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The present article is focused on the shapes
of dendritic tips occurring in undercooled
binary systems in the absence of convection.
A circular/globular shape appears in limiting
cases of small and large Péclet numbers. A
parabolic/paraboloidal shape describes the
tip regions of dendrites whereas a fractional
power law defines a shape behind their tips in
the case of low/moderate Péclet number. The
parabolic/paraboloidal and fractional power law
shapes are sewed together in the present work to
describe the dendritic shape in a broader region
adjacent to the dendritic tip. Such a generalized law
is in good agreement with the parabolic/paraboloidal
and fractional power laws of dendritic shapes. A
special case of the angled dendrite is considered
and analysed in addition. The obtained results are
compared with previous experimental data and the
results of numerical simulations on dendritic growth.

This article is part of the theme issue ‘Patterns in soft
and biological matters’.

1. Introduction
A tree-like structure containing the main trunk and
lateral branches that evolves in undercooled melts
and supersaturated solutions is called a dendrite. The
dendritic configuration of the solid material represents
one of the main formations appearing during the
phase transformation process from a metastable liquid
state. A valuable investigation of dendritic patterns
growing from supersaturated or undercooled liquids was
overviewed in the works [1,2].

One of the main parameters that determine the
properties of solid materials obtained by means of such
phase transformations are the dendrite tip diameter, its
growth velocity and the shape of the tip region. The
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Figure 1. Various shapes of dendritic tips. Here,ρ is the dendrite tip diameter, x and z are the coordinate axes, δ is a constant
power equal to 5/3 (for the two-dimensional growth of parabola) and 3/2 (for the three-dimensional growth of paraboloid) as
defined in the text, and H is a characteristic distance determining the changes in the shape scaling. (Online version in colour.)

first two of them can be found using the solvability theory (see, among others, [3–10]) while the
last one to date represents a difficult task for research studies.

The first attempt to find a shape of the steady-state dendrite growing in the undercooled
melt was made by Ivantsov [11,12] (see also [13]). He found the shape in the form of a
parabolic crystal in the two-dimensional case and of a symmetric paraboloidal crystal in the
three-dimensional case. Then his theory was extended to the steady-state shape of dendritic
crystal in the form of elliptical paraboloid [14–16]. An important point is that all of these
solutions describe only the tip region of dendrites, which is of the order of their tip diameters.
At larger distances from the dendritic vertex, the shape of the tip region changes drastically.
Namely, as is shown in computations and analytical works [17–20], the tip shape is described by
scaling having exponents 5/3 and 3/2, or lying closely to them. A transition region between the
parabolic/paraboloidal tip and the power-dependent adjacent surface of a steady-state dendrite
has never been described. This subject represents one of the main purposes of the present article.
In addition, a theoretical description of circular/globular shapes and angled dendritic tips is
developed below. Also, we arrange the possible tips of dendritic shapes in relation to the growth
Péclet number. The developed theory is supported by mathematical derivations given in the
appendixes.

A main goal of this article is to write a short overview for finally obtaining a unified analytical
description of the dendritic tip that sews together the known solutions at the tip and close
to it. In considering the dendritic tips, we especially analyse the case of angled dendrites
appearing from the boundary integral method. This method allows us to obtain solutions for
the free-boundary problems [21–26]. These shapes are discussed in the present work for weakly
anisotropic dendrites in a wide range of undercooling. They are summarized in figure 1, where
parabolic (a), angled (b), spherically globular (c) and angled globular (d) crystals are presented.
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2. Tip shapes obtained from the boundary integral theory
The evolution of a solid–liquid interface in a binary undercooled melt can be described by a single
integro-differential equation following from the boundary integral method [27,28]

− Q
m0cp

[
� − dc

ρ
K − βV

(
1 + ∂ζ (x, t)

∂t

)
− IT

ζ

]
− Cl∞ = IC

ζ , (2.1)

where ζ (x, t) represents the interface function, and x and t are the spatial and time variables.
Here, Q and cp stand for the latent heat of phase transition and the specific heat, respectively,
m0 is the liquidus slope, � = (Tf − Tl∞)cp/Q is the melt undercooling, Tf is the phase transition
temperature for a planar solid–liquid interface, Tl∞ and Cl∞ are the temperature and solute
concentration far from the phase transition interface, ρ is a characteristic length scale of the
moving interface (e.g. the diameter of a dendritic tip), β is the anisotropic kinetic coefficient, V is
the steady-state growth rate and K is the interface curvature, which is defined by

K (ζ ) = − ∂2ζ/∂x2[
1 + (∂ζ/∂x)2

]3/2 and K (ζ ) = −∇ ·
⎡
⎣ ∇ζ√

1 + (∇ζ )2

⎤
⎦ (2.2)

in the two- and three-dimensional geometry, respectively. The temperature and solute
concentration boundary integrals IT

ζ and IC
ζ take the form [27,28]

IT
ζ = Pn/2

T

∫∞

0

dτ

(2πτ)n/2

∫
· · ·

∫
Ω

[
1 + ∂ζ (x1, t − τ)

∂t

]
exp

[
−PT

2τ
Σ (x, x1, t, τ)

]
dn−1x1,

IC
ζ = (1 − k0) Pn/2

C

∫∞

0

dτ

(2πτ)n/2

∫
· · ·

∫
Ω

Ci (x1, t − τ)

×
[

1 + ∂ζ (x1, t − τ)

∂t

]
exp

[
−PC

2τ
Σ (x, x1, t, τ)

]
dn−1x1

and Σ (x, x1, t, τ) = |x − x1|2 + [ζ (x, t) − ζ (x1, t − τ) + τ ]2 , Ci (x, t) = IC
ζ + Cl∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

Here, k0 is the partition coefficient, PT = ρV/(2DT) and PC = ρV/(2DC) are the thermal and solutal
Péclet numbers, DT and DC are the thermal and solutal diffusivities, n = 2 and n = 3 in two- and
three-dimensional cases, respectively. Note that the vector x has two spatial coordinates x and y
in three dimensions, x = (x, y), and the integration area Ω extends from minus to plus infinity in
all its directions.

Expressions (2.1)–(2.3) are written in the dimensionless form which is used in the whole text
of the present work.

(a) The circular and globular tip shapes at small and large Péclet numbers
To determine the circular and globular tip shapes (figure 1c), we use the fact that the thermal
(IT

ζ ) and solutal (IC
ζ ) boundary integrals asymptotically vanish in two limiting cases of small

(PT → 0 and PC → 0) and large (PT → ∞ and PC → ∞) Péclet numbers. Indeed, we have from
the boundary integral equation (2.1) in the steady-state crystallization regime (when the interface
function ζ does not depend on time)

− Q
m0cp

[
� − dc

ρ
K − βV

]
= Cl∞. (2.4)

Now, expressions (2.2) and (2.4) determine the shape of a solid–liquid interface. Note that they can
be easily integrated in both two- and three-dimensional geometries under consideration. For the
sake of simplicity, we will not dwell on this point here and refer the reader to our previous review
article (see §7 in [28]). The main result following from these limiting cases is that the dendritic
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shape represents the circular (2D case) and globular (3D case) shapes in small and large Péclet
number limits. The branches of these shapes are determined as [28]

ζ (x) = ζ0 + 1
B

√
1 − (C0 − Bx)2

and ζ
(
x, y

)= ζ0 + 2
B

√
1 −

(
Cx − Bx

2

)2
−
(

Cy − By
2

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

in two- and three-dimensional processes, respectively. Here ζ0, C0, Cx and Cy are constants, and

B = ρ

dc

(
� − βV + m0Cl∞cp

Q

)
.

(b) The parabolic and paraboloidal tip shapes (Ivantsov solutions)
To determine the parabolic and paraboloidal shapes, (figure 1a), the boundary integrals (2.3) can
be explicitly evaluated if the dendritic tip represents a parabolic (in 2D case) or paraboloidal (in
3D case) shape and dendritic growth occurs in the steady-state manner when ∂ζ/∂t in (2.1) and
(2.3) vanishes. To do this, we must change the variable of integration as

ω = (x − x1)
2

2τ
in 2D

and ω = (x − x1)
2

2τ
, z1 = y − y1

x − x1
in 3D

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

and carry out mathematical manipulations lying beyond the scope of this section (see, for details,
[29,30] and appendix A). Omitting the mathematical details, we obtain

IT
ζ =

√
−πPT

2a
exp

(
−PT

2a

)
erfc

(√
−PT

2a

)

and IC
ζ = (1 − k0) Cl∞ f̃ (PC)

1 − (1 − k0) f̃ (PC)
, f̃ (PC) =

√
−πPC

2a
exp

(
−PC

2a

)
erfc

(√
−PC

2a

)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.7)

for the two-dimensional dendritic growth with the interface function ζ (x) = ax2 + bx + c (a < 0),
and

IT
ζ = −PT

2a
exp

(
−PT

2a

) ∫∞

1
exp

(
PTη

2a

)
dη

η

and IC
ζ = (1 − k0) Cl∞g̃ (PC)

1 − (1 − k0) g̃ (PC)
, g̃ (PC) = −PC

2a
exp

(
−PC

2a

) ∫∞

1
exp

(
PCη

2a

)
dη

η

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

for the three-dimensional dendritic growth with the interface function ζ (x, y) = a(x2 + y2) + b(x +
y) + c (a < 0). Here a, b and c represent the constants that determine the parabolic (paraboloidal)
shapes.

Now neglecting the curvature term in equation (2.1) and using the boundary integrals (2.7)
or (2.8), we come to the following expression that defines the melt undercooling ahead of the
growing dendritic tip with allowance for the steady-state regime

− Q
m0cp

[
� − βV − IT

ζ

]
− Cl∞ = IC

ζ . (2.9)

Expression (2.9) describes the two- and three-dimensional solidification regimes in which IT
ζ and

IC
ζ are given by formulae (2.7) or (2.8).

Thus, the parabolic (paraboloidal) shapes found for the first time by Ivantsov represent
approximate solutions of the boundary integral equation (2.1). These solutions well work in those
parametric regions where the interface curvature (2.2) is small enough so that the term dcK/ρ does
not give a sufficient contribution in the square brackets of expression (2.1).
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(c) Angled tips of dendrites
The boundary integrals (2.3) can also be evaluated if we are dealing with the case of so-
called angled dendrites (figure 1b). This case describes a spike shape of two- and three-
dimensional dendritic tips frequently met in various applications. As before, for the sake of clearer
presentation, we refer to the mathematical treatments given in appendix B. The final result at
x → 0 and y → 0 (near the dendritic tip) can be obtained in the form of

IT
ζ = 2

π
arctan

(
−1

a

)
, IC

ζ =
(1 − k0) Cl∞IT

ζ

1 − (1 − k0) IT
ζ

, a < 0 (2.10)

for a two-dimensional angled dendrite with the interface function ζ (x) = a|x| + b (a < 0), and

IT
ζ = 1

π
√

1 + a2

∫∞

0

{∫∞

0
exp

[−(1 + κ ′)ω′] erfc
[
−

√
ω′χ ′

]
dx′

1

}
dω′

ω′

and IC
ζ =

(1 − k0) Cl∞IT
ζ

1 − (1 − k0) IT
ζ

, χ ′ (x′
1, ω′)= a

(
a − x′

1/(2ω′)
)

√
1 + a2

, κ ′ (x′
1, ω′)= χ ′2 (x′

1, ω′)
a2 , a < 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.11)

for a three-dimensional angled dendrite with the interface function ζ (x, y) = a(|x| + |y|) + b (a < 0).
Here, the constants a and b describe a shape of angled dendrites. It is important to emphasize that
the thermal and concentration integrals (2.10) and (2.11) are independent of the Péclet numbers
PT and PC in the case of two- and three-dimensional angled dendrites.

Note that, due to the sharp tip of the angled dendrite, its interface curvature is absent
and the boundary integral (2.1) determines the melt undercooling ahead of the dendritic tip
(where IT

ζ and IC
ζ are defined by formulae (2.10) and (2.11)). The obtained angled tips of

dendrites differ considerably from their faceted tips. The angled dendrite appears as a solution
of boundary integral that exists in a whole range of undercooling and for any value of crystalline
anisotropy. Faceted dendrites are formed due to increased anisotropy of interface energy which
predominantly acts in the smallest and intermediate range of undercooling.

Thus, the thermal and solutal boundary integrals, IT
ζ and IC

ζ , can be analytically evaluated
to obtain circular/globular, parabolic/paraboloidal and angled dendritic shapes. The next
paragraph is concerned with the shapes of tip regions of growing dendrites obtained by means of
computer simulations.

3. Dendritic shapes obtained from computations
Real dendritic crystals represent complex branching patterns whose shape differs from ideal
shapes described in the previous section. If we are dealing with a wide range of possible Péclet
numbers the shape of tip regions differs from Ivantsov parabolas (paraboloids) in close proximity
to the dendrite tips. To find such shapes, we need to use more complex mathematical tools
than purely analytical techniques, which are based on computer simulations of spatial and time
scalings of dendritic tips in the same way as was done in pioneering articles by Almgren, Dai &
Hakim [17] (two-dimensional dendrites) and Plapp & Karma [18] (three-dimensional dendrites).
Below we briefly discuss their results in terms of dendritic shapes.

(a) Two-dimensional dendrites
Using the boundary integral theory and direct numerical simulations, Almgren et al. [17] showed
that the two-dimensional dendritic arms develop in such a manner that their lengths and widths
grow in time as t3/5

d and t2/5
d , respectively (here, td designates the dimensionless time variable).
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Then, using this scaling behaviour, Brener showed that the shape of dendritic tips takes the form
[19,20]

zB(x) = α|x|5/3, (3.1)

where α is a constant, and zB and x represent the spatial coordinates along to and perpendicular
to the direction of dendritic tip’s growth, respectively.

It is significant that experiments carried out by Bisang & Bilgram [31] confirm the shape given
by expression (3.1). Namely, they showed that the Ivantsov solutions (parabolas or paraboloids)
work only very near to the dendritic tip regions. As the distance from the tip becomes of the order
of dendritic diameter ρ, a dendritic shape becomes in agreement with the shape (3.1).

(b) Three-dimensional dendrites
A novel computational method based on a multiscale random-walk algorithm was developed by
Plapp & Karma [18] to simulate three-dimensional dendritic growth. They showed that the scaling
law (3.1) must be changed in the case of three-dimensional axisymmetric dendritic growth by the
following formula:

zPK(x) = α|x|3/2, (3.2)

where all designations correspond to expression (3.1) and x represents the spatial coordinate of a
symmetrically growing dendrite.

Physically, the scaling laws (3.1) and (3.2) are different due to the fact that the tip velocity is
much larger in the three-dimensional case than in the two-dimensional case. The latter is caused
by the fact that the heat- and mass transfer equations, as well as boundary conditions in 3D and
2D, have a different form, which is dictated by various Lamé coefficients [32,33].

To conclude this section, we stress the fact that the Ivantsov solutions work only at the
dendritic tip and in a very small vicinity around the tip, but the scaling laws (3.1) and (3.2)
determine the shape of the neighbouring area to the dendrite tip.

4. Sewing together various tip shapes
In this section, we present the analytical expressions for dendritic shapes obtained by the method
of sewing together two different solutions: the Ivantsov parabolic shape (paraboloidal shape in
three dimensions) valid at the dendritic tip and the power law (3.1) (or the power law (3.2) in
three-dimensional case) valid at a distance of the order of several tip diameters from the dendritic
vertex.

(a) Two-dimensional dendritic shapes
Let us now sew together the two-dimensional Ivantsov solution zIv(x) = −x2, which formally
takes place at small arguments x → 0, and the power shape (3.1), which is valid at increased
values of the argument x (or formally at x � 1). Keeping this in mind, assuming for simplicity
that α = −1 (this can always be done by rescaling [31]), and choosing the fractional function for
sewing, we finally obtain

zAG(x) = − bS(x)x2 + bL(x)|x|5/3

bS(x)|x|1/3 + bL(x)|x|−1/3 two-dimensional dendrite, (4.1)

where bS(x) and bL(x) are the arbitrary functions satisfying the formal sewing conditions

bS(x) → 0, bL(x) → 1 at x → 0

and bS(x) → 1, bL(x) → 0, at x � 1.

}
(4.2)
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It is significant to note the limiting cases of small and large values of x following from the
generalized expression (4.1). Namely, if x is small enough, we come to the Ivantsov solution

zAG(x) ≈ − bL(x)|x|5/3

bL(x)|x|−1/3 = −x2, x → 0. (4.3)

On the other hand, if x is large enough, we arrive at Brener’s solution

zAG(x) ≈ − bS(x)x2

bS(x)|x|1/3 = −|x|5/3, x � 1. (4.4)

Let us now write out possible functions bS(x) and bL(x), which satisfy the sewing conditions
(4.2) and, what is more important, lead to a good approximation of dendritic shape for a broad
range of x. Indeed, we can simply choose them as

bS(x) = exp
(

− 1
x2k

)
and bL(x) = exp

(
−x2k

)
, (4.5)

where k is a positive integer which determines the smoothness of the transition from Ivantsov’s
solution to Brener’s solution.

Figure 2 compares the solution (4.1) for the dendritic shape with two previously known
asymptotic solutions presented by Ivantsov zIv(x) and by Brener zB(x). As is easily seen, zAG(x)
(green dots) merges with the Ivantsov function zIv(x) (blue dashed line) at small x in the dendritic
tip region (compare the dotted and dashed lines shown in figure 2a). When x becomes large
enough, zAG(x) (green dots) actually coincides with the Brener function zB(x) (red solid line),
which describes the shape at some distance from the dendritic vertex (compare the dotted and
solid lines illustrated in figure 2c). The intermediate region, where the shape changes from the
Ivantsov solution to the Brener one, is demonstrated in figure 2b. Here, we can easily see that
the new function zAG(x) (green dots) smoothly changes the shape function from zIv(x) (at the tip
region) to zB(x) (at some distance from it). Thus, the function (4.1) describes the shapes of two-
dimensional dendrites in a broad diapason of spatial coordinates ranging from a tip region to a
peripheral one. The latter is shown by the tail region in figure 1a.

(b) Three-dimensional dendritic shapes
Let us now consider some cross-section of a symmetrically growing three-dimensional dendrite
so that the problem reduces to the two-dimensional case, where the tip region is described by
the Ivantsov function zIv(x) = −x2, and the region behind its tip is defined by the Plapp & Karma
shape (3.2) with α = −1. The rotation of these functions around the growth axis of the dendrite,
which passes through its vertex, determines the axisymmetric surface of rotation. This case can
be studied by analogy with the two-dimensional dendritic growth. Indeed, sewing together
functions zIv(x) and zPK(x), we arrive at

zAG(x) = − bS(x)x2 + bL(x)|x|3/2

bS(x)|x|1/2 + bL(x)|x|−1/2 three-dimensional dendrite, (4.6)

where, as before, bS(x) and bL(x) satisfy the sewing conditions (4.2). Note that this function
respectively tends to the Ivantsov and Plapp-Karma solutions in the limiting cases of small and
large arguments, that is

zAG(x) ≈ − bL(x)|x|3/2

bL(x)|x|−1/2 = −x2, x → 0

and zAG(x) ≈ − bS(x)x2

bS(x)|x|1/2 = −|x|3/2, x � 1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

The functions bS(x) and bL(x) can be chosen accordingly to expressions (4.5).
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Figure 2. Dendritic shapes given by the Ivantsov solution zIv (x)= −x2 (blue dashed line), the Brener solution zB(x) (red
solid line, expression (3.1)), and the generalized solution zAG(x) (green dotted line, expression (4.1)). The Ivantsov and Brener
functions, respectively, describe the shape of dendrite very near to its vertex (a) and at some distance from it (c). The
intermediate region (b) as well as two regions shown in (a) and (c) are well described by the zAG(x)-solution plotted at k = 3.
(Online version in colour.)

The behaviour of three-dimensional solutions is shown in figure 3. Here, figure 3a
demonstrates a dendritic cross-sectional area (intermediate region only) in accordance with the
Ivantsov function, zIv(x) = −x2, the Plapp and Karma function (3.2), and the generalized solution
(4.6). As is seen, the generalized solution agrees well with two asymptotic regimes. The behaviour
of solutions in the rest regions (near a dendritic vertex and far from it) is completely analogous
to the two-dimensional case (figure 2a,c). Figure 3b illustrates the shape of a three-dimensional
dendrite obtained by means of rotation of the generalized solution (4.6) around the growth axis z.
As in the two-dimensional case, the solution (4.6) describes well all previously known shapes of
three-dimensional dendritic growth derived by Ivantsov, Plapp and Karma.

(c) Two- and three-dimensional dendritic shapes: a generalized law
The two- and three-dimensional dendritic shapes (4.1) and (4.6) can be generalized and written
out as a single law determining the shape of dendrites near their tip regions in the form of

zAG(x) = − bS(x)x2 + bL(x)|x|(9−2n)/(5−n)

bS(x)|x|1/(5−n) + bL(x)|x|− 1
5−n

two- and three-dimensional dendrites, (4.8)

where n = 2 and n = 3 for two- and three-dimensional dendritic shapes. Note that bS(x) and bL(x),
as before, satisfy the sewing conditions (4.2) and can be chosen accordingly to expressions (4.5).
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Figure 3. (a) Dendritic shapes given by the Ivantsov solution zIv (x)= −x2 (blue dashed line), the Plapp & Karma solution
zPK (x) (red solid line, expression (3.2)) and the generalized solution zAG(x) (green dotted line, expression (4.6)) in the
intermediate region. The Ivantsov andPlapp-Karma functions, respectively, describe the shape of dendrite very near to its vertex
and at some distance from it. (b) A three-dimensional shape plotted according to the generalized solution zAG(x) at k = 3,
(expression (4.6)). (Online version in colour.)

5. Discussion and conclusion
The aforementioned shapes of dendritic tip regions are summarized in table 1. Let us briefly
discuss below the main points following from our analysis.

First of all, the boundary integral (2.1) has an identical asymptotic solution in two cases of small
and great Péclet numbers PT and PC. Indeed, if PT → 0 and PC → 0 (or PT → ∞ and PC → ∞),
the thermal and concentration integrals IT

ζ and IC
ζ vanish and equation (2.1) can be explicitly

integrated. Namely, its integration leads to a circular/globular shape given by expression (2.5).
This law describes the crystals that are capable of nucleating and growing in the bulk of
undercooled melt or supersaturated solution.

In the second instance, a parabolic/paraboloidal shape takes place only in the dendritic
tip region at a low/moderate Pécle number if the surface tension is negligible. In addition, a
characteristic distance measured from the dendrite vertex where the shape can be considered as
parabolic/paraboloidal is of the order of the radius of curvature. If this is really the case, the
boundary integral (2.1) should be integrated in the absence of interface curvature K that leads to
the undercooling balance in the form of expression (2.9).

In the third instance, the tip surface changes its shape with increasing distance from the
dendritic vertex. Namely, when we are at the greater distance (in order of magnitude) from the
dendrite tip radius, the shape is described by a fractional power law. Such a power-dependent
law works at the distance that is less (in order of magnitude) than several dendrite tip radii. In
this region, the approximate power-law (3.1), deduced by Brener on the basis of two-dimensional
computations [17], takes place. His law zB(x) = α|x|5/3 was tested against three-dimensional
experimental data on xenon dendrites by Bisang & Bilgram [31] and on succinonitrile dendrites
grown in microgravity conditions by Li & Beckermann [47]. Their works show that the power law
(3.1) works well behind the tip region. What is more, three-dimensional computations of dendritic
growth carried out by Plapp & Karma [18] lead to another power-dependent law zPK = α|x|3/2. As
we know, their law has never been tested against experiments or numerical simulations. However,
both powers 5/3 and 3/2 lie close to each other and the difference between them can be of the
order of experimental or computational error. In this respect experiments with three-dimensional
chemical dendrites grown from supersaturated aqueous solutions NH4Cl show that the shape
of the region around the dendrite tip also has the power of 5/3 [52]. More accurate studies of
the feasibility of the aforementioned power-laws in a broad range of growth regimes represent a
challenging problem for future investigations.
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Table 1. Summary of known shapes near dendritic tips (hereα is a shape constant). Here, we treat PT � 10−3 as small, PT ∼
10−3 − 10−2 as moderate, and PT � 10−2 as high Péclet numbers.

2D/3D shapes limitation theory experiments or computations

circular/globular vanishing Péclet §2a [34–38]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anisotropic globular vanishing Péclet §2a [34,37–41]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

parabolic/paraboloidal, low/moderate Péclet, §2b, [35,42–44]

z = αx2, z = α(x2 + y2) zero surface tension [15,27,45,46]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

power, low/moderate Péclet [17–19] [31,47,48]

z = α|x|5/3, z = α|x|3/2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

angled, — §2c [49,50]

z = α|x|, z = α(|x| + |y|)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anisotropic globular highest Péclet [28,51] [36–38,41]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

circular/globular highest Péclet [28,51] [37,38,41]

generalized power, low/moderate Péclet §4 sewed limits are tested

(4.1), (4.6), (4.8) in [31,35,42–44,47]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the fourth instance, the power laws suggested by Brener (computed/derived in 2D and
verified in 3D) and by Plapp & Karma (computed in 3D) that are valid at some distance from the
dendritic vertex have been sewed together with the parabolic/paraboloidal shapes valid in the
vertex region only (section 4). We show that our solutions (expressions (4.1) and (4.6)) coincide
well with the parabolic/paraboloidal shapes in the tip region and with the aforementioned power
laws behind it. In addition, a generalized power law (4.8) joining together the two- and three-
dimensional cases is found. Checking the feasibility of generalized power shapes (4.1), (4.6) and
(4.8) in future experiments and numerical simulations is an additional challenging task.

In the last instance, we demonstrate that the boundary integral theory contains the angled-
type dendrites as possible solutions of two- and three-dimensional problems (§2c). Taking into
account previous theory and simulations [49,50], we are able to conclude that such dendrites grow
at certain undercoolings that determine their tip angles. It is remarkable that the angled dendrites
exist as the solutions of the boundary integral method in a whole spectrum of undercoolings
(small, moderate and high). In this respect, one can mention the experimental work of Maurer
et al. [53], where the so-called facetted dendrites of NH4Br crystals were obtained for vanishing
growth velocities, i.e. smallest supersaturation. Usually, facetted dendrites appear due to the high
anisotropy of surface energy or atomic kinetics. However, dendrites that are grown from the
aqueous solution of NH4Br should exhibit small anisotropy of interface properties (surface energy
and growth kinetics). Therefore, one can also attribute these experimental data from Maurer et al.
to the case of growth of angled dendrites at vanishing supersaturation. More detailed studies of
such angled structures are also required in the future to establish their properties and growth
laws.

Concluding this section, let us especially emphasize that the present article does not represent
a comprehensive review of possible tip shapes appearing in dendritic growth. So, for example,
such phenomena as convection, local non-equilibrium effects, gravitational and electromagnetic
fields, and chemical interaction between atoms that completely change the growth conditions
and dendritic shapes can be included in the further analysis. Questions related to the shape
of dendrites away from their tip regions, splitting of their tips, morphological instability and
sidebranches in dendritic growth lie outside the scope of the present article as well.
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Appendix A. Boundary integrals for parabolic and paraboloidal dendrites
The thermal and concentration integrals IT

ζ and IC
ζ from (2.3) in the case of steady-state dendritic

growth can be written as (Ci = Cl∞ + IC
ζ )

IT
ζ = PT

∫∞

0

dτ

2πτ

∫∞

−∞
exp

[
−PT

2τ
Σ(x, x1, τ )

]
dx1,

IC
ζ = (1 − k0)PC

∫∞

0

dτ

2πτ

∫∞

−∞
Ci(x1) exp

[
−PC

2τ
Σ(x, x1, τ )

]
dx1

and Σ(x, x1, τ ) = (x − x1)
2 + [ζ (x) − ζ (x1) + τ ]2 ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 1)

in the case of two-dimensional growth, and

IT
ζ = P3/2

T

∫∞

0

dτ

(2πτ )3/2

∫∞

−∞

∫∞

−∞
exp

[
−PT

2τ
Σ(x, x1, τ )

]
d2x1,

IC
ζ = (1 − k0)P3/2

C

∫∞

0

dτ

(2πτ )3/2

∫∞

−∞

∫∞

−∞
Ci(x1) exp

[
−PC

2τ
Σ(x, x1, τ )

]
d2x1

and Σ(x, x1, τ ) = |x − x1|2 + [ζ (x) − ζ (x1) + τ ]2 ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 2)

in the case of three-dimensional growth.

(a) Two-dimensional case (parabola)
Now we seek for a solution of integrals (A 1) if the interface function is given by a parabola

ζ (x) = ax2 + bx + c, (A 3)

where a < 0, b, c are the constants. Now substituting ζ (x) from (A 3) into (A 1), and replacing τ

by ω

ω = (x − x1)2

2τ
,

we arrive at

IT
ζ = PT

2π

∫∞

0

dω

ω

∫∞

−∞
exp

[
−PTω

(
1 +

(
a(x + x1) + b + x − x1

2ω

)2
)]

dx1. (A 4)

Changing again the variable of integration

z = −
√

PTω

(
a(x + x1) + b + x − x1

2ω

)
,

in (A 4), we integrate IT
ζ and come to the following expression:

IT
ζ = −

√
PT

2
√

π

∫∞

0

exp (−PTω) dω√
ω(aω − 1/2)

. (A 5)

Taking into account that [54]
∫∞

0

exp(−qα)√
α

dα =
√

π

q
, q > 0, (A 6)

we can integrate expression (A 5) if a = 0 as

IT
ζ = 1, a = 0. (A 7)
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Assuming that a 
= 0 and rewriting (A 5) as

IT
ζ = 1 −

√
PT

π
a
∫∞

0

√
ω exp (−PTω) dω

aω − 1/2
, (A 8)

we can evaluate this integral by means of the following formula [54]
∫∞

u

√
α − u
α

exp (−μα) dα =
√

π

μ
exp (−μu) − π

√
u erfc

(√
uμ
)

, u > 0, Re(μ) > 0.

This enables us to write down (A 7) and (A 8) in the form of

IT
ζ =

⎧⎪⎨
⎪⎩
√

−πPT

2a
exp

(
−PT

2a

)
erfc

(√
−PT

2a

)
, a < 0

1, a = 0

(A 9)

Note that if a = −1/2, the thermal integral (A 9) becomes

IT
ζ = PT exp (PT)

∫∞

1

exp (−PTυ) dυ√
υ

, (A 10)

which is identical to expressions (30) in [27] and (5.1) in [28].
The second integral IC

ζ in (A 1) describing the binary systems can be found in the same manner
as IT

ζ . Indeed, changing PT by PC and keeping in mind the constant term (1 − k0)Ci, we get from
formulae (A1)

IC
ζ = (1 − k0)Cif̃ (PC) (A 11)

and

f̃ (PC) =

⎧⎪⎪⎨
⎪⎪⎩

√
−πPC

2a
exp

(
−PC

2a

)
erfc

(√
−PC

2a

)
, a < 0

1, a = 0.

(A 12)

To find the solute concentration at the solid–liquid interface Ci = Cl∞ + IC
ζ , we combine this

formula with (A 11) and (A 12). The result takes the form

Ci =
Cl∞

1 − (1 − k0)f̃ (PC)
, (A 13)

which is identical to formulae (34) in [27] and (5.8) in [28] if a = −1/2.

(b) Three-dimensional case (paraboloid of revolution)
Let us assume that the interface function is given by an axisymmetric paraboloid

ζ (x, y) = a(x2 + y2) + b(x + y) + c, (A 14)

where a < 0, b and c are again constants. Changing the integration variables ω and y1 in the
thermal integral (A2) as

ω = (x − x1)2

2τ
and y − y1 = (x − x1)z1, (A 15)

we rewrite IT
ζ in the form of

IT
ζ = −1

2

(
PT

π

)3/2 ∫∞

0

dω√
ω

∫∞

−∞
exp

[−PTω(1 + z2
1)
]

dz1

a + az2
1 − (2ω)−1

∫∞

−∞
exp

(
−PTωu2

)
du, (A 16)

where

u = a(x + x1) + b(1 + z1) + az1
[
2y − (x − x1)z1

]+ x − x1

2ω
.
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Keeping in mind that [54]

∫∞

0

exp
(−μ2v2)dv

v2 + β2 = π

2β
erfc(βμ) exp

(
β2μ2

)
,

we rewrite (A16) in the following form:

IT
ζ = −PT

a
exp

(
−PT

2a

) ∫∞

1/
√

−(2a)

erfc
[√

PTw
]

dw√
w2 + (2a)−1

, w =
√

ω − (2a)−1. (A 17)

Let us introduce the additional parameter α = √
PT to simplify the integral (A 17) such that the

auxiliary function and its derivative are

J(α) =
∫∞

1/
√

−(2a)

erfc [αw] dw√
w2 + (2a)−1

, J′(α) = −exp
[
α2 (1 + (2a)−1)]

√
π

∫∞

1

exp
[−α2γ

]
dγ√

γ − 1
,

where γ = w2 + 1 + (2a)−1. The integral entering in the right-hand side of J′(α) takes the form [54]:√
π exp(−α2)/α. This enables us to rewrite J′(α) as

J′(α) = − 1
α

exp

[
α2

2a

]
.

Integrating J′(α) with allowance for the boundary condition J(α) → 0 within the limit α → ∞, we
arrive at

J(α) =
∫∞

α

exp

[
ν2

2a

]
dν

ν
.

Combining J(α) and (A17) and changing the variable as ν = √
PTη, we come to the following

expression:

IT
ζ = −PT

2a
exp

[
−PT

2a

] ∫∞

1
exp

[
PTη

2a

]
dη

η
, (A 18)

which is identical to formulae (31) in [27] and (5.5) in [28] if a = −1/2.
If a = 0, the integral (A 18) can be found directly from (A 16) as IT

ζ = 1 at a = 0. Keeping this in
mind, IT

ζ reads as

IT
ζ =

⎧⎪⎨
⎪⎩

−PT

2a
exp

[
−PT

2a

] ∫∞

1
exp

[
PTη

2a

]
dη

η
, a < 0

1, a = 0

. (A 19)

To easily evaluate IC
ζ , we should again change PT by PC and take into consideration the constant

concentration difference (1 − k0)Ci. This enables us to express IC
ζ as

IC
ζ = (1 − k0)Cig̃(PC) (A 20)

and

g̃(PC) =

⎧⎪⎨
⎪⎩

−PC

2a
exp

[
−PC

2a

] ∫∞

1
exp

[
PCη

2a

]
dη

η
, a < 0

1, a = 0

. (A 21)

The solid–liquid concentration Ci = Cl∞ + IC
ζ in this case is found by means of formulae (A 20)

and (A 21) in the form of

Ci = Cl∞
1 − (1 − k0)g̃(PC)

, (A 22)

which is identical to formulae (34) in [27] and (5.8) in [28] for a = −1/2.
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Appendix B. Boundary integrals for angled dendrites

(c) Two-dimensional case
Let us assume that a two-dimensional angled dendrite with the interface function ζ (x) = a|x| + b
(a < 0 and b represent constants) evolves in a two-component liquid with a constant velocity. To
evaluate the thermal integral in (2.3), we divide it into two contributions, i.e.

IT
ζ = PT

∫∞

0

dτ

2πτ

(∫∞

0
+

∫ 0

−∞

)
exp

[
−PT

2τ
Σ(x, x1, τ )

]
dx1. (B1)

The first of these integrals with respect to x1 changing from 0 to ∞ can be calculated by means of
the following interface function ζ (x1) = ax1 + b, and

Σ(x, x1, τ ) = (x − x1)2 + [a(x − x1) + τ ]2 .

Replacing the variable of integration in (B1) with respect to τ as ω = (x − x1)2/(2τ ) and
substituting u instead of x1 as u = −√

PTω[a + (x − x1)/(2ω)], we come to the first contribution
in expression (B1) √

PT

2
√

π

∫∞

0

exp (−PTω)√
ω

erfc
[
−
√

PTω

(
a + |x|

2ω

)]
dω. (B2)

The second of integrals in expression (B1) with respect to x1 changing from −∞ to 0 should be
calculated with

ζ (x1) = −ax1 + b and u =
√

PTω

(
x − x1

2ω
− a

)
.

The final result coincides with (B2). Keeping this in mind, the thermal integral (B1) takes the form

IT
ζ =

√
PT

π

∫∞

0

exp (−PTω)√
ω

erfc
[
−
√

PTω

(
a + |x|

2ω

)]
dω. (B3)

The integral (B3) can be simplified in the dendritic tip region |x| → 0 as

IT
ζ =

√
PT

π

∫∞

0

exp (−PTω)√
ω

erfc
(
−a
√

PTω
)

dω = 2
π

arctan
(

−1
a

)
. (B4)

Note that the thermal integral (B4) describing the case of two-dimensional angled dendrite does
not depend on Péclet number PT = ρV/(2DT).

The concentration integral IC
ζ from (2.3) can be evaluated in the same manner as IT

ζ . The result
is IC

ζ = (1 − k0)CiIT
ζ . Now taking into account that Ci = IC

ζ + Cl∞, we get expressions (2.10).

(d) Three-dimensional case
We now evaluate the thermal integral (2.3) in the three-dimensional geometry, where the interface
function for an angled dendrite is given by ζ (x, y) = a(|x| + |y|) + b (a < 0 and b are constants).

For the sake of convenience, we divide the integral IT
ζ in (2.3) into four parts. The first of them

is determined by the interface function ζ (x, y) = a(x + y) + b (x > 0, y > 0), and

Σ(x, y) = (x − x1)
2 + (

y − y1
)2 + [

a (x − x1) + a
(
y − y1

)+ τ
]2 .

Replacing τ by ω and y1 by z1 as

τ = (x − x1)2

2ω
, y1 = y + (x − x1)z1,

we obtain the following contribution to IT
ζ :

P3/2
T

2π3/2

∫∞

0

∫∞

0

∫∞

−y/(x−x1)
exp

{
−PTω

[
1 + z2

1 +
(

a − az1 + x − x1

2ω

)2
]}

dz1dx1
dω√

ω
. (B5)
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Now completing the square with respect to z1 and replacing z1 by u as

u =
√

1 + a2z1 − χ (x1, ω) and χ (x1, ω) = a (a + (x − x1)/(2ω))√
1 + a2

,

we ultimately obtain from (B5)

PT

4π
√

1 + a2

∫∞

0

{∫∞

0
exp [−PT (1 + κ(x1, ω)) ω] erfc

[
−
√

PTω

(√
1 + a2y
x − x1

+ χ (x1, ω)

)]}
dω

ω
, (B6)

where κ(x1, ω) = χ2(x1, ω)/a2.
Three other contributions to IT

ζ in (2.3) for different signs of variables x and y can be found by
analogy with the aforementioned contribution. All of them coincide with the contribution (B6).
Therefore, the final result should be quadrupled.

Considering further the tip region (where x → 0 and y → 0), we get from (B6)

IT
ζ = PT

π
√

1 + a2

∫∞

0

{∫∞

0
exp [−PT (1 + κ̃(x1, ω)) ω] erfc

[
−
√

PTωχ̃ (x1, ω)
]

dx1

}
dω

ω
, (B7)

where

χ̃ (x1, ω) = a (a − x1/(2ω))√
1 + a2

and κ̃(x1, ω) = χ̃2(x1, ω)
a2 .

Changing again the variables of integration as

ω′ = PTω and x′
1 = PTx1,

we finally rewrite expression (B7) in the form of

IT
ζ = 1

π
√

1 + a2

∫∞

0

{∫∞

0
exp

[−(1 + κ ′)ω′] erfc
[
−

√
ω′χ ′

]
dx′

1

}
dω′

ω′

and χ ′ (x′
1, ω′)= a

(
a − x′

1/(2ω′)
)

√
1 + a2

, κ ′ (x′
1, ω′)= χ ′2 (x′

1, ω′)
a2 , a < 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B8)

The concentration integral can be easily calculated in the same manner and reads as

IC
ζ =

(1 − k0) Cl∞IT
ζ

1 − (1 − k0) IT
ζ

. (B9)

Expressions (B8) and (B9) determining a three-dimensional angled dendrite do not depend on the
Péclet numbers PT and PC. These formulae completely correspond to expression (2.11).
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