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Abstract. A problem is considered of designing the program trajectory of a spacecraft turning
from an arbitrary initial orientation to an arbitrary final orientation, with the orientations being
defined with unit quaternions. A projection of a group of unit quaternions Sp(1) on a sphere
with the radius of 2π is used to represent rotation of a body as a motion of a point inside the
given sphere. Polynomials of the fifth degree are considered as a class of functions to define
the program trajectories in the sphere. The suggested class of trajectories is demonstrated to
be effective to provide the possibility of meeting boundary conditions at arbitrary values of
velocities and accelerations.

1. Introduction
The problem of steering a spacecraft has been one of the major issues to be resolved in space
navigation. This problem has been addressed in a great number of publications [1, 2, 3].
However, as mentioned in [4], there has been no analytical solution found for the position
and angular velocities, which would meet arbitrary boundary conditions. One of the methods
used for solving the problem of constructing program trajectories is the application of kinematic
approach followed by the inverse solution of dynamics to find the program control [5, 6]. The
cited works cover a kinematic trajectory being constructed through setting the coordinates of a
current orientation quaternion with the polynomials of the fifth degree. Our suggested approach,
however, differs in that there is a projection of a group of unit quaternions Sp(1) onto a sphere
of the radius 2π, with the motion being defined with a polynomial of the fifth degree. The
possibility of projecting unit quaternions onto a sphere of the radius π is reported in [7, 8].
To reach completeness, the class of functions adequate for describing the turning trajectories
requires a change in the configuration space of rotations, and the sphere of the radius 2π becomes
such configuration space. Section 2 covers the statement of the problem of finding an optimum
program trajectory of a turning spacecraft. In Section 3, a solution of the stated problem is
considered for the case that the program trajectory is represented as a polynomial of the fifth
degree. Section 4 contains examples for defining the program trajectories. Section 5 summarizes
the major results of the work presented.

2. Statement of problem
When solving the tasks of controlling the orientation of a spacecraft, a quaternion formalism is
used actively. Using the quaternion parametrization, the kinematic equations, which define the
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relationship between the projections of angular velocity on the movable axes and the position
of a body, take the following form

q̇0 = −1
2(q1Ω1 + q2Ω2 + q3Ω3),

q̇1 = 1
2(q0Ω1 − q3Ω2 + q2Ω3),

q̇2 = 1
2(q0Ω2 − q1Ω3 + q3Ω1),

q̇3 = 1
2(q0Ω3 − q2Ω1 + q1Ω2),

(1)

here q1, q2, q3 are the Rodrig-Hamilton parameters; Ω1, Ω2, Ω3 are hence and henceforth the
projections of the angular velocity vector on the axes related to a rotating body.

Let us consider the problem of finding an optimum program trajectory of a turning spacecraft,
which motion is defined with the equations (1) over the time T . Let the following boundary
conditions be imposed on the orientation, the angular velocity and its derivative:

q(0) = q0, q(T ) = qT , Ω(0) = Ω0, Ω(T ) = ΩT , Ω̇(0) = Ω̇0, Ω̇(T ) = Ω̇T (2)

The program control realizing the trajectory can be found using the Euler’s dynamic equations:

AΩ̇1 + (C −B)Ω2Ω3 = M1,

BΩ̇2 + (A− C)Ω1Ω3 = M2,

CΩ̇3 + (B −A)Ω1Ω2 = M3,

where M1, M2, M3 are the projections of the controlling moment M on the moving coordinate
axes.

As a quality criterion, a certain functional can be selected depending on the program motion
and program control:

I1(q(t),Ω(t),M(t)) (3)

which reaches the minimum with the optimum program motion.
It should be noted that the choice of limitations imposed on the edge values of Ω̇0, Ω̇T can

be made based on a variety of considerations. For example, a requirement can be that these
edge values would satisfy the Euler’s dynamic equations containing zero right parts, i.e., the
controlling moment be turned to zero at the moments that the turning maneuver starts or ends.
Either, for a smooth turn to be realized, the choice of Ω̇0 = 0, Ω̇T = 0 can be made.

The task is to find an optimum, according to quality criterion (3), program trajectory for the
dynamic system (1) that would satisfy the boundary conditions (2) at a given maneuver time
T .

Any doubly differentiable function q = q(t) can be interpreted as a certain trajectory in the
turning configuration space. As follows from the trigonometric formula to define a quaternion,
the orientation of movable axes can be identified with the axis-angle parameters as a plurality of
turns at every possible angle 0 ≤ χ ≤ π around every possible axis defined with the unit vectors
(Fig.1) .

ē(α, β) = sinα cosβ ī1 + sinα sinβ ī2 + cosα ī3, 0 ≤ α ≤ π, 0 ≤ β ≤ 2π,

in the form
q = cos

χ

2
+ sin

χ

2
ē.
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Figure 1. Defining a movable coordinate system using axis-angle parameters

It is reported in [9,10] that to a plurality of unit quaternions defining an orientation can
correspond the points in a sphere with the radius π, with the point positions being determined
with a radius-vector as follows:

r̄ = χē

where 0 ≤ χ ≤ π. However, the motions corresponding to rotations of a spacecraft can extend
beyond the sphere of the radius π, but, as a rule, they are confined within the sphere of the
radius 2π. Then the vector-function defining a trajectory of a turning spacecraft can be written
in the form.

r̄(t) = χ(t)ē(t)

where 0 ≤ χ ≤ 2π, or in the coordinate form

x1(t) = χ(t) sinα(t) cosβ(t), x2(t) = χ(t) sinα(t) sinβ(t), x3(t) = χ(t) cosα(t).

To solve the applied problems of controlling the motion, it may be convenient to switch from
the totally nonintuitive representation of a trajectory on a hypersphere q20 + q21 + q22 + q23 = 1
in the four-dimensional space to its representation in a sphere with the radius 2π in the three-
dimensional Euclidian space.

The coordinates of the function q = q(t) are defined with the equations as follows:

q0(t) = cos

√
x21(t) + x22(t) + x23(t)

2
,

qk(t) =
xk(t)√

x21(t) + x22(t) + x23(t)
sin

√
x21(t) + x22(t) + x23(t)

2
, k = 1, 2, 3.

(4)

Hence,

xk(t) =
2qk(t) arccos q0√

1 − q20

= 2qk(t)Q(q0), k = 1, 2, 3, Q(q0) =
arccos q0√

1 − q20

. (5)
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From Eq. 5, we obtain

ẋk = 2

(
qk
∂Q

∂q0
q̇0 +Qq̇k

)
, k = 1, 2, 3,

where
∂Q

∂q0
= − 1

1 − q20
+
q0 arccos q0
(1 − q20)3/2

.

Upon successive substitution of Eq.(1) and Eq.(4) into the equations, we then obtain the
kinematic equations for the new parameters in the form

ẋk = fk(x1, x2, x3,Ω1,Ω2,Ω3), k = 1, 2, 3. (6)

From Eq.(6) we can find

ẍk = 2

(
q̇k
∂Q

∂q0
q̇0 + qk

∂2Q

∂q20
q̇20 + qk

∂Q

∂q0
q̈0 +

∂Q

∂q0
q̇0q̇k +Qq̈k

)
(7)

where
∂2Q

∂q20
= − 3q0

(1 − q20)2
+

3q20 arccos q0
(1 − q20)5/2

+
arccos q0

(1 − q20)3/2
.

From Eq.(1) we find:

q̈0 = −1
2(q̇1Ω1 + q̇2Ω2 + q̇3Ω3 + q1Ω̇1 + q2Ω̇2 + q3Ω̇3),

q̈1 = 1
2(q̇0Ω1 − q̇3Ω2 + q̇2Ω3 + q0Ω̇1 − q3Ω̇2 + q2Ω̇3),

q̈2 = 1
2(q̇0Ω2 − q̇1Ω3 + q̇2Ω1 + q0Ω̇2 − q1Ω̇3 + q3Ω̇1),

q̈3 = 1
2(q̇0Ω3 − q̇2Ω1 + q̇1Ω2 + q0Ω̇3 − q2Ω̇1 + q1Ω̇2),

(8)

Upon successive substitution of Eq. (8), (1) and (4) into Eq. (7), we obtain equations in the
form

ẍk = gk(x1, x2, x3,Ω1,Ω2,Ω3, Ω̇1, Ω̇2, Ω̇3).

Setting the problem of steering a spacecraft in terms of the parameters x1, x2, x3 , the
boundary conditions (2) can be substituted with the following:

xk(0) = 2q0kQ(q00), xk(T ) = 2qTkQ(qT0 ), ẋk(0) = fk(x01, x
0
2, x

0
3,Ω

0
1,Ω

0
2,Ω

0
3)

ẋk(T ) = fk(xT1 , x
T
2 , x

T
3 ,Ω

T
1 ,Ω

T
2 ,Ω

T
3 ), ẍk(0) = gk(x01, x

0
2, x

0
3,Ω

0
1,Ω

0
2,Ω

0
3, Ω̇

0
1, Ω̇

0
2, Ω̇

0
3),

ẍk(T ) = gk(xT1 , x
T
2 , x

T
3 ,Ω

T
1 ,Ω

T
2 ,Ω

T
3 , Ω̇

T
1 , Ω̇

T
2 , Ω̇

T
3 ).

(9)

The quality criterion can be rewritten as

I2(x1(t), x2(t), x3(t),Ω(t),M(t)) = I1(q(x1(t), x2(t), x3(t)),Ω(t),M(t)) (10)

It is required to find an optimum program trajectory of the system (6) that would satisfy the
conditions (6), at a given maneuver time T .

Therefore, the problem of controlling the motion (1)-(3) formulated in terms of the Rodrig-
Hamilton parameters is transformed into the problem of controlling the motion of a point within
a sphere of the radius 2π (6), (9)-(10). In this problem, the motion of a point is described with
Eq.(6) with the conditions imposed by Eq. (9). That makes it possible to get an intuitive
interpretation of the rotating body as a point moving in the three-dimensional Euclidian space.
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3. Finding an optimum trajectory in the form of a polynomial of the fifth degree
Let us consider finding an optimum trajectory as it is defined with a vector polynomial of the
fifth degree

r̄(t) =
5∑

k=1

ākt
k, 0 ≤ t ≤ T. (11)

As will be shown below, with such limitation the trajectory is defined unambiguously from
the conditions of Eq. (9), which makes a quality criterion unnecessary, because the trajectory
becomes optimal automatically.

The coefficients (11) have to satisfy the conditions

ā0 = r̄0,

ā1 = ˙̄r0

ā2 = 1
2
¨̄r0

(12)



ā5T
5 + ā4T

4 + ā3T
3 = r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2,

5ā5T
4 + 4ā4T

3 + 3ā3T
2 = ˙̄rT − ˙̄r0 − ¨̄r0T,

20ā5T
3 + 12ā4T

2 + 6ā3T = ¨̄rT − ¨̄r0.

The latter system of equations can be written out in the matrix form as follows
T 5 T 4 T 3

5T 4 4T 3 3T 2

20T 3 12T 2 6T



ā5

ā4

ā3

 =


r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2

˙̄rT − ˙̄r0 − ¨̄r0T

¨̄rT − ¨̄r0

 .

Hence 
ā5

ā4

ā3

 =



6

T 5

−3

T 4

1

2T 3

−15

T 4

7

T 3

−1

T 2

10

T 3

−4

T 2

1

2T




r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2

˙̄rT − ˙̄r0 − ¨̄r0T

¨̄rT − ¨̄r0


or

ā3 =
10

T 3
(r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2) − 4

T 2
( ˙̄rT − ˙̄r0 − ¨̄r0T ) +

1

2T
(¨̄rT − ¨̄r0),

ā4 = − 15

T 4
(r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2) +
7

T 3
( ˙̄rT − ˙̄r0 − ¨̄r0T ) − 1

T 2
(¨̄rT − ¨̄r0),

ā5 =
6

T 5
(r̄T − r̄0 − ˙̄r0T − 1

2
¨̄r0T

2) − 3

T 4
( ˙̄rT − ˙̄r0 − ¨̄r0T ) +

1

2T 3
(¨̄rT − ¨̄r0).

(13)

Therefore, the coefficients of the vector polynomial (11) are defined unambiguously from Eq.
(12) and (13) upon substitution of the values from Eq. (9).
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Figure 2. Plotted functions of x1(t), x2(t), x3(t)

4. Example
As an example, let us consider the problem of finding a program trajectory of a body turning
from the position q0 = (0.5,−0.5,−0.5,−0.5) into the position qT = (0.5,−0.5, 0.5,−0.5) over
the time T = 10 sec, with the following initial conditions:

Ω0 = (0.5, 0, 0), ΩT = (0, 0,−0.5), Ω̇0 = (0, 0, 0), Ω̇T = (0, 0, 0).

Upon calculation of the polynomial coefficients (3.1), rounding them off to five decimal digits,
we obtain

x1(t) = −1.2092 + 0.3682t+ 0.00872t2 − 0.00911t3 + 0.00046t4,

x2(t) = −1.2092 − 0.2364t+ 0.041667t2 + 0.031157t3 − 0.00509t4 + 0.0002t5,

x3(t) = −1.2092 + 0.3682t+ 0.00872t2 − 0.00911t3 + 0.00046t4.

Figure 2 displays the graphs of functions: x1(t), x2(t), x3(t). Figure 3 shows a turning
trajectory inside a sphere of the radius 2π .

Figure 3. Turning trajectory inside a sphere of the radius 2π

Figures 4, 5 and 6 show the graphs of components of quaternion, angular velocity and angular
velocity derivate, respectively.



ToPME-2019

IOP Conf. Series: Materials Science and Engineering 747 (2020) 012087

IOP Publishing

doi:10.1088/1757-899X/747/1/012087

7

Figure 4. Graphs of the quaternion components q0(t), q1(t), q2(t), q3(t)

Figure 5. Graphs of angular velocity components Ω1(t), Ω1(t), Ω1(t)

Figure 6. Graphs of angular velocity derivative components Ω̇1(t), Ω̇2(t), Ω̇3(t) .

5. Conclusion
The analytical algorithm has been obtained for constructing program trajectories in the form
of a polynomial of the fifth degree. Examples are given to demonstrate the effectiveness of the
proposed approach. Further studies are envisioned to find program controls in the framework
of the concept of inverse problems of dynamics.
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