
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Semantic segmentation in flaw detection
To cite this article: L A Kotyuzanskiy et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 862 032056

 

View the article online for updates and enhancements.

This content was downloaded from IP address 212.193.78.232 on 09/10/2020 at 05:52

https://doi.org/10.1088/1757-899X/862/3/032056
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstM_FPzsMYnbYbBqeJP3WF4qluLf09iCYMkx7WCau17mj3X9Lfgitv0ayMW0Vn2EzGEj2DBs6txvVo1rzTObZNK9aey3cUjktJk6j2uOjQIY68CjOBZKG8Rl6oJHT9nIoB7ELuWynXmr7aS-11RCwUodnMj6SUBvdgQ-rGSEY5n3GNXV7YWdIuZXQsA_CSRF0vXnV4yQO81j-Zc6d0AxT-tyQqYGB_DrqtldFpzGc3TYyob_WGq&sig=Cg0ArKJSzKlRS-zYiDhM&adurl=https://www.electrochem.org/prime2020/events-at-a-glance


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MIP: Engineering-2020

IOP Conf. Series: Materials Science and Engineering 862 (2020) 032056

IOP Publishing

doi:10.1088/1757-899X/862/3/032056

1

 

 

 

 

 

 

Semantic segmentation in flaw detection 

L A Kotyuzanskiy 1, 3, 4, N G Ryzhkova 1, 2 and N V Chetverkin 3 

1 Institute of Fundamental Education, Ural Federal University, 620002 Yekaterinburg, 

Russian Federation 
2 Institute of New Materials and Technologies, Ural Federal University, 620002 

Yekaterinburg, Russian Federation 
3 LLC "Nexus", 623780 Artemovsky, Russian Federation 

 

4 E-mail Corresponding author: nexus077@gmail.com 

Abstract. The paper presents a review of study on detection and classification of defects using 

semantic image segmentation based on convolutional neural networks. Taking into account the 

revealed general features of flaw detection tasks of various industries related to the lack of a 

large marked data set and the need to detect defects of small sizes. The convolutional neural 

network of the u-net architecture was chosen as the basis for the decision support system. 

Testing of this architecture on several datasets yielded positive results regardless of the area of 

use. 

1.  Introduction 

Flaw detection requires a wide range of appropriate description methods and means of control of 

materials and products. Despite the diversity of physical principles used in the basis, many technical 

solutions consist of two stages: image acquisition and its analysis in order to detect any deviation from 

the specific characteristic. In some cases, it is not enough only to detect deviations; it is important to 

detect and identify structural defects. This study [1] classifies defects found in the structures of 

saturated metallic composite castings. The proposed procedure for the detection and identification of 

structural defects of saturated metallic composite castings gravimetry, ultrasonic and X-ray, 

tomography, macroscopic tests, microscopic examination using light or scanning electron microscope, 

then its classification is carried out using the obtained image. The implementation of lightweight 

constructions based on composite materials requires the determination of the minimum damage size to 

still ensure safe conditions have to be identified and established in production as well as during the 

application, a review is presented in [2]. To assess the quality of welded joints, where one of the 

prospective flaw detections has a traditionally significant role, the magneto-optical eddy current 

(MOEC) method, in which surface, subsurface and fatigue defects can be recorded in products from 

both magnetic and nonmagnetic metals, as well as flaw detection of welds are considered in [3]. The 

measured impact duration can be used to obtain a “scan image” in various materials (especially 

honeycomb sandwich composites) [4]. The absence of visible defects along the route is an important 

condition for the safe movement of all modes of transport. Timely identification of defects and 

understanding of the operating conditions of materials and structures allow us to assess the time of 

their fault tolerance. 
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2.  Goals and objectives of the work 

Difficulties which are associated with a large amount of time for viewing by a person; expert 

experience; viewed images, fatigue occurs and possible loss of defects in the image arise at the stage 

of analysis of the obtained images. In addition, there is a high level of noise in the images in some 

types of diagnostics. Various methods are used to automate image analysis. 

In this paper, we review the proposed solutions for detecting defects in various industries 

(Section 3) and propose a solution based on the convolutional neural network of the u-net architecture 

(Section 4), the efficiency of which is shown for various directions. 

3.  Detection and classification of defects 

There are solutions to the problem of detecting defects related to various industry specifics. One of the 

universal approaches for image analysis is semantic segmentation, the peculiarity of which is that each 

pixel is assigned a certain label. The possibilities for implementing semantic segmentation have 

increased with the advent and spread of deep learning neural networks. The relevance of using this 

approach in flaw detection is confirmed by research. 

The positive results of the use of convolutional neural networks (CNN) are illustrated for the 

segmentation of large materials imaging datasets obtained using x-ray computed tomography [5]; the 

structure of the fully convolutional network (FCN) provides identification of rock pore structures in 

scanning electron microscopy images to characterize the porosities [6]; generative adversarial network 

(GAN) model in a non-destructive testing system in thermography to detect defects in a carbon fiber 

reinforced polymer [7]; metallic defect detection [8]. In product manufacturing: technique of detecting 

defects in layers and improving the quality of small-scale products in additive manufacturing [9]. 

Solutions using CNN to detect surface defects: deep-learning-based small surface defect 

detection [10]; classification of defects on the surface of rails [11]; proposed deep FCN for 

classification of cracks on the surface of roads [12]; FCN for modeling the orientation of cracks in 

addition to their localization in order to identify areas requiring priority [13]; assessment of the 

integrity of bridge structures with the determination of the location of the cracks [14]; semantic 

segmentation of crack and leakage defects in a subway tunnel using feature hierarchies extracted by 

FCN [15]; to assess the severity of defects in sewer pipes [16]. An algorithm is proposed for detecting 

defects in self-shatterinng of insulator in the field of energy [17]. 

An analysis of the researches results showed the prevalence of the pointed out difficulties 

associated with the absence of a large set of data marked out by an expert (annotated training sample) 

and the need to detect small defects. 

The possibility of using the u-net architecture [18] developed for biomedical image analysis is used 

in situations where there are few marked images. The possibility of its use in other areas is confirmed 

by successful experience for assessing the geological characteristics in images of shale samples 

obtained using a scanning electron microscope [19]; analysis of the microstructure of cement-based 

composites in microcomputer tomography images [20]; crack detection in tunnels [21] (features are 

small crack size and the presence of a high level of noise in the pictures; in the production of 

polycrystalline silicon wafers [22] (difficulties are associated with the heterogeneity of the background 

and unpredictable forms of defects). 

4.  Defining defects based on u-net architecture 

U-net network was tested as a part of the search for the optimal solution to flaw detection tasks, 

including metal surfaces. One of the criteria for choosing this network for solving the real problem of 

flaw detection of welds of metal surfaces was a feature of a small number of training samples. 

Therefore, all selected datasets consist of a small number of tagged images. It was necessary to 

confirm the ability of the network to learn on a small amount of data. This is important because often 

the data is quite specific and the observed object or sign is rarely seen in photographs. The second 

important feature is the nature of the observed features. The network must reliably segment low-

contrast objects that consist of only a few pixels. 
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The following were considered as test datasets: Magnetic-tile-defect-datasets (this is the datasets of 

the upcoming paper "Saliency of magnetic tile surface defects", https://github.com/abin24/Magnetic-

tile-defect-datasets.), CrackForest Dataset (https://github.com/cuilimeng/CrackForest-dataset), Micro 

surface defect database (http://faculty.neu.edu.cn/me/songkc/Vision-based_SIS_Steel.html), Oil 

pollution defect database (http://faculty.neu.edu.cn/me/songkc/Vision-based_SIS_Steel.html). Another 

dataset is a dataset of images of welds of metal pipes with marked defects in the weld provided by a 

private company. 

Padding was used in the layers during testing to preserve the dimension of the output of the neural 

network with its input. The size of all input and markup was reduced to a size of 256x256. For all 

datasets, the network trained during 100 epochs. There is a small part of the test results below 

(figures 1 – 4). 

 Input image CNN Out Ground Truth 

(a) 

   

(b) 

   

(c) 

   

Figure 1. (a) – (c) Results on dataset Oil pollution defect database. 

 Input image CNN Out Ground Truth 

(a) 

   

(b) 

   

Figure 2. (a), (b) Results on dataset Micro surface defect database. 
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 Input image CNN Out Ground Truth 

(a) 

   

(b) 

   

Figure 3. (a), (b) Results on dataset Magnetic-tile-defect-datasets. 

 

 Input image CNN Out 

(a) 

  

(b) 

  

(c) 

  

Figure 4. (a) – (c) Results on dataset CrackForest Dataset. 

 

The graphs of loss functions for u-net on the Microsurface defect database are shown in the 

diagram (see figure 5). 

The results shown above demonstrate the effectiveness of u-net in recognizing defects on various 

surfaces. At the same time, defects are often of low contrast and have an arbitrary shape. The use of a 

dataset with road damage here is due to some similarity of cracks in the asphalt with possible cracks in 

metal surfaces. In addition, testing of the classification of defects in welds was conducted. In this case, 

pores and slag inclusions were classified on the X-ray of the weld Despite the close visual similarity 

(close visual features) of these defects, u-net reliably detected and classified these defects. 
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Figure 5. The graphs of loss functions for u-net on the Micro 

surface defect database. 

5.  Conclusion 

A review of recent studies in the field of flaw detection showed positive results using semantic 

segmentation based on convolutional neural networks in a wide range of industry tasks The u-net 

architecture network was selected and successfully tested, taking into account the identified features in 

the formulation and implementation of the problems of detection and classification of defects. The 

directions of further research will be related to the definition of specific settings for industry decisions 

in order to use it as a key element of the decision support system. 
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