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In “Lattice dynamics and structure of the new langasites
Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd): vibrational spectra and ab initio
calculations” [1], experimental and calculated results on lattice
dynamics of the recently discovered new compounds La3CrGe3-
Be2O14, Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14 are reported. These
compounds belong to the langasite series and constitute a new
class of low-dimensional antiferromagnets. The data presented in
this article includes IR diffuse transmission spectra of powder
samples of Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd) registered at room
temperature with a Bruker 125HR Fourier spectrometer, Raman
spectra taken in the backscattering geometry (also at room tem-
perature) with a triple monochromator using the line 514, 5 nm of
an argon laser as an excitation, results of the DFT calculations with
the B3LYP and PBE0 hybrid functionals on the optimized crystal
structures, eigenfrequencies and eigenvectors of the normal
vibrational modes. These data can be used to analyse electron-
phonon interaction and multiferroic properties of the new langa-
sites and to compare the lattice dynamics of different langasites.
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Specifications Table

Subject Materials Science
Specific subject area Electronic, Optical and M
Type of data Table

Figure
Text file

How data were
acquired

IR spectra were collected
Raman spectra were colle
monochromator using th
The CRYSTAL14 program
was used for DFT ab initio
and ECP60MWBwith corr
electron basis sets of TZV

Data format Raw
Analyzed

Parameters for
data collection

Spectra were collected on
Calculations were perform
functional theory, by usin
local and nonlocal (in the

Description of
data collection

Infrared diffuse transmiss
equipped with a DTGS and
the backscattering geome
The frequencies and eige
calculations. First, the full
carried out. Then, the pho
corresponding to the min

Data source location Institute of Spectroscopy,
Russian Federation
55.464596�N37.297538�E

Data accessibility Repository name: Mende
Data identification numb
Direct URL to data: https:

Related research
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1. Data description

The dataset includes 6 text files for our measured infrared (IR) and Raman spectra of Ln3CrGe3-
Be2O14 (Ln¼ La, Pr, Nd, raw data) [1]. These text files are named by rare-earth (RE) element symbol plus
the method used to take the spectrum, e.g., Pr_IR.txt means an IR spectrum of Pr3CrGe3Be2O14. Each
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text file has two columns which correspond to wave number (unit: cm�1) and IR absorbance or Raman
intensity (in arbitrary units). The same data are presented also as Excel files, e.g., Pr_IR.xlsx.

The data of ab initio calculations of optimized crystal structures is provided in 5 Excel tables. Table 1
provides the coordinates of atoms in the unit cell for the optimized structures of Ln3CrGe3Be2O14
(Ln ¼ La, Pr, Nd), calculated with the B3LYP hybrid functional. Table 2 provides the interatomic dis-
tances for the optimized structures of Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd), calculated with the B3LYP
hybrid functional. Table 3 provides the lattice constants for the optimized structures of Ln3CrGe3Be2O14
Table 3
Experimentally determined [14] and calculated (PBE0) lattice constants (Å) of Ln3CrGe3Be2O14.

Ln3CrGe3Be2O14 a c

La3CrGe3Be2O14 Exp. 8.033(2) 4.934(2)
Calc. 8.0622 4.9680

Pr3CrGe3Be2O14 Exp. 7.957(2) 4.904(2)
Calc. 7.9968 4.9433

Nd3CrGe3Be2O14 Exp. 7.931(2) 4.894(2)
Calc. 7.9683 4.9323

Table 2
Calculated (B3LYP) and experimentally determined [14] (in square brackets) M e O distances (Å) in the structure of Ln3CrGe3-
Be2O14 (Ln ¼ La, Pr, Nd).

Ln ¼ La Ln ¼ Pr Ln ¼ Nd

Repolyhedron
ReO1 � 2 2.637 [2.577(2)] 2.621 2.613
ReO2 � 2 2.520 [2.457(4)] 2.473 2.451
ReO20 � 2 2.850 [2.816(3)] 2.827 2.818
ReO3 � 2 2.488 [2.450(3)] 2.449 2.431
(ReO)av 2.624 [2.575] 2.593 2.578
Creoctahedron
CreO3 � 6 1.987 [1.979(2)] 1.984 1.983
Gee tetrahedron
GeeO2 � 2 1.784 [1.760(4)] 1.781 1.780
GeeO3 � 2 1.774 [1.733(3)] 1.775 1.775
(GeeO)av 1.779 [1.747] 1.778 1.778
Beetetrahedron
BeeO1 1.586 [1.622(6)] 1.589 1.590
BeeO2 � 3 1.698 [1.672(3)] 1.694 1.692
(BeeO)av 1.670 [1.660] 1.668 1.667

Table 1
Calculated (B3LYP) coordinates of atoms in the unit cell of Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd). The experimental data for
Ln3CrGe3Be2O14 [14] are shown in square brackets.

Ion site Ln ¼ La Ln ¼ Pr Ln ¼ Nd

x/a y/b z/c x/a y/b z/c x/a y/b z/c

Ln 3e 0.42858
[0.42983(4)]

0. 0. 0.42797 0. 0. 0.42776 0. 0.

Cr 1a 0. 0. 0. 0. 0. 0. 0. 0. 0.
Ge 3f 0.74264

[0.74350(8)]
0. 0.5 0.74243 0 0.5 0.74235 0. 0.5

Be 2d 1/3 2/3 0.52202 [0.5260(10)] 1/3 2/3 0.52576 1/3 2/3 0.52735
O1 2d 1/3 2/3 0.20577 [0.1973(9)] 1/3 2/3 0.20729 1/3 2/3 0.20790
O2 6g 0.46708

[0.4671(4)]
0.30292
[0.3049(3)]

0.32707 [0.3251(5)] 0.46748 0.30543 0.32133 0.46770 0.30667 0.31882

O3 6g 0.22247
[0.2256(3)]

0.09505
[0.0966(3)]

0.75926 [0.7571(4)] 0.22352 0.09250 0.75799 0.22402 0.09133 0.75743
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(Ln ¼ La, Pr, Nd), calculated with the PBE0 hybrid functional. Table 4 provides the coordinates of atoms
in the unit cell for the optimized structures of Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd), calculated with the
PBE0 hybrid functional. Table 5 provides the interatomic distances for the optimized structures of
Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd), calculated with the PBE0 hybrid functional. In Tables 1e5, available
experimental data are in square brackets.

The dataset includes 3 text files for the calculated with the B3LYP hybrid functional frequencies of
normal modes and their intensities in the IR and Raman spectra. These text files are named by RE
element symbol plus the method to get the data, e.g., Pr_abinit.txt means the calculated data for
Pr3CrGe3Be2O14. Each text file has four columns which correspond to the symmetry of the mode
(irreducible representation), wave number (unit: cm�1), IR intensity, Raman intensity (arb. units). First,
all A1 modes are listed, they are followed by the A2 and, then, E modes. The same data are presented
also as Excel files, e.g., Pr_abinit.xlsx. Three Excel Tables, Table 6, Table 7, and Table 8, provide all
calculatedmodes comparedwith those found from themeasured spectra (analyzed data), in increasing
order of their frequency for La3CrGe3Be2O14, Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14, respectively. Mode
symmetries are indicated.

The data on calculated displacements of different atoms in normal crystal modes of different fre-
quencies for Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd) is provided in 3 text files named, e.g., Pr_displ.txt. Each
Table 4
Calculated (PBE0) and experimentally determined [14] (in square brackets) coordinates of atoms in the unit cell of
Ln3CrGe3Be2O14þ (Ln ¼ La, Pr, Nd).

Ion site Ln ¼ La Ln ¼ Pr Ln ¼ Nd

x/a y/b z/c x/a y/b z/c x/a y/b z/c

Ln 3e 0.43071
[0.42983(4)]

0 0 0.43021 0 0 0.42976 0 0

Cr 1a 0 0 0 0 0 0 0 0 0
Ge 3f 0.74464

[0.74350(8)]
0 0.5 0.74435 0 0.5 0.74428 0 0.5

Be 2d 1/3 2/3 0.52203 [0.5260(10)] 1/3 2/3 0.52539 1/3 2/3 0.52713
O1 2d 1/3 2/3 0.20488 [0.1973(9)] 1/3 2/3 0.20613 1/3 2/3 0.20711
O2 6g 0.46553

[0.4671(4)]
0.30026
[0.3049(3)]

0.32701 [0.3251(5)] 0.46600 0.30279 0.32134 0.46618 0.30408 0.31883

O3 6g 0.22215
[0.2256(3)]

0.09317
[0.0966(3)]

0.75867 [0.7571(4)] 0.22329 0.09093 0.75757 0.22364 0.08958 0.75679

Table 5
Calculated (PBE0) and experimentally determined [14] (in square brackets) M e O distances (Å) in the structure of Ln3CrGe3-
Be2O14 (Ln ¼ La, Pr, Nd).

Ln ¼ La Ln ¼ Pr Ln ¼ Nd

Repolyhedron
ReO1 � 2 2.601 [2.577(2)] 2.584 2.578
ReO2 � 2 2.496 [2.457(4)] 2.449 2.429
ReO20 � 2 2.811 [2.816(3)] 2.788 2.779
ReO3 � 2 2.468 [2.450(3)] 2.430 2.412
(ReO)ср 2.594 [2.575] 2.563 2.550
Creoctahedron
CreO3 � 6 1.966 [1.979(2)] 1.963 1.963
Gee tetrahedron
GeeO2 � 2 1.769 [1.760(4)] 1.766 1.764
GeeO3 � 2 1.756 [1.733(3)] 1.756 1.756
(GeeO)ср 1.762 [1.747] 1.761 1.760
Beetetrahedron
BeeO1 1.576 [1.622(6)] 1.578 1.579
BeeO2 � 3 1.683 [1.672(3)] 1.678 1.677
(BeeO)ср 1.656 [1.660] 1.653 1.653



Table 6
Experimentally determined [1] and calculated (B3LYP) frequencies in the Raman (R) and infrared (IR) spectra of La3CrGe3Be2O14.

Exp, R Calculated Exp, IR Exp, R Calculated Exp, IR

A1 E A2 A1 E A2

R a m a n e a c t i v e R a m a n e a c t i v e
I R e a c t i v e I R e a c t i v e

88 396 400
108 105 100 406 396
108 109 433 425 424
122 127 462 456 456

130 133 488 482
143 141 499 506

156 544 532 551
159 164 167 568 561
190 193 189 580

212 586 583
213 216 625 624 625

233 235 661
241 245 715 722

259 269 265 730 728 722
284 733 741

287 783 781 789
292 290 294 783 785
292 292 809
326 328 816

332 818
351 343 344 825 821
378 376 384 836 839

Table 7
Experimentally determined [1] and calculated (B3LYP) frequencies in the Raman (R) and infrared (IR) spectra of Pr3CrGe3Be2O14.

Exp, R Calculated Exp, IR Exp, R Calculated Exp, IR

A1 E A2 A1 E A2

R a m a n e a c t i v e R a m a n e a c t i v e
I R e a c t i v e I R e a c t i v e

83 89 398 404
96 89 409 401

108 108 435 431 430
123 127 462 459 462

131 135 489 485
145 141 503 509

150 548 538 556
161 164 166 575 565
193 194 188 583

215 587 587
216 631 632 633

235 235 668
243 245 721 728

260 265 263 734,5 743
284 732 734,8 743

286 783 785,6 794
295 294 297 783 785,7
295 297 813

327 818
337 821 823

355 348 352 823 823
382 378 385 836 843
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Table 8
Experimentally determined [1] and calculated (B3LYP) frequencies in the Raman (R) and infrared (IR) spectra of Nd3CrGe3Be2O14.

Exp, R Calculated Exp, IR Exp, R Calculated Exp, IR

A1 E A2 A1 E A2

R a m a n e a c t i v e R a m a n e a c t i v e
I R e a c t i v e I R e a c t i v e

80 400 405
92 90 410 404

108 108 436 434 435
123 127 463 461 463

131 138 490 486
146 141 505 512

148 549 540 560
160 165 166 572 569
191 194 191 585

217 589 590
218 626 635 634

236 236 671
244 247 723 731

261 264 265 734 735 746
284 738

286 784 786 794
296 295 301 784 787 794

301 814
330 327 817

340 820
356 351 354 826 823
382 380 385 838 845
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text file has eight columns. The first column correspond to the mode frequency (unit: cm�1), the
columns 2e8 correspond to the displacements (unit: Å) of the following atoms: Ln, Cr, Ge, Be, O1, O2,
O3. The same data are presented also as Excel tables with 8 columns, named, e.g., Pr_displ.xlsx.

Fig. 1 depicts these displacements for all three title compounds, namely, La3CrGe3Be2O14,
Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14. It is given as the eps and opj files, Figure 1.eps and Figure 1.opj,
respectively. The table in text (and Excel) format Figure 1_table.txt (and Figure 1_table.xlxs) provides
the data necessary to create Figure 1.
2. Experimental design, materials, and methods

Themain information on the samples and experimental equipment used to take the spectra, as well
as on the calculation methods is presented in Ref. [1]. Powder samples of the studied compounds
La3CrGe3Be2O14, Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14 were synthesized by a high-temperature solid-
state reaction from high-purity La2O3, Pr2O3, Nd2O3 and GeO2, Cr2O3 (reagent grade), and BeO (99.54%).
Stoichiometric amounts of oxides were thoroughly ground together, pressed into pellets, placed on a Pt
substrate and sintered in air for 5 h at 1350оС (the Nd and Pr compounds) and at 1325оС (the La
compound). To reduce the loss of GeO2 due to evaporation, the pressed samples were encapsulated in
the original powdered charges. The phase composition of sintering products was studied by X-ray
diffraction using a diffractometer STOE STADI_MP in a transmission mode (CuKa1 radiation). The spасе
group P321 was confirmed for all samples.

The infrared diffuse transmission and Raman scattering spectra of Ln3CrGe3Be2O14 (Ln ¼ La, Pr, Nd)
powder samples were measured at room temperature. Powders of Ln3CrGe3Be2O14 were mixed with
optical-grade KBr powder and pressed into pellets. Far-infrared diffuse transmission spectra were
registered in the spectral region 50e1200 cm�1 at a resolution 2 cm�1 using a Fourier spectrometer
Bruker IFS 125HR and a DTGS and a liquid-nitrogen-cooled MCT detectors. Raman spectra were taken
in the backscattering geometry at a resolution 3 cm�1 with a home-made triple monochromator using
the line 514, 5 nm of an argon laser as an excitation.



Fig. 1. Displacements of different atoms of La3CrGe3Be2O14 in normal crystal modes of different frequencies.
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Ab initio calculations of phonon frequencies and intensities of the infrared- and Raman-active
modes of La3CrGe3Be2O14, Pr3CrGe3Be2O14, and Nd3CrGe3Be2O14 were performed in a framework of
the density functional theory (DFT) with the hybrid functional B3LYP [2], which takes into account both
local and nonlocal (in the Hartree-Fock formalism) exchange. The sequence of calculations was as
follows. The optimization of the crystal structure was carried out first. After that, the phonon spectrum
was calculated for the crystal structure corresponding to the minimum energy. The CRYSTAL14 pro-
gram [3] designed for simulating periodic structures in the MO LCAO approximation was used for
calculations. Quasi-relativistic pseudopotentials ECP46MWB, ECP59MWB, and ECP60MWB [4,5] with
corresponding valence basis sets ECPnMWB [6] were taken for La, Pr, and Nd. All-electron basis sets of
TZVP type were used for Cr, Ge, Be, and O [7]. These basis sets are available at the CRYSTAL website. The
reciprocal space samplingwas performed byMonkhorst-Packmesh. The algorithm of calculation of the
two-electron Coulomb and exchange integrals is given in Ref. [8]. The tolerance of self-consistently
solving of the system of Kohn-Sham equations was 10�9. The phonon spectrum was calculated in
the harmonic approximation. In the Hessian matrix, the first (second) derivatives were calculated
analytically (numerically). To perform numerical calculations of the second derivatives, the atom was
displaced from the equilibrium position by 0.003 Å [8].

We used the Born charges when calculating Raman and infrared intensities in the CRYSTAL code [9].
Electric dipole properties were calculated using the periodic coupled-perturbed Hartree-Fock (CPHF)
or Kohn-Sham (CPKS) approach [10e12].

The Plaсzek approximation was used to calculate the intensity of the Raman modes at a non-
resonant excitation [11]. For an oriented single crystal, the intensity associated with the mode uk is [3]:

IkijfC
�
akij

�2
; (1)

where akij is an element of the Raman tensor, i; j ¼ x; y; z. The value C in (1) is defined by the laser
frequency uL and the temperature T dependence as follows:

C � 1þ nðukÞ
30uk

ðuL � ukÞ4; (2)

where

1þnðukÞ¼
�
1� exp

�
� Zuk

kBT

���1
; (3)

nðukÞ being the Bose occupation factor.
The simulation of the intensity of Raman modes for powder sample has been done by computing

integrals over all possible orientations of ideal bulk crystal. These integrals can be reduced to three
rotational invariants [13]:

Gð0Þ
k ¼1

3

�
akxx þ akyy þ akzz

�2
(4)

Gð1Þ
k ¼1

2

h�
akxy � akyx

�2 þ
�
akxz � akzx

�2 þ
�
akzy � akyz

�2i
(5)

Gð2Þ
k ¼1

2

h�
akxy þ akyx

�2 þ�
akxz þ akzx

�2 þ
�
akzy þ akyz

�2i

þ 1
3

h�
akxx � akyy

�2 þ�
akxx � akzz

�2 þ
�
akyy � akzz

�2i
(6)
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The intensity for the powder sample can be calculated as [14]:

Ipowder
tot;k ¼ Ipowder

k;k þ Ipowder
⊥;k ; (7)

where

Ipowder
k;k ¼C

�
10Gð0Þ

k þ4Gð2Þ
k

�
(8)

Ipowder
⊥;k ¼C

�
5Gð1Þ

k þ3Gð2Þ
k

�
(9)

and C is given by Eq. (2).
The infrared intensity of the p-th mode can be written as [3]:

Ip ¼ p

3
NA

c2
dp

�� Z!p
��2; (10)

where NA is the Avogadro's number, c is the speed of light, dp is the degeneracy of the mode, Z
!

p is the
mass-weighted Born effective charge vector of the mode. The infrared intensity was calculated
assuming an isotropic response.

The high-spin (S¼ 3/2) state of the Cr3þ ions was set in the calculations. At the simulation, magnetic
moments of chromium ions were codirected (along the z axis), hereby the ferromagnetic state was
simulated. In this work, we consecutively calculate the crystal structure and, then, the phonon spec-
trum. The initial structural data were taken from Ref. [14].

When choosing a functional, calculations with the hybrid functional PBE0 [15] were also performed.
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