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Abstract. The 61Ni, 13C NMR spectra of carbon encapsulated nickel nanoparticles have been 

obtained. It has been shown that the cores of the particles consist of metallic nickel with face-

centered cubic structure, nickel carbide Ni3C and carbon-nickel solid solution. The carbon shell 

of nanoparticles is a highly defective structure and close to an amorphous glassy-like carbon.  

1. Introduction 

Magnetic nanoparticles are of considerable interest both from the fundamental point of view, and  with 

the possibility of their practical application in medicine, spintronics, sensor devices, supercapacitors, 

catalytic processes, etc. [1-6]. As for medical purposes, it is the most convenient to use nanoparticles 

in a carbon graphite-like shell, as it is extremely stable under the influence of chemicals and 

temperature factor [7,8]. On the other hand, the carbon shell is compatible with biological tissues [9]. 

 The properties of these particles depend on many factors: size, phase composition, thickness of the 

carbon shell, method of synthesis, and so on. In our research the nanocomposites synthesized by the 

gas-phase method were studied [10].  

 Experimental methods used to study nanoparticles and nanocomposites usually include both a set 

of traditional methods (magnetization measurement, x-ray diffraction, neutron diffraction), and local 

methods (electron microscopy, photoemission spectroscopy, optical methods, EPR, NMR). It should 

be noted that diffraction methods of structure investigation (x-rays and neutrons) are ineffective for 

nanoparticles smaller than 10 nm, and the analysis of photoelectron spectra provides only qualitative 

information [10]. In this case the advantage of local methods is significant [11]. 

 

2. Experimental details 

Nanoparticles Ni@C were prepared by the gas-phase synthesis. Levitating droplet of liquid nickel was 

blown around a stream of inert gas (argon) containing hydrocarbons. Nanopowder accumulated on a 

special filter. Details of the synthesis are available in [12, 13].  

 The X-ray diffraction patterns of the nanoparticles were measured using a high resolution X-ray 

diffractometer Empyrean 2 with the Cu Kα radiation. Initial processing, calculation of lattice 

parameters, and determination of the size of coherent scattering blocks were performed using the 

HighScore Plus software. 
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 The magnetization has been measured at room temperature using a vibrating sample magnetometer 

in a magnetic field up to 3 T. 

 The 13C NMR spectra have been obtained on a Bruker AVANCE 500 pulsed NMR spectrometer in 

an external magnetic field, H0 = 11.747 T. The 61Ni NMR signals were detected in H0 = 0 at a 

temperature of 4.2 K. A few MHz wide NMR spectrum has been obtained by measuring an integrated 

intensity of the 61Ni spin echo signals at equidistant (Δν = 500 kHz) operating frequencies.  

 

3. Results and discussion 

According to X-ray diffraction (XRD) data, the average size of nanoparticles is 6 nm. The diffraction 

peaks correspond only to the face centered cubic (fcc) structure (space group Fm-3m), which refers to 

the core of the nanoparticles. The unit cell parameter, a = 0.3538(8) nm, is close to a = 0.3531 nm, the 

lattice constant of a bulk fcc-Ni. 

 The magnetization reversal curve (figure 1) implies ferromagnetic state of the particles under study. 

Its sigmoid shape is qualitatively similar to those of nanoparticles with an iron or cobalt core (figure 

1). The coercive force is absent (HС ≈ 0 Oe). A negligible value of HС is typical for small particles 

close to the transition to the superparamagnetic state. However, the magnetization curve cannot be 

described by the Langevin function (or a superposition of these functions). It is worth noting that the 

saturation magnetization Msat(Ni@C) = 17.5 emu/g is significantly less than that in pure bulk metallic 

nickel Msat(Ni) = 55 emu/g [14]. Let us assume that the core with average size 6 nm (see XRD) 

consists only of the pure nickel and the average thickness of the carbon shell is 1 nm. Then this Msat 

value corresponds to mVCore = 42.2 at. % (mCore = 77.5 wt. %) of nickel magnetization. Then we should 

expect the magnetization of the nanoparticles Msat(Ni@C)calc1 = 42.6 emu/g which is much higher than 

the measured value Msat(Ni@C)  = 17.5 emu/g. This means that fraction of pure nickel should be much 

smaller than it follows from the two phase core-shell model. One of the reasonable explanations for 

such significant reduction of Msat(Ni@C) is probably due to the formation of Ni:C solid solution 

and/or the formation of nickel-based metastable carbide phases. 
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Figure 1. Magnetization reversal curve M(H) of the nickel nanoparticles in carbon shell Ni@C at 

room temperature. The inset shows an enlarged area near the origin, from which the absence of 

hysteresis is seen. 

 

The presence of a solid solution and metal-carbon phases with an unknown value of specific 

magnetization complicates the analysis of the obtained data and leads to ambiguity in the estimates of 
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the phase composition. In order to establish the presence of additional phases let us turn to the NMR 

data. 

The 61Ni NMR spectrum of Ni@C nanoparticles recorded in a zero external magnetic field consists 

of several nonhomogeneously broadened lines (figure 2). High amplification factor (η ~ 103) of the 

obtained 61Ni NMR signals points out to the ferromagnetic state of investigated phases. 

The most intensive line in the spectrum (figure 2) with a maximum at 29 MHz corresponds to 

metallic nickel phase. The absence of quadrupole splitting of the line (61I = 3/2) is evidence of the 

cubic environment of Ni. Two additional resolved lines in the lower frequency range are attributed to 

the Ni:C solid solution (maximum of the line near 27 MHz) and nickel carbide Ni3C (maximum of the 

line near 24.5 MHz). 
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Figure 2. 61Ni NMR spectrum (■) of carbon encapsulated nickel Ni@C nanoparticles obtained at zero 

external magnetic field at T = 4.2 K. Calculated spectrum (bold line) and the components Ni (dash 

line), Ni:C (dot line), Ni3C (dash dot line) are also shown. 

 

 Such values of the corresponding induced fields (Table 1) are qualitatively agreed with the values 

obtained from Mössbauer spectroscopy data [12]. In the case of the formation of a Ni:C solid solution 

with a different amount of carbon and nickel in the environment and with a different magnetization 

value and the Curie point, a continuous pedestal would be observed in the spectrum (figure 2) 

demonstrating the continuous distribution of hyperfine fields. Analysis of the integral intensities of the 

NMR lines in the spectrum allowed us to determine the concentration of each of the ferromagnetic 

phases in the core of nanoparticles (table 1). 
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Table 1. Phase composition obtained according to the 61Ni NMR data 

 for the core of carbon encapsulated nickel nanoparticles Ni@C 

Composition 

Central 

transition 

frequency 

(MHz) 

Hyperfine 

field (T) 

Fraction of 

ferromagnetic 

phases at 4.2 K 

(at. %) 

 

Ni (metallic) 

 

NixC (solid 

solution) 

Ni3C 

(carbide) 

29 ± 0.2 

 

26.9 ± 0.2 

 

24.3 ± 0.2 

7.6 ± 0.2 

 

7.1 ± 0.2 

 

6.4 ± 0.2 

56 ± 3 

 

37 ± 3 

 

7 ± 3 

 

The 13C NMR spectrum shows the nonhomogeneous broadened line (figure 3). 
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Figure 3. 13C NMR spectrum of Ni@C nanoparticles obtained at magnetic field H0 = 11.747 T at T = 

295 K. Dashed line shows the value of diamagnetic point (zero shift) of 13C. 

 

It drastically differs from the narrow lines of graphene or graphite [16]. A similar spectrum was 

observed in carbon encapsulated cobalt nanoparticles Co@C [13] prepared following the same 

procedure. Thus, we may conclude that the carbon shell of the investigated nanoparticles consists of 

amorphous glass-like carbon. 

 

4. Summary 

The 61Ni, 13C NMR spectra of nanoparticles Ni@C have been firstly obtained and analyzed. On the 

basis of the joint analysis of the 61Ni NMR data, XRD, magnetization and electron microscopy, the 

phase composition and average size of nanoparticles have been determined. It has been shown that the 

NMR method has found phases which may not be detected by the XRD method in small nanoparticles. 

According to 13С NMR data, the carbon shell of the studied nanoparticles is most likely to consist of 

amorphous glassy-like carbon. 
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