) =
μ(cst ) = |aab|, the string w[i − μ(i)..i + μ(i) − 1] is a substring of the string u = aabaabaab (see Fig. 5). Thus, to finish the 
proof, it suffices to prove the following claim.

Claim. Let i be a position of u with internal local period μ(i) (the local period at i is with respect to the string u). If μ(i) < |ab| and 
μ(i) �= |a|, then μ(i) < 2

3 |a|.

Let i be a position of u with internal local period μ(i) such that μ(i) < |ab| and μ(i) �= |a|. Consider two cases.
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Fig. 6. The impossible case i ∈ (|aaba|..|aabaa|] and i − μ(i) > |aaba| from the proof of Lemma 11.

Fig. 7. The impossible cases for i ∈ (|aa|..|aab|] in the proof of Lemma 11: (a) i − μ(i) > |a|; (b) i − μ(i) ≤ |a|.

1) Suppose i lies in an occurrence of a in u = aabaabaab. Without loss of generality, consider the case i ∈ (|aaba|..|aabaa|]; 
all other cases are similar. If i − μ(i) ≤ |aaba|, then, by Lemma 7, we have either μ(i) < 1

2 |a| or μ(i) ≥ 2|a|. The lat-
ter is impossible because μ(i) < |ab| < 2|a| while the former implies μ(i) < 2

3 |a| as required. Now let i − μ(i) > |aaba|. 
Assume, by a contradiction, that μ(i) ≥ 2

3 |a|. Then w[i − μ(i)..i − 1] is a substring of a and thus it has an occurrence 
v = w[i − μ(i) + |ab|..i − 1 + |ab|] (see Fig. 6). Since 2μ(i) ≥ 4

3 |a| > |ab|, the string w[i..i + μ(i) − 1], which is also an 
occurrence of w[i − μ(i)..i − 1], overlaps v . This is a contradiction because w[i − μ(i)..i − 1] is unbordered by Lemma 3.

2) Suppose i lies in an occurrence of b in u = aabaabaab. Without loss of generality, consider the case i ∈ (|aa|..|aab|]. 
Assume, by a contradiction, that μ(i) ≥ 2

3 |a|. Suppose i −μ(i) > |a| (see Fig. 7a). Then the string w[i −μ(i)..|aa|], which is a 
suffix of a, has an occurrence v = w[i..|aa| + μ(i)]. Since μ(i) ≥ 2

3 |a| > |b|, v overlaps w[|aab| + 1..|aaba|] = a. Hence, a has 
a nontrivial border, clearly a contradiction. Suppose i − μ(i) ≤ |a| (see Fig. 7b). Then the string w[|a| + 1..|aa|] = a has an 
occurrence v = w[|a| + 1 +μ(i)..|aa| +μ(i)]. Since μ(i) < |ab| and μ(i) +|a| ≥ 5

3 |a| > |ab|, the string w[|aab| + 1..|aaba|] = a
overlaps v = a. This is a contradiction because a is unbordered. �

Let us consider how one might use Lemma 11 to obtain T (q) = O (q). Suppose t > 1, 7
3 μ(ist−1 ) > μ(ist ), and μ(ih) �=

μ(ist−1 ) for all h ∈ (st ..z]. Lemma 11 implies that μ(ih) < 2
3 μ(ist−1 ) ≤ 1

3 μ(ist ) for each h ∈ (st ..z]. So, combining Lem-
mas 7, 9, 11, one can deduce the following recursion:

T (q) ≤
t∑

j=1

μ(is j ) + T

(
1

2
μ(is1)

)
+ · · · + T

(
1

2
μ(ist−1)

)
+ T

(
1

3
μ(ist )

)
. (2)

Let us estimate the sum of the terms from the parentheses of T (. . .) in the right hand side of (2). Since 
∑t−1

j=1 μ(is j ) ≤ q, 
we have 1

2 μ(is1 ) + · · · + 1
2 μ(ist−1) + 1

3 μ(ist ) ≤ 1
2 q + 1

3 q = 5
6 q. The sum 

∑t
j=1 μ(is j ) is bounded by 2q. It is well known that 

such recursion has a solution T (q) ≤ 2q + 5
6 2q + ( 5

6 )22q + · · · = O (q). Unfortunately, a fatal problem arises when there is 
h ∈ (st ..z] such that μ(ih) = μ(ist−1 ). Exploiting this case, we construct a string on which Algorithm 1 performs �(n log n)

operations.

Example. Let ai and bi be sequences of strings inductively defined as follows: a0 = a, b0 = b and ai+1 = ai$iai , bi+1 =
biai$iaibi , where a, b, $0, $1, $2, . . . are distinct letters. Denote wi = aibiai . Note that wi+1 = ai$i wi$i wi$iai ; this recursive 
structure of wi+1 is very important for us. Our counterexample is the string w = #wi+1#ai+1#, where # is a unique special 
letter. Clearly, the minimal period of w is |w| − 1. Since w = #ai+1bi+1ai+1#ai+1#, it is easy to see that the number k =
max{l : w[1..l] = w[ j.. j + l −1] for some j ∈ (1..|w|)} is equal to |#ai+1|. So, Algorithm 1 starts with the position |#ai+1| +2. 
Now consider some combinatorial properties of wi .

Lemma 12. The string wi = aibiai satisfies the following conditions:

(1) the local period at each of the positions [|ai| + 2..|aibi |] is internal;
(2) the local period at position |aibi | + 1 is right external.

Proof. The proof is by induction on i. The base case w0 = aba is obvious. The inductive step is wi+1 = ai+1bi+1ai+1 = ai$iai ·
biai$iaibi · ai$iai = ai$i wi$i wi$iai . Consider condition (1). The positions [|ai+1| + 2..|ai+1bi |] correspond to the positions 
[|ai | +2..|aibi |] of the first occurrence of the string wi = aibiai in wi+1. Hence, by the inductive hypothesis, the local periods 
at these positions are internal. It is obvious that p = |ai$iaibi | is a period of wi+1 and therefore the positions (p..|w| − p +1]
all have internal local periods. So, it suffices to consider the positions [|w| − p +2..|ai+1bi+1|] = [|ai+1biai$iai | +2..|ai+1bi+1|]. 
Similarly, these positions correspond to the positions [|ai | + 2..|aibi |] of the second occurrence of the substring wi = aibiai
in w . Therefore, by the inductive hypothesis, all these positions have internal local periods. Consider condition (2). Denote 
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Fig. 8. j − m[ j] ≥ i − m[i] and r[ j] + m[i] < r[i].

j = |ai+1bi+1 + 1|. By the inductive hypothesis, μ( j) > |ai |. Now since w[ j + |ai |] = $i , it is easy to see that μ( j) > |ai+1|, 
i.e., μ( j) is right external. �

The main loop of Algorithm 1 starts with the position |#ai+1| + 2 = |ai$iai | + 2, i.e., with the position |ai | + 2 inside 
the first occurrence of wi in wi+1 = ai$i wi$i wi$iai . By Lemma 12, we process wi until the position |aibi | + 1 in wi that 
corresponds to the position j = |#ai$iaibi | + 1 in w is reached. By Lemma 12, we have μ( j) > |ai |. Hence, it is straightfor-
ward that μ( j) = |ai$iaibi |, which is a period of the whole string wi+1. Algorithm 1 calculates μ( j) and then skips some 
positions in the loop in lines 8–9 until it reaches the position j′ = |#ai$i wi$iai | + 2, all in �(|wi+1|) time. The position j′
corresponds to the position |ai | + 2 inside the second occurrence of wi in wi+1 = ai$i wi$i wi$iai . So, we have some kind 
of recursion here. Denote by ti+1 the time required to process the substring wi+1 of w; it follows from our discussion that 
ti+1 can be expressed by the following recursive formula: ti+1 = �(|wi+1|) + 2ti (with t0 = 0). For simplicity, assume that 
the constant under the � is 1, so, ti+1 = |wi+1| + 2ti .

To estimate ti+1, we first solve the following recursions: |ai+1| = 2|ai | + 1, |bi+1| = 2|bi | + 2|ai | + 1, |wi | = 2|ai | + |bi |
(with |a0| = |b0| = 1). Obviously |ai | = 2i+1 − 1. Then |bi+1| = 2i+2 − 1 + 2|bi |. By a simple substitution, one can show that 
|bi | = i2i+1 + 1. So, we obtain |wi| = i2i+1 + 2i+2 − 1 and therefore ti = i2i+1 + 2i+2 − 1 + 2ti−1. By a substitution, one can 
prove that ti = i22i + 5i2i − 2i + 1: indeed, substituting ti−1 = (i − 1)22i−1 + 5(i − 1)2i−1 − 2i−1 + 1, we obtain

ti = i2i+1 + 2i+2 − 1 + 2ti−1

= i2i+1 + 2i+2
��� − 1 + ((i − 1)22i + 5(i−1)2i

����
− 2i

� + 2)

= i22i − ��2i2i + ��2i + ���i2i+1 + 5i2i + 2i+2
��� − 5 · 2i

���
− ��2i

� + 1

= i22i + 5i2i − 2i
� + 1 .

Finally, since |wi+1| = (i + 1)2i+2 + 2i+3 − 1 = �(i2i) and log |wi+1| = �(i), we obtain ti+1 = (i + 1)22i+1 + 5(i + 1)2i+1 −
2i+1 + 1 = �(i22i) = �(|wi+1| log |wi+1|) = �(|w| log |w|).

6. Linear algorithm

To overcome the issues addressed in the previous section, we introduce two auxiliary arrays m[1..n] and r[1..n] that are 
initially filled with zeros; their meaning is clarified by Lemma 13 below. In Algorithm 2 below we use the three-operand 
for loop like in the C language.

Algorithm 2
1: compute k = max{l : w[1..l] = w[ j.. j + l − 1] for some j ∈ (1..p]}
2: i ← k + 2;
3: while true do
4: if m[i] = 0 then 
 m[i] is not computed
5: compute μ(i);
6: if μ(i) is external then
7: i is the leftmost critical point; stop the algorithm;

8: m[i] ← μ(i);
9: r[i] ← i + m[i];

10: while w[r[i] − m[i]] = w[r[i]] do
11: r[i] ← r[i] + 1;
12: for ( j ← i − m[i]; j < r[i] − m[i]; j ← j + 1) do
13: if m[ j] �= 0 and j − m[ j] ≥ i − m[i] and r[ j] + m[i] < r[i] then
14: m[ j + m[i]] ← m[ j];
15: r[ j + m[i]] ← r[ j] + m[i];
16: i ← r[i] − m[i] + 1;

Lemma 13. If m[i] �= 0 for some position i during the execution of Algorithm 2, then m[i] = μ(i) and r[i] = max{r : w[i..r −1] has the
period μ(i)}.

Proof. For each position j, denote r j = max{r : w[ j..r − 1] has the period μ( j)}. It suffices to show that the assignments in 
lines 14–15 always assign μ( j + m[i]) to m[ j + m[i]] and r j+m[i] to r[ j + m[i]]. Suppose Algorithm 2 performs line 14 for 
some j. Evidently, the string w[i − m[i]..r[i] − 1] has the period m[i] (see Fig. 8). Further, by the condition in line 13, the 
strings w[ j − m[ j]..r[ j]] and w[ j − m[ j] + m[i]..r[ j] + m[i]] are substrings of w[i − m[i]..r[i] − 1] and therefore they are 
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Fig. 9. The internal structure of the string x from the proof of Lemma 15.

equal. Hence, we have μ( j) = μ( j + m[i]) and r j + m[i] = r j+m[i] provided μ( j) = m[ j] and r j = r[ j]. Now one can prove 
the desired claim by a simple induction. �

By Lemma 13, the assignment in line 16 skips exactly the same set of positions as the loop in lines 7–9 in Algorithm 1. 
Thus, Lemma 13 implies that the values m[i] = μ(i) computed by Algorithm 2 coincide with the same values computed by 
Algorithm 1 and hence are correct. However, now we do not compute some local periods but copy them from the array m
instead. It turns out that this is crucial for the time analysis.

As above, let S be the sequence of all positions that Algorithm 2 does not skip in line 16. Again, we exclude from S
all positions i such that μ(i) = 1. Evidently, the resulting sequence is exactly the same as the sequence S in Section 4 but, 
in contrast to Algorithm 1, the new algorithm copies local periods at some positions of S from the array m rather than 
calculates them explicitly. Denote by Ŝ the subsequence of all positions of S for which Algorithm 2 computes local periods 
explicitly in line 5.

Due to the assignment in line 16, obviously, the loop in lines 10–11 performs at most n iterations in total. The loop 
in lines 12–15 performs exactly the same number of iterations as the loop in lines 10–11 plus μ(i) iterations for an 
appropriate i ∈ Ŝ . Hence, the running time of the whole algorithm is O (n + ∑

i∈ Ŝ μ(i)). Thus, to prove that Algorithm 2 is 
linear, it suffices to show that 

∑
i∈ Ŝ μ(i) = O (n).

Fix an arbitrary number q. Denote by T (q) the maximal sum 
∑

i∈S ′∩Ŝ μ(i) among all contiguous subsequences S ′ of S

such that μ(i) ≤ q for each i ∈ S ′ (note that we sum only through the positions of Ŝ). We are to show that T (q) = O (q), 
which immediately implies 

∑
i∈ Ŝ μ(i) = O (n) since the number q is arbitrary and T (n) = ∑

i∈ Ŝ μ(i).
We need one additional combinatorial fact.

Lemma 14. Let i be a position of w with internal local period μ(i) > 1. Suppose j is a position from (i..i +μ(i)) such that μ( j′) < μ(i)
for each j′ ∈ (i.. j]; then w[ j − μ( j).. j + μ( j) − 1] is a substring of w[i − μ(i)..i + μ(i) − 1].

Proof. Assume, by a contradiction, that j +μ( j) > i +μ(i). For each h ∈ [i..i +μ(i)), denote by μ′(h) the local period at the 
position h with respect to the substring w[i..i +μ(i) −1]. Clearly μ′(h) ≤ μ(h). By Lemma 3, w[i..i +μ(i) −1] is unbordered 
and hence its minimal period is μ(i). By Theorem 1, there is h ∈ [i..i + μ(i)) such that μ′(h) = μ(i). But for each h ∈ [i.. j], 
we have μ′(h) < μ(i) and moreover, for each h ∈ ( j..i + μ(i)), μ′(h) ≤ μ( j) < μ(i) because the local period μ′( j) is right 
external with respect to w[i..i + μ(i) − 1], a contradiction. �

Choose a contiguous subsequence S ′ = {i1, i2, . . . , iz} of S such that μ(i j) ≤ q for each j ∈ [1..z] and 
∑

i∈S ′∩Ŝ μ(i) = T (q). 
As above, we associate with each i j the values c j and r j defined in Section 4. By an inductive process described in Section 4, 
we construct a subsequence {is j }t

j=1 of S ′ . The following result complements Lemma 11.

Lemma 15. Let h ∈ (st ..z] and μ(ih) = μ(ist−1 ). If 7
3 μ(ist−1 ) > μ(ist ), then for each h′ ∈ (h..z], we have ih′ /∈ Ŝ .

Proof. We are to show that, informally, Algorithm 2 processes the position ih in the same manner as it processed ist−1

and the loop in lines 12–15 copies all required local periods μ(ih′ ) for h′ ∈ (h..z] to the array m immediately after the 
computation of r[ist ]. (Thus ih′ /∈ Ŝ for h′ ∈ (h..z].)

Denote a = w[cst−1 ..cst−1 + μ(cst−1 ) − 1] and b = w[cst−1 + μ(cst−1 )..cst−1 − μ(cst−1 ) + μ(ist ) − 1] (see Fig. 9). Note that 
μ(cst−1 ) = μ(ist−1 ) = |a| and μ(cst ) = μ(ist ) = |aab|. Since 7

3 |a| = 7
3 μ(ist−1 ) > μ(ist ) = |aab|, we have |b| < 1

3 |a|. By Lemma 3, 
the string a is unbordered. Denote x = w[ist − |aab|..cst + |aab| − 1] (see Fig. 9). Clearly, x is a substring of the infinite string 
aab ·aab ·aab · · · and the length of x is at least 2|aab| (recall that cst can coincide with ist ). Notice that the distance between 
ist and cst can be arbitrarily large.

Without loss of generality, assume that ih is equal to the leftmost position i > cst such that μ(i) = μ(ist−1 ) = |a|. (Since 
{i1, . . . , iz} is a contiguous subsequence of S , i is certainly equal to ih for some h ∈ (st ..z].) Obviously ih ∈ (cst ..cst + |aab|). 
It follows from the definition of ih and from Lemma 11 that for each i ∈ (cst ..ih), we have μ(i) < 2

3 |a|. So, Lemma 9 implies 
that ih − μ(ih) = ih − |a| < cst . Since by Lemma 3 the string w[cst ..cst + |aab| − 1] is unbordered and thus cannot have the 
period |a| < |aab|, we obtain rh < cst + |aab|. Thus, the string w[ih − |a|..rh] is a substring of x (see Fig. 10). Now we must 
specify where the position ih can occur in x.

By Lemma 10, for any i ∈ (cst−1 ..cst−1 + |a|), we have μ(i) �= |a|. Hence ih /∈ (cst−1 ..cst−1 + |a|). Moreover, since x is a 
substring of the infinite string aab · aab · aab · · · and w[ih − |a|..ih + |a| − 1] is a substring of x, in the same way one can 
prove that ih does not lie in the segments (cst−1 + |aba|..cst−1 + |abaa|), (cst−1 + |abaaba|..cst−1 + |abaabaa|), . . . (see Fig. 10), 
i.e., informally, ih cannot lie in the right half of an occurrence of aa in x.
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Fig. 10. A location of ih , ch , and rh inside x from the proof of Lemma 15.

Fig. 11. Local similarities between cst−1 and ch in the proof of Lemma 15; for brevity, denote g = st−1. Here z = h + 3.

Suppose ih ∈ [cst−1 + |a|..cst−1 + |ab|). Then, the string w[ih − |a|..cst−1 + |a|], which is a suffix of a, has an occurrence 
v = w[ih..cst−1 + |aa|] (see Fig. 7a with i = ih). Since μ(ih) = |a| > |b|, v overlaps w[cst−1 + |ab|..cst−1 + |aba| − 1] = a. Thus, 
a has a nontrivial border, a contradiction. By the same argument, one can show that ih does not lies in the segments 
[cst−1 + |abaa|..cst−1 + |abaab|), [cst−1 + |abaabaa|..cst−1 + |abaabaab|), . . .; in other words, ih cannot lie in an occurrence of b
in x.

We have proved that ih lies in the left half of an occurrence of aa in x, precisely, in one of the segments [cst−1 +
|ab|..cst−1 + |aba|], [cst−1 + |abaab|..cst−1 + |abaaba|], . . . . Fig. 10 illustrates the case ih ∈ [cst−1 + |ab|..cst−1 + |aba|]; all other 
cases are similar. First, we show that ch is equal to cst−1 + |aba|, i.e., ch is the center of an occurrence of aa in x (see 
Fig. 10). Obviously, the string w[ih − |a|..cst−1 + |abaa| − 1] has the period |a| and therefore cst−1 + |abaa| ≤ rh . The strings 
w[cst−1 + |ab|..rh − 1] and w[cst−1 − |a|..rst−1 − 1] are similar: they both have the period |a|, and w[rh] �= w[rh − |a|] and 
w[rst−1 ] �= w[rst−1 − |a|]. Note that the starting positions of these strings differ by |aab|. Furthermore, since rh < cst + |aab|, 
the strings w[cst−1 + |ab|..rh] and w[cst−1 − |a|..rst−1 ] both are substrings of x and hence they are equal because x has the 
period |aab|. Now since w[cst−1 + |ab|..rh] is a suffix of w[ih − |a|..rh], it is straightforward that ch = cst−1 + |aba|.

To finish the proof, it suffices to show that Algorithm 2 does not compute explicitly the local periods at the positions 
ih+1, ih+2, . . . , iz but obtains those local periods from the array m. For this purpose, let us first prove that for each h′ ∈ (h..z], 
the string w[ih′ −μ(ih′ )..ih′ +μ(ih′ ) − 1] is a substring of w[ch −|a|..ch +|a| − 1]. This fact implies that, in a sense, after the 
processing of the position ch Algorithm 2 is in a situation that locally resembles the situation in which the algorithm was 
after the processing of the position cst−1 (see Fig. 11), i.e., Algorithm 2 examines exactly the same positions ih+1, ih+2, . . . , iz

shifted by δ = ch − cst−1 or, more formally, ist−1+1 = ih+1 − δ, ist−1+2 = ih+2 − δ, . . . , ist−1+z−h = iz − δ.
Let i be the leftmost position from (ch..ch + |a|) such that μ(i) ≥ μ(ch). Lemmas 8 and 10 imply that such position 

always exists and μ(i) ≥ 2μ(ch) = |aa|. Since i ∈ (cst ..cst + μ(cst )) and |aa| > 1
2 |aab| = 1

2 μ(cst ), it follows from Lemmas 7
and 10 that μ(i) ≥ 2μ(cst ). Hence, by the definition of the subsequence {is j }t

j=1, we have i > iz . Thus, for each h′ ∈ (h..z], 
we have μ(ih′) < μ(ch) and ih′ ∈ (ch..i). Therefore, by Lemma 14, the string w[ih′ − μ(ih′)..ih′ + μ(ih′ ) − 1] is a substring of 
w[ch − |a|..ch + |a| − 1].

Suppose ist ∈ Ŝ . Summing up the established facts, we obtain that since δ = ch − cst−1 is a multiple of μ(ist ) = |aab|, 
the loop in lines 12–15 performed immediately after the computation of the local period at the position ist in line 5 
copies m[ih+1 − δ], m[ih+2 − δ], . . . , m[iz − δ], which are certainly filled with nonzero values, to m[ih+1], m[ih+2], . . . , m[iz], 
respectively. Thus, Algorithm 2 does not compute explicitly the local periods at the positions ih+1, ih+2, . . . , iz .

Suppose ist /∈ Ŝ , i.e., m[ist ] and r[ist ] are nonzero at the time the algorithm reaches ist . It follows from Algorithm 2 that 
the values m[ist ] and r[ist ] are obtained from values m[i′] and r[i′] for some position i′ < ist such that w[i′ − m[i′]..r[i′]] =
w[ist − m[ist ]..r[ist ]]. Suppose i′ ∈ Ŝ . Thus, when Algorithm 2 had calculated μ(i′), it passed through the positions ist +1 − δ,

ist+2 − δ, . . . , iz − δ, where δ = ist − i′ , stored the corresponding local periods in m[ist +1 − δ], m[ist+2 − δ], . . . , m[iz − δ], and 
then copied those values to m[ist+1], m[ist+2], . . . , m[iz], respectively, when copied m[i′] to m[ist ]. Finally, suppose i′ /∈ Ŝ . 
By an obvious induction, one can prove that in this case m[ist+1 − δ], m[ist+2 − δ], . . . , m[iz − δ] are also filled with correct 
values and thus the same argument shows that m[ist +1], m[ist+2], . . . , m[iz] are eventually set to nonzero values. �

Suppose t > 1 and 7
3 μ(ist−1 ) ≤ μ(ist ). As in Section 4, T (q) is determined by the recursion (1). Let us estimate the sum 

of the terms from the parentheses of T (. . .) in the right hand side of (1). Since μ(ist−1 ) ≤ 3
7 μ(ist ), we have 1

2 μ(is1 ) + · · · +
1
2 μ(ist ) ≤ 3

7 μ(ist )(
1
2 + 1

22 + 1
23 + · · · ) + 1

2 μ(ist ) ≤ 3
7 q + 1

2 q = 13
14 q.

Suppose t > 1, 7
3 μ(ist−1 ) > μ(ist ). Let h be the minimal number from (st ..z] such that μ(ih) = μ(ist−1 ) (if it does not 

exist, assume that h = z). By the definition of the subsequence {is j }t
j=1, we have ih ∈ (cst ..cst + μ(cst )). Lemma 11 implies 

that μ(i) < 2
3 μ(ist−1 ) ≤ 1

3 μ(ist ) for each i ∈ (cst ..ih). Further, by Lemma 15, we have ih′ /∈ Ŝ for each h′ ∈ (h..z] and thus we 
can ignore these positions in our analysis. So, combining Lemmas 7, 9, 11, 15, one can deduce the following recursion:

T (q) ≤
t∑

μ(is j ) + μ(ih) + T

(
1

2
μ(is1)

)
+ · · · + T

(
1

2
μ(ist−1)

)
+ T

(
1

3
μ(ist )

)
. (3)
j=1
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Let us estimate the sum of the terms from the parentheses of T (. . .) in the right hand side of (3). Since 
∑t−1

j=1 μ(is j ) ≤ q, 
we have 1

2 μ(is1 ) + · · · + 1
2 μ(ist−1 ) + 1

3 μ(ist ) ≤ 1
2 q + 1

3 q = 5
6 q. Clearly, the sum 

∑t
j=1 μ(is j ) + μ(ih) is bounded by 3q.

Finally, in the case t = 1 we have, by Lemmas 7 and 9, T (q) ≤ μ(is1 ) + T ( 1
2 μ(is1 )). Obviously, 1

2 μ(is1 ), the term from the 
parentheses of T (. . .), is less than or equal to 1

2 q.
Putting everything together, it is easy to see that T (q) is determined by the recursion T (q) ≤ 3q + ∑r

j=1 T (q j) for some 
terms {q j}r

j=1 such that 
∑r

j=1 q j ≤ αq, where α = min{ 13
14 , 56 , 12 } < 1. It is well known that such recursion has the solution 

T (q) ≤ 3q + α3q + α23q + · · · = 3q
1−α = O (q). Thus, the above analysis of Algorithm 2 proves the following theorem.

Theorem 2. There is a linear time and space algorithm finding the leftmost critical point of a given string on an arbitrary unordered 
alphabet.

7. Conclusion

We have shown that the problems of the computation of a critical factorization on unordered and ordered alphabets 
both have linear time solutions. This is in contrast with the seemingly related problem of finding repetitions in strings 
(squares, in particular) for which it is known that in the case of unordered alphabet one cannot even check in o(n log n)

time whether the input string of length n contains some repetitions while in the case of ordered alphabet there are fast 
o(n log n) time checking algorithms (see [9–11,13]). The search of similarities between those problems was actually our 
primary motivation for the present work although our result shows that the restriction to the case of unordered alphabets 
does not add considerable computational difficulties to the problem of the calculation of a critical factorization unlike the 
problem of finding repetitions, so, they are not similar in this aspect.

As a byproduct, we have obtained the first generalization of the constant space string matching algorithm of Crochemore 
and Perrin [3] to unordered alphabets. However, this generalization requires nonconstant space in the preprocessing step. 
So, it is still an open question to find a linear time and constant space algorithm computing a critical factorization (not 
necessarily the leftmost one) of a given string on an arbitrary unordered alphabet. Using such tool, one can possibly obtain a 
constant space string matching algorithm that is simpler and faster than the well-known algorithm of Galil and Seiferas [7].
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