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Abstract: We consider a problem of the construction of feedback regulator which synthesizes
the assigned stochastic sensitivity of the equilibrium in stochastically forced nonlinear dynamic
system. In the case of complete information, it is shown that this problem can be reduced to
the solution of the matrix algebraic equation. A presence of noise in measurements deforms
the stochastic sensitivity. We find conditions when such deformation is extremely large, and the
considered problem is ill-posed. For this ill-posed problem, a regularization method is suggested.
We propose an analytical approach which allows us to take into account a presence of noise in
measurements when we construct an optimal feedback regulator. General theoretical results are

illustrated by examples.
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1. INTRODUCTION

Problems of the stabilization of operating modes in
stochastically forced nonlinear systems attract attention
of many researchers (see, e.g. Krasovskii et al. (1961);
Kushner (1967); Astrom (1970); Fleming et al. (1975);
Guo et al. (2010) and bibliography therein). The theory
of control and stabilization of linear stochastic systems
is well elaborated (Athans (1971); Wonham (1979); Zhou
et al. (2016)).

It is well known that many real systems are nonlinear, so
a development of the nonlinear stochastic control theory is
very important (see, e.g. Sun (2006); Zhao et al. (2016);
Khrustalev et al. (2017); Rajpurohit et al. (2017); Homer
et al. (2018)). A rigorous mathematical description of the
stochastic dynamics in general nonlinear systems is given
by the Kolmogorov-Fokker-Planck equation, however, a
direct using of this equation is very difficult, especially
in control problems. So, constructive approximations and
asymptotics for probabilistic distributions are elaborated
(Freidlin et al. (1984)). A semi-analytical approach for
the approximation of the dispersion of random states near
attractors forced by weak noise was suggested in Bashkirt-
seva et al. (2015). This approach based on the stochastic
sensitivity function technique was successfully applied to
analysis of noise-induced phenomena (Bashkirtseva et al.
(2018)) and solution of related control problems (Ryashko
et al. (2008); Bashkirtseva et al. (2017)). An undesired ex-
citability of operating modes can be explained by the high
sensitivity of the system to random disturbances, so, the
main idea of the stabilization is to reduce this stochastic
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sensitivity by the appropriate feedback regulator. But in
some circumstances, the desire to minimize the stochastic
sensitivity can lead to unexpected ill-posed problem.

In the present paper, we discuss the problem of the
stochastic sensitivity synthesis for systems with noise in
measurements. It is shown that the presence of such noises
in control systems with ”idealized” optimal regulators
minimizing the stochastic sensitivity can destroy the oper-
ating mode. To regularize this ill-posed problem, we sug-
gest a method of the construction of the regulator taking
into account the presence of the noise in measurements.
Mathematically, for this regularization, it is required to
solve quadratic matrix equations. A solvability analysis
of this equation allows us to describe a set of attainable
stochastic sensitivity matrices and find a minimal element
in this set. The general theoretical results are illustrated
by examples.

2. SYNTHESIS OF STOCHASTIC SENSITIVITY FOR
EQUILIBRIUM

Consider a nonlinear stochastic system
&= f(z) + g()u + eo(x)§(t), (1)

where © € R™ is a state vector, v € R' is a control
vector, f(x) € R™ is a continuously differentiable vector-
function, g(r) € R™*! is a matrix-function, £(t) € R™
is a d-correlated white Gaussian noise vector satisfying
E&(t) = 0, EE(HD)ET (1) = 6(t — 7)Q, and Q is a non-
negative definite m x m-matrix. Here, o(x) is an (n x
m)-matrix-function that characterizes the dependence of
disturbances on states, and ¢ is a scalar parameter of the
noise intensity.
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We assume that the corresponding deterministic system
(1) (with e = 0 and u = 0 therein) has an equilibrium z.
The stability of Z is not supposed.

Let the control input u in (1) be formed by the feedback
regulator
u=K(x—I) (2)

with a constant (I X n)-matrix K.

The closed-loop system (1), (2) can be written as
&= f(z) +g(x)K(x — ) + eo(x)E(1). 3)

For the deviations of solutions x¢(t) of the stochastic sys-
tem (3) from the equilibrium Z, the following asymptotics
can be considered:
. _
A1) = i TH =T
e—0 5
Dynamics of z(¢) is governed by the linear stochastic
equation
2= (A+ BK)z+ o(Z)&(t),

(@), B=g@).

The matrix Z = Ezz ' of the second moments of z is a
solution of the linear deterministic matrix equation

Z=(A+BK)Z+Z(A+BK)" +5,
S =0(2)Qo " (z).

where
A =

(4)

A set of matrices K that provide an exponential stability
of the equilibrium Z of system (1) (with ¢ = 0 therein)can
be written as

K = {K| ReXi(A+ BK) < 0},
where \;(A + BK) are the eigenvalues of the matrix

A + BK. Suppose that the pair (A, B) is stabilizable (see
Wonham (1979)). This means that K is not empty.

For any K € K, the equation (4) has a unique exponen-
tially stable stationary solution W. The matrix W satisfies
the equation

(A+BK)W +W(A+BK)" +S5=0. (5)

The stochastic sensitivity matrix W is a simple asymp-
totics of the dispersion of random states of system (3)
around the equilibrium, Z: cov(z¢, 2°) ~ 2W.

Let the function W(K) be a solution of the equation (5)
for K € K. Consider an inverse problem: to find the
feedback matrix K of the regulator (2) which provides the
assigned stochastic sensitivity matrix W for system (3).
Mathematically, this problem is reduced to the solution of
the equation ~
W(K)=W.

This equation can be written in a form

BEKW +WK BT + AW + WAT + S =0. (6)

A full analysis of the solvability of this equation can
be found in Ryashko et al. (2008). In the case when
rank(B) = n = [, for any positive definite matrix W, the
equation (6) has the solution:

K=-B"! BSW—1 + A} . (7)

As one can see, this is a case when one can synthesize
any, even arbitrarily small, stochastic sensitivity matrix
choosing the appropriate K.

3. INFLUENCE OF NOISY DATA ON THE
STOCHASTIC SENSITIVITY SYNTHESIS

It is well known, that for real systems, the data about the
current state x(t) contains random noise. Consider a case
when one can measure only the vector

y(t) = x(t) + ep(z(t))n(t),
where ¢(z) is an (n x p)-matrix-function, and n(t) is a
white uncorrelated Gaussian p-vector noise with parame-
ters: En(t) = 0, En(t)n" (1) = §(t — 7)R.
Then the closed-loop system (1) with the noisy control
u= K(y — ) can be written as

&= f(x) +g(@)K(z —2)+

(8)
+eg(a)Ke(x)n(t) + eo(x)E(?).

For the asymptotics z(t), one can write the following
system
2= (A4 BK)z+ BKo(Z)n+ o(z)¢.
The matrix Z = Ezz" of the second moments of z is a
solution of the following matrix equation
Z=(A+BK)Z+Z(A+BK)" + BKOK BT + 8,

O = (@)Rp' (7), S=0(@)Qo0" (7).
For any K € K, this equation has a unique exponentially
stable stationary solution W. The stochastic sensitivity
matrix W satisfies the following equation

(A+BK)W +W(A+BK)" + BKOK 'B" +5=0.(9)

So, a presence of the noises in the measurements results
in the additional term in the equation for the stochastic
sensitivity matrix (compare (9) and (5)).

Consider how the appearance of this additional term
changes the stochastic sensitivity matrix W. Let W be an
assigned stochastic sensitivity matrix of the equilibrium
Z for the system (3), and K be a feedback matrix of the
regulator (2) that synthesizes this W. So, the equation

(A+ BK)W+W(A+BK)" +S=0 (10)

holds.

Let us find out now what will be the stochastic sensitivity
matrix of the equilibrium Z for system (8) with the same

K. For the corresponding stochastic sensitivity matrix 144
(see (9)), we have

(A+ BK)W + W(A+ BK)" + BKOK BT + 5 =0.(11)

An addition of the noise into the observation changes the
stochastic sensitivity matrix from W to W =W + V. As
it follows from (10), (11), the matrix V' = W — W satisfies
the equation

(A+ BE)V +V(A+ BK)" + BKOK BT =0. (12)
So, the presence of noise in the observations increases the
stochastic sensitivity matrix by value V. It is natural to
expect that small noise in the observations results in the
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Fig. 1. Dependence of the stochastic sensitivity w of system

(13), (15) onw for k =k, a=0 = 1.

small V. However, there are circumstances in which V
becomes significantly large. Such ill-posedness arises when
we try to reduce the stochastic sensitivity by decreasing
the matrix W.

We will illustrate this ill-posed problem on the simple
example of one-dimensional system.

Consider the system

&= f(x) +u+eof(t) (13)

with the control

u=k(z—I). (14)
Here, £(t) is a scalar white Gaussian noise with parameters
E¢(t) = 0, EE(t)E(T) = d(t — 7). For this system, the
equation (5) looks like

2(a+ k)w + o? =0,

where a = f'(z), and w is a scalar stochastic sensitivity of
the equilibrium Z for system (13),(14). For any assigned
stochastic sensitivity @ one can find
2
- o
k=—a——
2w

which provides this w. As one can see, in this case,
the regulator (14) can synthesize an arbitrarily small
stochastic sensitivity w.

Consider now a case when the regulator uses noisy mea-
surements:

u=k(y—z), y=x+epen, (15)

where 7)(t) is a white uncorrelated Gaussian scalar noise
with parameters: En(t) = 0, En(t)n(r) = 6(t — 7).

Let us find the stochastic sensitivity which is synthesized
by this regulator with the same k = k. Here, the general
equation (11) looks like

2(a+ k) + k*¢* + 0% = 0.
So, w = w + v, where
4 2
2, - 2, O P
= —+ + — LD
v (a W+ ao 4w) 2
In Figure 1, we show plots of the function w = w + v for
a = o =1 and various values of .

w
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Fig. 2. Dependence of the minimal stochastic sensitivity
wy of system (13), (15) on a for k = k., o = 1.

As one can see, if w tends to zero, the value v unlimitedly
increases. So, in presence of noise in observations, the
desire to use very small values of w leads to ill-posedness
in the form of strong instability.

For the regularization of this problem, we suggest the fol-
lowing method. Choosing coefficients of the regulator that
synthesizes the assigned stochastic sensitivity, one has to
take into account a presence of the noise in measurements.

This means that we have to find a feedback matrix K as
a solution of the equation (9) for the assigned stochastic
sensitivity matrix W. Note that (9) is the quadratic matrix
equation which can be rewritten in the following form:

(BK®? + W 3)(BK®? + Wd™3)T —

(16)
~WO'W + AW + WAT + 5 =0.
The inequality
WO W — AW —WAT — S =0 (17)

is the necessary condition for the solvability of this
quadratic equation. Here, () = 0 means that the matrix
Q is positive semi-definite. If rank(B) = n, then the
inequality (17) is also sufficient. This means that for any
positive definite matrix W satisfying (17), one can find
the solution of the quadratic equation (16) in the form
Bashkirtseva et al. (2017)

K—_B! (Q%qu% - WcIrl) .

Here, Q = WO 'W — AW — WAT — S, and Z is an
arbitrary orthogonal (n X n)-matrix.

Note that the inequality (17) plays a role of the additional
condition that provides a regularization of our problem.
This condition does not allow us to assign extremely small
values of the stochastic sensitivity matrix. Minimal values
of the stochastic sensitivity matrix W have to satisfy this
restriction.

Let us consider how to use it in one-dimensional case. For
system (13), (15), the inequality (17) can be written as
w? 9
—5 - 2aw — o“ > 0.
2
A minimal value w = w, satisfying this condition is as
follows:
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o2
wy = % |a+ a?+—|.
¥
The corresponding optimal regulator which synthesizes
such minimal stochastic sensitivity has a feedback coef-

ficient
o2
ki =—a—y[a®+ —.
2

In Figure 2, we show plots of the function w,(a) for ¢ =1
and various values of . As one can see, the minimal
stochastic sensitivity behaves quite regularly.

CONCLUSION

In some circumstances, control problems can be ill-posed
and require an additional regularization. We have found
that the problem of the synthesis of the assigned stochastic
sensitivity of the equilibrium is ill-possed in presence of
noise in measurements. We have suggested a regularization
method and constructed an optimal feedback regulator.
An efficiency of the proposed approach was demonstrated.
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