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Abstract: We consider a special case of the non-linear zero-sum pursuit-evasion differential
game. The instance of this game is defined by two closed sets - target set and one specifying state
constraints. We find an optimal non-anticipating strategy for player I (the pursuer). Namely,
we construct his successful solvability set specified by limit function of the iterative procedure
in space of positions. For positions located outside the successful solvability set, we provide a
relaxation of our game by determining the smallest size of a neighborhoods of two mentioned
sets, for which the pursuer can solve his problem successfully. Then, we construct his successful
solvability set in terms of those neighborhoods.
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1. INTRODUCTION AND RELATED WORK

During the last decades, differential game theory has been
an actively developing field of operations research and
control theory. The first mention of such a differential
game goes back to R. Isaacs. In the well-known study
(Isaacs, 1969), Isaacs overviewed a number of applications
that can be reduced to a model of differential game. These
applications are of great practical importance. Later, this
theory was significantly developed by Soviet mathemati-
cians L.S. Pontryagin (Pontrjagin, 1981), N.N. Krasovskii
(Krasovskii, 1970) and improved by A.B. Kurzhanski,
Yu.S. Osipov and A.N. Subbotin.

In this paper, we consider the non-linear zero-sum pursuit-
evasion differential game, defined by two closed sets
in space of positions. This setting was introduced in
(Krasovskii and Subbotin, 1970, 1987). For differential
game considered in (Krasovskii and Subbotin, 1970), the
fundamental Theorem on alternative was established. The
important generalization of this result was obtained by
(Kryazhimskii, 1978). According to theorem of alternative,
the set defining state constraints, can be split into two
disjoint subsets, specifying successful solvability sets for
each player. If differential game satisfies Isaacs condition,
then the alternative can be implemented in terms of
pure positional strategies and, of course, in terms of non-
anticipating strategies (Roxin, 1969; Elliott and Kalton,
1972). In literature those strategies are also known as
Elliott-Kalton strategies (Elliott and Kalton, 1972) and
quasi-strategies (Subbotin and Chentsov, 1981). Multival-
ued cases of non-anticipating strategies were considered
in (Chentsov, 1976; Subbotin and Chentsov, 1981). The
problem of construction of an alternative partition can
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be reduced to problem of finding the set of successful
solvability of a pursuer (player I) (that is, the maximum
stable bridge by N.N. Krasovskii), who is interested in the
guaranteed feasibility of approach. Various methods were
used to build this set. In (Ushakov et al., 2015), special
kind of procedures constructed by dynamic programming
was considered. Besides that, the program constructions
can be used to find a solutions for differential game (see
(Krasovskii and Subbotin, 1987; Krasovskii, 1988a,b) and
others).

For the general case of the differential game in ques-
tion, the program iterations method was introduced in
(Chentsov, 1976) (see also (Chentsov, 2017a)). In our
case, we use adaptation of the program iterations method,
also known as stability iterations technique (Chentsov,
2017b). This approach provides a way to solve pursuit-
evasion games with additional constraint on the number
of control switchings (Chentsov, 2017b). More precisely,
at each stage of the iterative procedure, we construct the
successful solvability set.

In this study, we relax the initial setting of the considered
pursuit-evasion differential game by analyzing possibilities
of player I in terms of reachability of closed neighborhoods
of target set within corresponding neighborhoods of state
constraints set. Moreover, for each fixed position, our goal
is to find the minimal neighborhood, guaranteeing the
solvability of the pursuit problem. Also, such a neigh-
borhood estimates possibilities of player II (evader) in
following way: for smaller neighborhood, one can perform
evasion procedure with finite number of switchings. Based
on this approach, we can define minimax function, which
values can be represented as guaranteed result for special
payoff. To define this function, we construct special itera-
tive procedure in space of position functions; the function
itself is a fixed point of special conversion operator.
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2. PROBLEM STATEMENT

Consider following control system on finite time interval
T � [t0, ϑ0]:

ẋ = f(t, x, u, v), u ∈ P, v ∈ Q, (1)

where P and Q are non-empty compact sets in Rp and Rq,
respectively, p, q ∈ N. As u(· ) we define control of player
I and as v(· ) - control of player II. Also we assume that
system 1 satisfies the conditions of generalized uniqueness
and uniform boundedness of solutions, similar to one in
(Chentsov, 2017b). We are given by two following sets:

(M ∈ F) & (N ∈ F),

where F is the family of all subsets of T × Rn, closed in
topological space, M ⊂ N, M �= ∅. First one is a target
set for first player and second one defines state constraints
in terms of set cross-sections: N〈t〉 � {x ∈ Rn| (t, x) ∈
N}, ∀t ∈ T. We need to construct an approximation
to M under state constraints N〈t〉, t ∈ T . Most of the
time (M,N)-approximation cannot be contructed, thus
problem is intractable. However, we can relax this problem
by defining some quality guarantee. Namely, let us consider
(S0(M, ε), S0(N, ε))-approximation with guarantee ε ∈
[0,∞[ (see (Chentsov and Khachay, 2018)). For fixated po-
sition (t∗, x∗), we find the smallest number ε∗ ∈ [0,∞[, for
which (S0(M, ε∗), S0(N, ε∗))-approximation can be con-
structed in terms of admissible control procedures. Later,
we show that this number exists.

Thus, according to such admissible procedure, for every
trajectory x(· ) = x(t), t∗ ≤ t ≤ ϑ0, generating by given
procedure, the following property

((θ, x(θ)) ∈ S0(M, ε∗)) & ((t, x(t)) ∈ S0(N, ε∗) ∀t ∈ [t∗, θ])
(2)

where θ ∈ [t∗, ϑ0], holds. Moreover, for trajectory x(· )
in (2), the equality x(t∗) = x∗ is fulfilled. Therefore, we
can estimate ε∗ by two following values ρ((t∗, x∗),M) and
ρ((t∗, x∗),N). In addition, by choice of M and N

ρ((t∗, x∗),N) ≤ ρ((t∗, x∗),M),

where ρ(· , H) was designated in (Chentsov and Khachay,

2018). We suppose that ε
(1)
∗ � ρ((t∗, x∗),N) and ε

(2)
∗ �

ρ((t∗, x∗),M). Then, by (2), ε
(1)
∗ ≤ ε

(2)
∗ . Therefore, it is

obvious that (S0(M, ε
(2)
∗ ), S0(N, ε

(2)
∗ ))-approximation can

be constructed. By the choice of ε∗, we obtain ε∗ ≤ ε
(2)
∗ .

On the other hand, from (2), for admissible procedure,
which constructs (S0(M, ε∗), S0(N, ε∗))-approximation, we

obtain ε
(1)
∗ ≤ ε∗. This follows from (2) and definition

of ε
(1)
∗ . Therefore, we obtain the chain of inequalities

ε
(1)
∗ ≤ ε∗ ≤ ε

(2)
∗ . Using definition of ε

(1)
∗ and ε

(2)
∗ , we have

ρ((t∗, x∗),N) ≤ ε∗ ≤ ρ((t∗, x∗),M). (3)

Thus, by (3), we defined the range for optimal value of
ε∗ for every position from T × Rn. Therefore, ρ((· ),N)
and ρ((· ),M) - are two boundary functions which define
corresponding range in functional space.

We should pay special attention to construction of function
ε0 (see (Chentsov and Khachay, 2018)). In particular, we

use sequence of functions (ε
(s)
0 )s∈N0 constructed on each

iteration with number s. Later, we explain how those

functions relate in terms of iterations. Let us consider
special kind of number sets. Each set is generated on
respective stage of our iteration procedure. We denote
them as follows (see (Chentsov and Khachay, 2018) and
(Chentsov, 2017b))

Σ
(s)
0 (t, x) � {ε ∈ [0,∞[|(t, x) ∈ Ws(S0(M, ε), S0(N, ε))}

∀s ∈ N0 ∀(t, x) ∈ T × Rn, (4)

Σ0(t, x) � {ε ∈ [0,∞[ | (t, x) ∈ W(S0(M, ε), S0(N, ε))}

where according to (Chentsov, 2017b), to each sets
M ∈ F and N ∈ F we assign the sequence of sets
(Wk(M,N))k∈N0

: N0 → P(T × Rn) and limit set

W(M,N) =
⋂

k∈N0

Wk(M,N) ∈ P(T × Rn).

Following (Chentsov and Khachay, 2018), we obtain

ε0(t, x) � inf(Σ0(t, x)) ∈ [0,∞[.

Proposition 1. If (t∗, x∗) ∈ T × Rn, then ε0(t∗, x∗) ∈
Σ0(t∗, x∗).

As a corollary, we note that

(t, x) ∈ W(S0(M, ε0(t, x)), S0(N, ε0(t, x)))

∀(t, x) ∈ T × Rn. (5)

Let us introduce another option for functional on trajec-
tories of the process. If t∗ ∈ T, x(· ) ∈ Cn([t∗, ϑ0]) and
θ ∈ [t∗, ϑ0], then we assume that

ω(t∗, x(· ), θ) = sup ({ρ((θ, x(θ)),M);

max
t∗≤t≤θ

ρ((t, x(t)),N)}), (6)

ω(t∗, x(· ), θ) ∈ [0,∞[. As a corollary, we define for t∗ ∈ T
special payoff function

γt∗ : Cn([t∗, ϑ0]) → [0,∞[, (7)

by following conditions: ∀ x(· ) ∈ Cn([t∗, ϑ0]).

γt∗(x(· )) � min
θ∈[t∗,ϑ0]

ω(t∗, x(· ), θ). (8)

Minimum in (8) is attainable, since ρ((· , x(· )),M) and
ρ((· , x(· )),N) - are uniformly continuous functions (see
also (6)).

Proposition 2. Let t∗ ∈ T, x(· ) ∈ Cn([t∗, ϑ0]) and ε∗ ∈
[0,∞[ be given. Then, following two conditions are equiv-
alent:

((i)) ∃ϑ ∈ [t∗, ϑ0] : ((ϑ, x(ϑ)) ∈ S0(M, ε∗)) & ((t, x(t)) ∈
S0(N, ε∗) ∀t ∈ [t∗, ϑ]);

((ii)) γt∗(x(· )) ≤ ε∗

We recall that M ⊂ N. If ε ∈ [0,∞[, then S0(M, ε) ⊂
S0(N, ε).

Hereinafter, we will consider special multivalued non-
anticipating strategies as admissible control procedures.
We define considered strategies in terms of non-anticipating
operators on control-measure spaces. For this, it is helpful
to recall some of the properties of measurable spaces, used
in paragraph 2. We should improve some constructions
given there. For arbitrary t ∈ T , let’s fix compactum
Zt � [t, ϑ0] × Q and σ-algebra Dt of Borel subsets of Zt.
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Wherein, for moments of time t1 ∈ T and t2 ∈ [t1, ϑ0]
Dt2 = Dt1 |Zt2

= {D ∈ Dt1 |D ⊂ Zt2}. Further, if t ∈ T ,
then following holds: Γ × Q ∈ Dt ∀Γ ∈ Tt. Following
those constructions, we consider the set of measures, which
are similar to Borel mappings from [t, ϑ0] to Q, namely:

Et � {ν ∈ (σ−add)+[Dt] | ν(Γ×Q) = λt(Γ) ∀Γ ∈ Tt}; we
use Et as set of generalized controls of player II. Moreover,
we note that D×P � {(t, u, v) ∈ Ωt | (t, v) ∈ D} ∈
Ct ∀D ∈ Dt. Therefore, we have the following (see
(Chentsov, 2017a))

Πt(ν) � {η ∈ Ht | η(D×P ) = ν(D) ∀D ∈ Dt} ∀ν ∈ Et.
(9)

Thus, the family of programs for second player on a
interval [t, ϑ0] was introduced.

We also need additional operations for generalized con-
trols, namely gluing and constriction. Let us recall another
notation and define corresponding designation: if X and
Y - nonempty sets, where h ∈ Y X and X̃ ∈ P ′(X), then

(h|X̃) � (h(x))x∈X̃ ∈ Y X̃ . As X a family can be used and
as h — set function.

If t1 ∈ T and t2 ∈ [t1, ϑ0], then (see (Chentsov, 2017a))
Ct2 = Ct1 |Ωt2

= {H ∈ Ct1 | H ⊂ Ωt2},
Ct2
t1 = Ct1 |[t1,t2[×P×Q = {H ∈ Ct1 | H ⊂ [t1, t2[×P ×Q},
Dt2

t1 = Dt1 |[t1,t2[×Q = {D ∈ Dt1 | D ⊂ [t1, t2[×Q}.
In this case we have σ-algebras of sets. It is useful to note
that (see (Chentsov, 2017a))

Ht2 = {(η | Ct2) : η ∈ Ht1}, Et2 = {(ν | Dt2) : ν ∈ Et1}.
If t∗ ∈ T , then we assume that Ãt∗ is the set of all
generalized multivalued non-anticipating strategies (see
(Chentsov, 2017a)) for first player on a line [t∗, ϑ0] :

Ãt∗ � {α ∈
∏

ν∈Et∗

P ′(Πt∗(ν)) | ∀ν1 ∈ Et∗

∀ν2 ∈ Et∗ ∀θ ∈ [t∗, ϑ0] : ((ν1 | Dθ
t∗)

= (ν2 | Dθ
t∗)) ⇒ ({(η | Cθ

t∗) : η ∈ α(ν1)}
= {(η | Cθ

t∗) : η ∈ α(ν2)})}. (10)

If α ∈ Ãt∗ and ν ∈ Et∗ , then as α(ν) we have nonempty
subset of Πt∗(ν); in particular, α(ν) ⊂ Ht∗ . Thus, we
defined following union-set (see (Chentsov, 2017a))

Π̃t∗(α) �
⋃

ν∈Et∗

α(ν) ∈ P ′(Ht∗), (11)

which is the set of all generalized controls-measures, gen-
erated by non-anticipating strategy α. From Proposition
1 we have following:

Proposition 3. If (t∗, x∗) ∈ T × Rn, then

ε0(t∗, x∗) = inf
α∈Ãt∗

sup
η∈Π̃t∗ (α)

γt∗(ϕ(· , t∗, x∗, η)),

wherein ∃α̃∗ ∈ Ãt∗ : ε0(t∗, x∗) = Π̃t∗(α̃∗).

Therefore it is established that function ε0 : T × R →
[0,∞[, is equal to minimax of payoff function γ in terms
of non-anticipating strategies for any fixed position.

Proposition 4. If s ∈ N0 and (t, x) ∈ T × Rn, then

Σ0(t, x) ⊂ Σ
(s)
0 (t, x).

From Proposition 4 we obtain

ε0(t, x) ∈ Σ
(s)
0 (t, x) ∀(t, x) ∈ T × Rn ∀s ∈ N0. (12)

In particular, if (t, x) ∈ T × Rn and s ∈ N0 as Σ
(s)
0 (t, x),

we have non-empty subset of [0,∞[, thus, inf(Σ
(s)
0 (t, x)) ∈

[0,∞[ is defined.

Hereinafter, we assume

ε
(s)
0 (t, x) � inf(Σ

(s)
0 (t, x)) ∀(t, x) ∈ T×Rn ∀s ∈ N0. (13)

Using (13) with each s ∈ N0, we can define function

ε
(s)
0 : T × Rn → [0,∞[. (14)

Also, from (13) and Proposition 4, we get

ε
(s)
0 (t, x) ≤ ε0(t, x) ∀(t, x) ∈ T × Rn ∀s ∈ N0. (15)

Let us designate point-wise order in the set of all functions
from T × Rn into [0,∞[ by �. Then from (15) we have

ε
(s)
0 � ε0 ∀s ∈ N0. (16)

Proposition 5. If s ∈ N0 and (t∗, x∗) ∈ T × Rn, then

ε
(s)
0 (t∗, x∗) ∈ Σ

(s)
0 (t∗, x∗).

From (4) we have property ε0 ∈ Σ
(s)
0 (t∗, x∗).

Also, from (15) we show, in particular, that exact upper
bound is defined properly. That is,

sup({ε(s)0 (t, x) : s ∈ N0}) ∈ [0, ε0(t, x)] ∀(t, x) ∈ T × Rn.

Proposition 6. If (t∗, x∗) ∈ T × Rn, then ε0(t∗, x∗) =

sup({ε(s)0 (t∗, x∗) : s ∈ N0})

We consider another proposition which will establish rela-

tions between ε
(s)
0 (t∗, x∗) and ε

(s+1)
0 (t∗, x∗).

Proposition 7. Let (t∗, x∗) ∈ T × Rn and s ∈ N0. Then

ε
(s)
0 (t∗, x∗) � ε

(s+1)
0 (t∗, x∗). (17)

Finally, we have following property:

ε
(s)
0 � ε

(s+1)
0 ∀s ∈ N0. (18)

According to Proposition 3 in (Chentsov and Khachay,
2018), ε0 is the minimax of special payoff in terms of non-
anticipating strategies.

3. MAIN RESULTS

In this section we construct program operator, which

will define for s ∈ N0 conversion from ε
(s)
0 to ε

(s+1)
0 .

To achieve this, we will use special type of construction,
which is similar to one introduced in (Chentsov, 1978).
The modification of program iterations method described
in (Chentsov, 1978) corresponds to differential game with
non-fixed moment of termination. Also, let us introduce
new notations according to those in (Chentsov, 1978).

First of all, we introduce the function ψ : T ×Rn → [0,∞[
by condition:

ψ(t, x) � ρ((t, x),M) ∀(t, x) ∈ T × Rn. (19)

According to the properties of the distance function from
a point to a nonempty set M we have that ψ ∈ C(T ×
Rn), where C(T × Rn) - set of all continuous real-valued
functions on T × Rn. We note that

ψ−1([0, c]) ∈ F ∀c ∈ [0,∞[. (20)
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Wherein, for moments of time t1 ∈ T and t2 ∈ [t1, ϑ0]
Dt2 = Dt1 |Zt2

= {D ∈ Dt1 |D ⊂ Zt2}. Further, if t ∈ T ,
then following holds: Γ × Q ∈ Dt ∀Γ ∈ Tt. Following
those constructions, we consider the set of measures, which
are similar to Borel mappings from [t, ϑ0] to Q, namely:

Et � {ν ∈ (σ−add)+[Dt] | ν(Γ×Q) = λt(Γ) ∀Γ ∈ Tt}; we
use Et as set of generalized controls of player II. Moreover,
we note that D×P � {(t, u, v) ∈ Ωt | (t, v) ∈ D} ∈
Ct ∀D ∈ Dt. Therefore, we have the following (see
(Chentsov, 2017a))

Πt(ν) � {η ∈ Ht | η(D×P ) = ν(D) ∀D ∈ Dt} ∀ν ∈ Et.
(9)

Thus, the family of programs for second player on a
interval [t, ϑ0] was introduced.

We also need additional operations for generalized con-
trols, namely gluing and constriction. Let us recall another
notation and define corresponding designation: if X and
Y - nonempty sets, where h ∈ Y X and X̃ ∈ P ′(X), then

(h|X̃) � (h(x))x∈X̃ ∈ Y X̃ . As X a family can be used and
as h — set function.

If t1 ∈ T and t2 ∈ [t1, ϑ0], then (see (Chentsov, 2017a))
Ct2 = Ct1 |Ωt2

= {H ∈ Ct1 | H ⊂ Ωt2},
Ct2
t1 = Ct1 |[t1,t2[×P×Q = {H ∈ Ct1 | H ⊂ [t1, t2[×P ×Q},
Dt2

t1 = Dt1 |[t1,t2[×Q = {D ∈ Dt1 | D ⊂ [t1, t2[×Q}.
In this case we have σ-algebras of sets. It is useful to note
that (see (Chentsov, 2017a))

Ht2 = {(η | Ct2) : η ∈ Ht1}, Et2 = {(ν | Dt2) : ν ∈ Et1}.
If t∗ ∈ T , then we assume that Ãt∗ is the set of all
generalized multivalued non-anticipating strategies (see
(Chentsov, 2017a)) for first player on a line [t∗, ϑ0] :

Ãt∗ � {α ∈
∏

ν∈Et∗

P ′(Πt∗(ν)) | ∀ν1 ∈ Et∗

∀ν2 ∈ Et∗ ∀θ ∈ [t∗, ϑ0] : ((ν1 | Dθ
t∗)

= (ν2 | Dθ
t∗)) ⇒ ({(η | Cθ

t∗) : η ∈ α(ν1)}
= {(η | Cθ

t∗) : η ∈ α(ν2)})}. (10)

If α ∈ Ãt∗ and ν ∈ Et∗ , then as α(ν) we have nonempty
subset of Πt∗(ν); in particular, α(ν) ⊂ Ht∗ . Thus, we
defined following union-set (see (Chentsov, 2017a))

Π̃t∗(α) �
⋃

ν∈Et∗

α(ν) ∈ P ′(Ht∗), (11)

which is the set of all generalized controls-measures, gen-
erated by non-anticipating strategy α. From Proposition
1 we have following:

Proposition 3. If (t∗, x∗) ∈ T × Rn, then

ε0(t∗, x∗) = inf
α∈Ãt∗

sup
η∈Π̃t∗ (α)

γt∗(ϕ(· , t∗, x∗, η)),

wherein ∃α̃∗ ∈ Ãt∗ : ε0(t∗, x∗) = Π̃t∗(α̃∗).

Therefore it is established that function ε0 : T × R →
[0,∞[, is equal to minimax of payoff function γ in terms
of non-anticipating strategies for any fixed position.

Proposition 4. If s ∈ N0 and (t, x) ∈ T × Rn, then

Σ0(t, x) ⊂ Σ
(s)
0 (t, x).

From Proposition 4 we obtain

ε0(t, x) ∈ Σ
(s)
0 (t, x) ∀(t, x) ∈ T × Rn ∀s ∈ N0. (12)

In particular, if (t, x) ∈ T × Rn and s ∈ N0 as Σ
(s)
0 (t, x),

we have non-empty subset of [0,∞[, thus, inf(Σ
(s)
0 (t, x)) ∈

[0,∞[ is defined.

Hereinafter, we assume

ε
(s)
0 (t, x) � inf(Σ

(s)
0 (t, x)) ∀(t, x) ∈ T×Rn ∀s ∈ N0. (13)

Using (13) with each s ∈ N0, we can define function

ε
(s)
0 : T × Rn → [0,∞[. (14)

Also, from (13) and Proposition 4, we get

ε
(s)
0 (t, x) ≤ ε0(t, x) ∀(t, x) ∈ T × Rn ∀s ∈ N0. (15)

Let us designate point-wise order in the set of all functions
from T × Rn into [0,∞[ by �. Then from (15) we have

ε
(s)
0 � ε0 ∀s ∈ N0. (16)

Proposition 5. If s ∈ N0 and (t∗, x∗) ∈ T × Rn, then

ε
(s)
0 (t∗, x∗) ∈ Σ

(s)
0 (t∗, x∗).

From (4) we have property ε0 ∈ Σ
(s)
0 (t∗, x∗).

Also, from (15) we show, in particular, that exact upper
bound is defined properly. That is,

sup({ε(s)0 (t, x) : s ∈ N0}) ∈ [0, ε0(t, x)] ∀(t, x) ∈ T × Rn.

Proposition 6. If (t∗, x∗) ∈ T × Rn, then ε0(t∗, x∗) =

sup({ε(s)0 (t∗, x∗) : s ∈ N0})

We consider another proposition which will establish rela-

tions between ε
(s)
0 (t∗, x∗) and ε

(s+1)
0 (t∗, x∗).

Proposition 7. Let (t∗, x∗) ∈ T × Rn and s ∈ N0. Then

ε
(s)
0 (t∗, x∗) � ε

(s+1)
0 (t∗, x∗). (17)

Finally, we have following property:

ε
(s)
0 � ε

(s+1)
0 ∀s ∈ N0. (18)

According to Proposition 3 in (Chentsov and Khachay,
2018), ε0 is the minimax of special payoff in terms of non-
anticipating strategies.

3. MAIN RESULTS

In this section we construct program operator, which

will define for s ∈ N0 conversion from ε
(s)
0 to ε

(s+1)
0 .

To achieve this, we will use special type of construction,
which is similar to one introduced in (Chentsov, 1978).
The modification of program iterations method described
in (Chentsov, 1978) corresponds to differential game with
non-fixed moment of termination. Also, let us introduce
new notations according to those in (Chentsov, 1978).

First of all, we introduce the function ψ : T ×Rn → [0,∞[
by condition:

ψ(t, x) � ρ((t, x),M) ∀(t, x) ∈ T × Rn. (19)

According to the properties of the distance function from
a point to a nonempty set M we have that ψ ∈ C(T ×
Rn), where C(T × Rn) - set of all continuous real-valued
functions on T × Rn. We note that

ψ−1([0, c]) ∈ F ∀c ∈ [0,∞[. (20)
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Thus, according to (20) and due to non-negativity of ψ,
we have lower semi-continuity property.

Subsequently, for every non-empty set H as R+(H) we
denote the set of all non-negative real-valued functions on
H.

In terms of (20) we define, according to (Chentsov, 1978),
the following set

M � {g ∈ R+(T × Rn)| g−1([0, c]) ∈ F ∀c ∈ [0,∞[}.
(21)

Besides, we require set with point-wise order

Mψ � {g ∈ M| g � ψ}; (22)

where ψ ∈ Mψ. Thus, (22) is non-empty subset of M.

3.1 Convergence operator

In this subsection, we construct special convergence oper-
ator for ε0. For the sake of brevity, we skip the rigorous
mathematical proofs of the presented results. Interested
reader can find them in (Chentsov and Khachay, 2018).
If g ∈ Mψ and (t∗, x∗) ∈ T × Rn, then (since g � ψ) we
obtain for some c ∈ [0,∞[

{g(t, x(t)) : t ∈ [t∗, ϑ]} ∈ P ′([0, c]) ∀v ∈ Q

∀x(· ) ∈ Xπ(t∗, x∗, v) ∀ϑ ∈ [t∗, ϑ0], (23)

where Xπ(t∗, x∗, v) is used in the sense of (Chentsov and
Khachay, 2018). Following property (23), we have useful
corollary:

sup
t∈[t∗,ϑ]

g(t, x(t)) ≤ c ∀v ∈ Q

∀x(· ) ∈ Xπ(t∗, x∗, v) ∀ϑ ∈ [t∗, ϑ0]. (24)

By (24), with g ∈ Mψ and (t∗, x∗) ∈ T × Rn, we obtain
∃c̃ ∈ [0,∞[:

sup({ sup
t∈[t∗,ϑ̄]

g(t, x̄(t));ψ(ϑ̄, x̄(ϑ))}) ∈ [0, c̃]

∀v ∈ Q ∀x̄(· ) ∈ Xπ(t∗, x∗, v) ∀ϑ̄ ∈ [t∗, ϑ0].

Then for g ∈ Mψ and (t∗, x∗) ∈ T×Rn, we obtain following

sup
v∈Q

inf
(x(·),ϑ)∈Xπ(t∗,x∗,v)×[t∗,ϑ0]

sup({ sup
t∈[t∗,ϑ]

g(t, x(t));

ψ(ϑ, x(ϑ))}) ∈ [0,∞[. (25)

Considering (25), we define the convergence operator Γ :
Mψ → R+[T × Rn] as follows:

Γ(g)(t∗, x∗) � sup
v∈Q

inf
(x(·),ϑ)∈Xπ(t∗,x∗,v)×[t∗,ϑ0]

sup({ sup
t∈[t∗,ϑ]

g(t, x(t)); ψ(ϑ, x(ϑ))}) ∀g ∈ Mψ ∀(t∗, x∗) ∈ T × Rn.

If g ∈ Mψ, (t∗, x∗) ∈ T × Rn and v ∈ Q, then by
h[g; t∗;x∗; v] we denote the functional

(x(· ), ϑ) �−→ sup({ sup
t∈[t∗,ϑ]

g(t, x(t));ψ(ϑ, x(ϑ))}) :

Xπ(t∗, x∗, v)× [t∗, ϑ0] → [0,∞[; (26)

also, we consider following Lebesgue sets: for b ∈ [0,∞[

Yb[g; t∗;x∗; v] � {(x(· ), ϑ) ∈ Xπ(t∗, x∗, v)× [t∗, ϑ0]|
h[g; t∗;x∗; v](x(· ), ϑ) ≤ b}.

Theorem 8. If k ∈ N0, then ε
(k+1)
0 = Γ(ε

(k)
0 ).

3.2 Fixed point property of operator Γ

In the sequel, we consider an important property of oper-
ator Γ, namely its fixed point.

Theorem 9. Function ε0 is the fixed point of operator Γ:
ε0 = Γ(ε0).

Let us consider the set of all fixed points of operator Γ,

namely M
(Γ)
ψ � {g ∈ Mψ | g = Γ(g)}. In regards to

previous theorem, we obtain ε0 ∈ M
(Γ)
ψ . Let M̃

(Γ)
ψ � {g ∈

M
(Γ)
ψ | ε(0)0 � g} = {g ∈ M

(Γ)
ψ | ρ(· ,N) � g}.

Theorem 10. Function ε0 is the smallest element of M̃
(Γ)
ψ ,

in other words, ε0 ∈ M̃
(Γ)
ψ and ε0 � g ∀g ∈ M̃

(Γ)
ψ .

Let us consider one special case of our setting. Namely, let

(M � T ×M) & (N � T ×N ), (27)
where M and N are closed non-empty sets in Rn with
usual topology generated by euclidean norm ‖· ‖. More-
over, let M ⊂ N . If H ∈ P ′(Rn) and x ∈ Rn, then we
introduce

(‖· ‖− inf)[x;H] � inf({‖x−h‖ : h ∈ H}) ∈ [0,∞[. (28)

We obtain the following property: for H ∈ P ′(Rn) and
x∗ ∈ Rn,

ρ((t, x∗), T ×H) = (‖· ‖ − inf)[x∗;H] ∀t ∈ T. (29)

Indeed, we fixate t∗ ∈ T . Then,

ρ((t∗, x∗), T×H) = inf({ρ((t∗, x∗), (t, h)) : (t, h) ∈ T×H}).
In addition, for h ∈ H, we obtain that (t, h) ∈ T × H,
where t ∈ T , and

‖x∗ − h‖ ≤ ρ((t∗, x∗), (t, h)). (30)

Also, (t∗, h) ∈ T × H and ρ((t∗, x∗), (t∗, h)) = ‖x∗ − h‖.
Wherein, ρ((t∗, x∗), T × H) ≤ ρ((t∗, x∗), (t∗, h)). As a
corrollary,

ρ((t∗, x∗), T ×H) ≤ ‖x∗ − h‖. (31)

Since the selection of h was arbitrary, by (28)

ρ((t∗, x∗), T ×H) ≤ (‖· ‖ − inf)[x∗;H]. (32)

On the other hand, from (30), we have that

(‖· ‖ − inf)[x∗;H] ≤ ρ((t∗, x∗), (t, h̃)) ∀t ∈ T ∀h̃ ∈ H.

Then (‖· ‖ − inf)[x∗;H] ≤ ρ((t∗, x∗), T ×H), and by (32),
we obtain ρ((t∗, x∗), T × H) = (‖· ‖ − inf)[x∗;H]. Since
the selection of t∗ was arbitrary, the property (29) is
established. So, by (27) and (29), ∀(t, x) ∈ T × Rn

(ρ((t, x),M) = (‖· ‖ − inf)[x;M]) &

(ρ((t, x),N) = (‖· ‖ − inf)[x;N ]).

Therefore, we obtain that

ω(t, x(· ), θ) � sup({(‖· ‖−inf)[x(θ);M]; max
t≤ξ≤θ

(‖· ‖−inf)

[x(ξ);N ]}) ∀t ∈ T ∀x(· ) ∈ Cn([t, ϑ0]) ∀θ ∈ [t, ϑ0].

As a corollary, in considered case (27), we obtain

γt(x(· )) � min
θ∈[t,ϑ0]

sup({(‖· ‖ − inf)[x(θ);M];

max
t≤ξ≤θ

(‖· ‖− inf)[x(ξ);N ]}) ∀t ∈ T ∀x(· ) ∈ Cn([t, ϑ0]).

Thus we have natural functional, which defines quality of
pursuit.
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CONCLUSION

In this paper, we have considered a relaxation of the
non-linear zero-sum pursuit-evasion differential game. For
player I, we have constructed the optimal strategy, namely,
we have defined minimax function, which values are rep-
resented as guaranteed result for special type of payoff.
Then, we have constructed special iterative procedure in
space of positions by finding convergence operator Γ and
proving that minimax function is its fixed point.
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