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Abstract: The problem of construction of the normal control (namely, the control with the
least norm in L2 space) that generates a given trajectory of a control system is considered.
A new method for constructing approximations of the normal control is suggested for a class of
control systems with dynamics linear in controls and non-linear in state coordinates where
the dimension of the control parameter is greater than or equal to the dimension of the
state variables. This method relies on necessary optimality conditions in auxiliary variational
problems.
An illustrating example is exposed. The results of numerical simulation are compared with the
results obtained with another approach.
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1. INTRODUCTION

The problem of constructing the controls generating a
given trajectory of a control system is considered in this
paper. This problem occurs in many areas of mathematics
such as optimal control theory, differential games and
others and have applications in such areas as economics,
medicine, robotics and others.

In some control construction problems the set of controls
generating the given trajectory may contain many ele-
ments. The control that generates the given trajectory and
has the least possible norm in L2 space is called the normal
control.

The problem of constructing the normal control was con-
sidered, for example, by Kryazhimskii and Osipov (1984);
Osipov and Kryazhimskii (1995). The method suggested
by A. V. Kryazhimskii and Yu. S. Osipov reconstructs
the normal control by using a regularized (a variation of
Tikhonov regularization, see Tikhonov (1943)) procedure
of control with a guide. It is originated from the works
of Krasovskii’s school on the theory of optimal feedback
control, see Krasovskii (1968); Krasovskii and Subbotin
(1974).

In this paper we consider control systems linear in controls
and non-linear in state coordinates with the dimension
of the control parameter greater than or equal to the
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dimension of the state coordinates. The normal control
is unique in the problem considered below.

A new approach to construction of approximations the
normal control is presented in this paper. It is based on
the method for solving dynamic reconstruction problems
suggested by Subbotina and Krupennikov (2017); Krupen-
nikov (2018). This approach relies on auxiliary variational
problems on extremum of a regularized (Tikhonov (1943))
integral functional.

The suggested approximate method and an exact method
providing the explicit expression for the normal control
are discussed. Results of numerical simulations for both
method are exposed and compared.

2. DYNAMICS

We consider control systems with dynamics of the form

ẋ(t) = G(x(t), t)u(t),
x(·) : [0, T ] → R

n, u(·) : [0, T ] → R
m,

m ≥ n, t ∈ [0, T ].
(1)

Here G(x, t) is an n × m matrix with elements gij(x, t) :
R

n × [0, T ] → R, i = 1, ..., n, j = 1, ...,m that have
continuous derivatives

∂gij(x, t)

∂t
,

∂gij(x, t)

∂xk

,

i = 1, ..., n, j = 1, ...,m, k = 1, ..., n,
x ∈ R

n, t ∈ [0, T ].

(2)

In (1) x(t) is the vector of state coordinates and u(t) is
the vector of the control parameter.
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The admissible controls are continuously differentiable
functions satisfying the restriction

u(t) ∈ U, t ∈ [0, T ], (3)

where U ⊂ R
m is a convex compact set.

3. THE NORMAL CONTROL PROBLEM

We assume that a trajectory x∗(·) : [0, T ] → R
n of

system (1) generated by some admissible control is given.

Assumption 1. There exists a constant r > 0 such that
rows of the matrix G(x, t) are linearly independent for any
{x, t} : t ∈ [0, T ], x ∈ Br[x

∗(t)], where Br[x] is a closed
ball of radius r and with center in x.

Let

U
∗ = {u(·) : [0, T ] → R

m; u(·) ∈ C1([0, T ]); u(t) ∈ U;
ẋ∗(t) = G(x∗(t), t)u(t), t ∈ [0, T ]}

(4)
be the set of admissible controls that generate the trajec-
tory x∗(·). This set is non-empty.

Remark 2. To illustrate that the set U∗ may contain more
than one element let us consider the dynamics and the
trajectory

ẋ(t) = u1(t) + 2u2(t),
x∗(t) ≡ 3t, t ∈ [0, T ].

(5)

Such trajectory can be generated by a whole class of
controls {

(

3− 2f(·), f(·)
)

: f(·) ∈ C1([0, T ])}.
Definition 3. An admissible control u∗(·) ∈ U

∗ is called
normal control if it has the least possible norm in L2[0, T ]
among all elements of the set U∗,

�u∗(·)�L2[0,T ] =

√

√

√

√

√

T
∫

0

�u∗(t)�2dt = min
u(·)∈U

�u(·)�L2[0,T ].

(6)

Hereinafter �f� =

√

k
∑

i=1

f2
i , f ∈ R

k, k ∈ N is Euclidean

norm in R
k.

Let us now prove that the normal control u∗(·) exists and
is unique for a given trajectory x∗(·) of system (1). To do
it, let us first prove an auxiliary lemma.

Lemma 4. For the trajectory x∗(·) of system (1) the fol-
lowing assertions are true:

A1 The set U∗ is closed in C1([0, T ]) space.

A2 The set U∗ is convex.

Proof of assertion A1. Let us consider an arbitrary se-
quence {u1(·), u2(·), . . .} ⊂ U

∗ such that lim
i→∞

�ui(·) −
v(·)�C1[0,T ] = 0, v(·) ∈ C1([0, T ]), where �f(·)�C1[0,T ] =

max
t∈[0,T ]

�f(t)� + max
t∈[0,T ]

�ḟ(t)�, f(·) ∈ C1[0, T ] is the norm

in C1[0, T ] space. Let us prove that v(·) ∈ U
∗.

Indeed, since ẋ∗(·) = G(x∗(·), ·)ui(·), i = 1, 2, . . .,

�G(x∗(·), ·)v(·) − ẋ∗(·)�C1[0,T ]

= lim
i→∞

�G(x∗(·), ·)v(·) −G(x∗(·), ·)ui(·)�C1[0,T ]

≤ nm�G(x∗(·), ·)�max lim
i→∞

�v(·)− ui(·)�C1[0,T ] = 0,
(7)

where �G�max = max
i=1,...,n,j=1, ...,m

|gij | is the maximum

norm of an n×mmatrix. Therefore,G(x∗(·), ·)v(·) = ẋ∗(·).
The sequence {u1(·), u2(·), . . .}, in particular, converges
pointwise. As the set U is closed, lim

i→∞

ui(t) = v(t) ∈
U, t ∈ [0, T ].

We have obtained that the function v(·) ∈ C1([0, T ])
generates x∗(·) (as a control) and that v(t) ∈ U, t ∈ [0, T ].
So, v(·) ∈ U

∗.

Thus, the set U
∗ is closed, since it contains all its limit

points.

Proof of assertion A2. Let us consider two arbitrary
elements {u1(·), u2(·)} ⊂ U

∗. Let us check that u1(·) +
(u2(·)− u1(·))θ = u3(·) ∈ U

∗, θ ∈ [0, 1]. Indeed,

G(x∗(t), t)u3(t) = G(x∗(t), t)(u1(t) + (u2(t)− u1(t))θ)
= ẋ∗(t) + (ẋ∗(t)− ẋ∗(t))θ = ẋ∗(t), t ∈ [0, T ].

(8)
The set U is convex. Then, u3(t) = u1(t) + (u2(t) −
u1(t))θ ∈ U, t ∈ [0, T ].

So, u3(·) ∈ U
∗. Therefore, the set U∗ is convex.�

The norm in L2[0, T ] space is a strongly convex lower semi-

continuous functional �f(·))�L2[0,T ] =

(

T
∫

0

�f(t)�2dt
)

1

2

.

Then, it reaches a unique minimum on the convex compact
set U∗.

This means that the normal control u∗(·) in prob-
lem (1),(3),(6) exists and is unique.

We call the problem of construction of the normal control
u∗(·) for a given trajectory x∗(·) of system (1) the normal
control problem.

4. THE EXACT METHOD

Let us first consider a known method providing an explicit
formula for the exact solution of the normal control
problem.

The problem of finding the normal control u∗(·) for a
given trajectory x∗(·) can be formulated as a variational
problem: to find such admissible control u(·) : [0, T ] → R

m

that provide a minimum to the convex functional

I(u(·)) =
T
∫

0

�u(t)�2
2

dt (9)

and satisfy the equation

ẋ∗(t)−G(x∗(t), t)u(t) ≡ 0. (10)

We can write the necessary optimality conditions for
problem (9),(10) in Lagrange form (see, for example, Ioffe
and Tikhomirov (1974)).

The Euler equation has the form

u(t) ≡ GT (x∗(t), t)λ(t), (11)

where λ(t) is the Lagrange multipliers vector.

Substituting (11) into (10), we can express λ(t) through
the variable t. By substituting this expression back
into (11), we finally get the solution of problem (9),(10)
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u∗(t) ≡ GT (x∗(t), t)
(

G(x∗(t), t)GT (x∗(t), t)
)−1

ẋ∗(t).

(12)

Remark 5. The matrix

Gg(x∗(t), t) = GT (x∗(t), t)
(

G(x∗(t), t)GT (x∗(t), t)
)−1

(13)
is the generalized inverse of the matrix G(x∗(t), t). Since
the rows of the matrix G(x∗(t), t) are linearly independent
on [0, T ] (Assumption 1), Gg(x∗(t), t) exists on [0, T ] (see,
for example, Byilov et al. (1966)).

5. THE APPROXIMATE NORMAL CONTROL
PROBLEM.

In this paper another approach to the normal control
problem is suggested. It relies on necessary optimality
conditions in auxiliary variational problems and uses them
as a base to construct approximations of the solution of the
normal control problem.

We call the approximate normal control problem the
problem of constructing such functions u(·, α) = uα(·) :
[0, T ] → R

m, α > 0 that

lim
α→0

�uα(·)− u∗(·)�C[0,T ] = 0. (14)

5.1 Auxiliary variational problem

To construct approximations (14) of the solution of the
normal control problem, we introduce the auxiliary varia-
tional problem (AVP).

We consider the set of pairs of continuously differentiable
functions Fxu = {{x(·), u(·)} : x(·) : [0, T ] → R

n, u(·) :
[0, T ] → R

m} such that these functions satisfy differential
equations (1) and the following boundary conditions

x(T ) = x∗(T ), u(T ) = GT (x∗(T ), T )

·
(

G(x∗(T ), T )GT (x∗(T ), T )
)−1

ẋ∗(T ).
(15)

AVP is to find a pair of such functions x(·, α) = xα(·) :
[0, T ] → R

n and u(·, α) = uα(·) : [0, T ] → R
m that

{xα(·), uα(·)} ∈ Fxu and that they provide an extremum
for the integral discrepancy functional

I(x(·), u(·)) =
T
∫

0

[

−�x(t)− x∗(t)�2
2

+ α2 �u(t)�2
2

]

dt.

(16)
Here α is a small regularising (see Tikhonov (1943))
parameter.

5.2 Necessary optimality conditions for the AVP

For AVP (1),(16),(15) the n + m corresponding Euler
equations have the form

λ̇i(t) + (xi(t)− x∗

i (t))

+

n
∑

j=1

[

λj(t)

m
∑

k=1

∂gjk
∂xi

(x(t), t)uk(t)

]

= 0,

i = 1, . . . , n,

u(t) =
1

α2
GT (x∗(t), t)λ(t).

(17)

We can substitute equations (17) into (1) to get the
necessary optimality conditions for the AVP in the form
of Hamiltonian system

ẋ(t) = −α−2G(x(t), t)GT (x(t), t)s(t),
ṡi(t) = xi(t)− x∗

i (t)

+
1

α2
�s(t), ∂G

∂xi

(x(t), t)GT (x(t), t)s(t)�, i = 1, . . . , n

(18)
with boundary conditions

x(T ) = x∗(T ),

s(T ) = −α2
(

G(x∗(T ), T )GT (x∗(T ), T )
)−1

ẋ∗(T ),
(19)

where the vector s(t) = −λ(t) plays the role of the adjoint
variables vector.

Remark 6. The suggested algorithm for solving the ap-
proximate normal control problem utilizes only necessary
conditions (18),(19) which provide a stationary point for
functional (16) irrespectively of whether the extremum is
reached. Thus, it is not verified if an extremum is actually
reached in the AVP.

5.3 A solution of the approximate normal control problem

We consider a linearized version of system (18):

ẋ(t) = −α−2G(x∗(t), t)GT (x∗(t), t)s(t),
ṡ(t) = x(t)− x∗(t), t ∈ [0, T ]

(20)

with boundary conditions (19).

It is a heterogeneous linear system of ODEs with variable
coefficients which are continuous on [0, T ]. So, the solution
(xα(·), sα(·)) : [0, T ] → R

2n of (20), (19) exists and is
unique and extendable on [0, T ].

Let us now consider the functions

uα(·) = − 1

α2
GT (x∗(·), ·)sα(·), (21)

where sα(·) is the part of the solution of (22),(19).

The following theorem holds.

Theorem 7. For a trajectory x∗(·) of system (1) satisfying
Assumption 1 the functions (21) satisfy condition (14).

The proof is based on the method of ”freezing” the matrix
G(·) � G(x∗(·), ·)GT (x∗(·), ·) (Byilov et al. (1966)). The
main idea of this approach is considering values of the
matrix G(t) for fixed points t = t0, t1, . . . , th, h =
⌊Tα−1⌋, t0 = 0, ti = T − (h − i)α, i = 1, . . . , h and
obtaining consequent estimates for the solutions of the
systems

˙̄xi(t) = −α−2G(ti)s̄i(t),
˙̄si(t) = x̄i(t)− x∗(t),
t ∈ [ti−1, ti],

x̄i(ti) =

{

x∗(T ), i = h;
x̄i+1(ti), i < h,

s̄i(ti) =

{

−α2
(

G(T )
)−1

ẋ∗(T ), i = h;
s̄i+1(ti), i < h,

i = 1, . . . , h.

(22)

Each system from (22) is a heterogeneous linear system
of ODEs with constant coefficients. So, the solutions
{x̄i(·), s̄i(·)} : [ti−1, ti] → R

2n of (22) exist and are unique
and extendable on [ti−1, ti].
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Gg(x∗(t), t) = GT (x∗(t), t)
(

G(x∗(t), t)GT (x∗(t), t)
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is the generalized inverse of the matrix G(x∗(t), t). Since
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on [0, T ] (Assumption 1), Gg(x∗(t), t) exists on [0, T ] (see,
for example, Byilov et al. (1966)).

5. THE APPROXIMATE NORMAL CONTROL
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In this paper another approach to the normal control
problem is suggested. It relies on necessary optimality
conditions in auxiliary variational problems and uses them
as a base to construct approximations of the solution of the
normal control problem.

We call the approximate normal control problem the
problem of constructing such functions u(·, α) = uα(·) :
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m, α > 0 that

lim
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To construct approximations (14) of the solution of the
normal control problem, we introduce the auxiliary varia-
tional problem (AVP).

We consider the set of pairs of continuously differentiable
functions Fxu = {{x(·), u(·)} : x(·) : [0, T ] → R

n, u(·) :
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equations (1) and the following boundary conditions

x(T ) = x∗(T ), u(T ) = GT (x∗(T ), T )
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(15)
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m that

{xα(·), uα(·)} ∈ Fxu and that they provide an extremum
for the integral discrepancy functional

I(x(·), u(·)) =
T
∫

0

[

−�x(t)− x∗(t)�2
2

+ α2 �u(t)�2
2

]

dt.

(16)
Here α is a small regularising (see Tikhonov (1943))
parameter.

5.2 Necessary optimality conditions for the AVP

For AVP (1),(16),(15) the n + m corresponding Euler
equations have the form

λ̇i(t) + (xi(t)− x∗

i (t))

+

n
∑

j=1

[

λj(t)

m
∑

k=1

∂gjk
∂xi

(x(t), t)uk(t)

]

= 0,

i = 1, . . . , n,

u(t) =
1

α2
GT (x∗(t), t)λ(t).

(17)

We can substitute equations (17) into (1) to get the
necessary optimality conditions for the AVP in the form
of Hamiltonian system

ẋ(t) = −α−2G(x(t), t)GT (x(t), t)s(t),
ṡi(t) = xi(t)− x∗

i (t)

+
1

α2
�s(t), ∂G

∂xi

(x(t), t)GT (x(t), t)s(t)�, i = 1, . . . , n

(18)
with boundary conditions

x(T ) = x∗(T ),

s(T ) = −α2
(

G(x∗(T ), T )GT (x∗(T ), T )
)−1

ẋ∗(T ),
(19)

where the vector s(t) = −λ(t) plays the role of the adjoint
variables vector.

Remark 6. The suggested algorithm for solving the ap-
proximate normal control problem utilizes only necessary
conditions (18),(19) which provide a stationary point for
functional (16) irrespectively of whether the extremum is
reached. Thus, it is not verified if an extremum is actually
reached in the AVP.

5.3 A solution of the approximate normal control problem

We consider a linearized version of system (18):

ẋ(t) = −α−2G(x∗(t), t)GT (x∗(t), t)s(t),
ṡ(t) = x(t)− x∗(t), t ∈ [0, T ]

(20)

with boundary conditions (19).

It is a heterogeneous linear system of ODEs with variable
coefficients which are continuous on [0, T ]. So, the solution
(xα(·), sα(·)) : [0, T ] → R

2n of (20), (19) exists and is
unique and extendable on [0, T ].

Let us now consider the functions

uα(·) = − 1

α2
GT (x∗(·), ·)sα(·), (21)

where sα(·) is the part of the solution of (22),(19).

The following theorem holds.

Theorem 7. For a trajectory x∗(·) of system (1) satisfying
Assumption 1 the functions (21) satisfy condition (14).

The proof is based on the method of ”freezing” the matrix
G(·) � G(x∗(·), ·)GT (x∗(·), ·) (Byilov et al. (1966)). The
main idea of this approach is considering values of the
matrix G(t) for fixed points t = t0, t1, . . . , th, h =
⌊Tα−1⌋, t0 = 0, ti = T − (h − i)α, i = 1, . . . , h and
obtaining consequent estimates for the solutions of the
systems

˙̄xi(t) = −α−2G(ti)s̄i(t),
˙̄si(t) = x̄i(t)− x∗(t),
t ∈ [ti−1, ti],

x̄i(ti) =

{

x∗(T ), i = h;
x̄i+1(ti), i < h,

s̄i(ti) =

{

−α2
(

G(T )
)−1

ẋ∗(T ), i = h;
s̄i+1(ti), i < h,

i = 1, . . . , h.

(22)

Each system from (22) is a heterogeneous linear system
of ODEs with constant coefficients. So, the solutions
{x̄i(·), s̄i(·)} : [ti−1, ti] → R

2n of (22) exist and are unique
and extendable on [ti−1, ti].
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Let us now fix an i ∈ {0, . . . , h}. We introduce the new
variables
z̄i(·) = (zi,1(·), zi,2(·), . . . , zi,n(·), wi,1(·), wi,2(·), . . . , wi,n(·)),

zi(·) = x̄i(·)− x∗(·),
wi(·) = s̄i(·) + α2

(

G(ti)
)−1

ẋ∗(·).
(23)

The i-th system from (22) can be rewritten in vari-
ables (23) as

˙̄zi(t) = Az̄i(t) + f̄(t), (24)

where the 2n × 2n matrix A can be written in the block
form

A =

(

On −α−2G(ti)
In On

)

, (25)

where On is an n× n zero matrix, In is an n× n identity
matrix and

f̄(·) =
(

(0, . . . , 0)n, α
2f1(·), α2f2(·), . . . , α2fn(·)

)

,
f(·) = G−1(ti)ẍ

∗(·). (26)

The solution of system (24) can be written with the help
of Cauchy formula for solutions of heterogenous systems
of linear ODEs with constant coefficients:

z̄i(t) = Φ(t)
(

zi(ti)−
ti
∫

t

Φ−1(τ)f̄ (τ)dτ
)

, t ∈ [ti−1, ti],

(27)
were Φ(·) is a 2n× 2n fundamental matrix of solutions of
the homogenous part of system (24). It can be chosen as

Φ(t) = exp [−(T − t)A]
def
=

∞
∑

k=0

1

k!
(−(T − t)A)

k
. (28)

One can check after substituting (25) into (28) that
∞
∑

k=0

1

k!
(−(T − t)A)

k ≡
(

B1,1(t) B1,2(t)
B2,1(t) B2,2(t)

)

, (29)

were, in particular,

B1,2(t) �

−
∞
∑

k=0

α−(2k+2)

(2k + 1)!
(−1)k(T − t)(2k+1) (G(ti))

(k+1)
.

(30)

For any real matrix B with linearly independent rows
the product BBT is a positive definite matrix (see, for
example, Byilov et al. (1966)). So, for a sufficiently small
parameter α the matrix G(ti) = G(ti)G

T (ti) is positive
definite since Assumption 1 for any i = 0, . . . , h. Therefore,
it can be diagonalized by a unitary congruence G(ti) =
QiΛiQ

T
i , where Qi is a real orthogonal matrix and Λi is a

real diagonal matrix with the eigenvalues Λi,j , j = 1, . . . , n
of the matrix G(ti) on the diagonal, which are positive
for any i = 0, . . . , h (Byilov et al. (1966)). Since Qi is
orthogonal, QT

i = Q−1
i . So,

(G(ti))
k = QiΛ

k
i (t)Q

T
i , k ∈ Z. (31)

Now, we introduce the notations

Λcos(t) � diag
(

cos(α−1
√

Λi,j(T − t))
)

,

Λsin(t) � diag
(

sin(α−1
√

Λi,j(T − t))
)

,

Λsqrt � diag
(√

Λi,j

)

,

(32)

where the notation diag
(

a(j)
)

stands for diagonal n ×
n matrix with the elements a(1), a(2), . . . , a(n) on the
diagonal.

We get by substituting (31) into (30) that in notations (32)

B1,2(t) = − 1

α
ΛsqrtQi

∞
∑

k=0

[α−(2k+1)

(2k + 1)!

·(−1)k(T − t)(2k+1)Λ
(2k+1)
sqrt

]

QT
i .

(33)

Therefore, applying the Maclaurin series formula for sin(·),
we get in notations (32) that

B1,2(t) = α−1ΛsqrtQiΛsin(t)Q
T
i . (34)

We can obtain in the same way that

B1,1(t) = B2,2(t) = QiΛcos(t)Q
T
i ,

B2,1(t) = αΛ−1
sqrtQiΛsin(t)Q

T
i .

(35)

It can be proved that

lim
α→0

∥

∥

∥

∥

∥

∥

ti
∫

t

B2,2(t)f(t)dt

∥

∥

∥

∥

∥

∥

= 0, t ∈ [ti−1, ti]. (36)

Remark 8. The prove is based on the fact that
t2
∫

t1

cos
(

α−1
√

Λi,j(T − t)
)

dt

= −α
√

Λi,j

−1
sin

(

α−1
√

Λi,j(T − t)
)

∣

∣

∣

t2

t1

= O(α),

t1 ∈ [0, T ), t2 ∈ [0, T ), j = 1, . . . , n.

(37)

By using the scheme of proof of Theorem 1 in Krupennikov
(2018), one can utilize (37) to obtain equality (36).

It can be proved in the same way that

lim
α→0

∥

∥

∥

∥

∥

∥

α

T
∫

t

B1,2(t)f(t)dt

∥

∥

∥

∥

∥

∥

= 0, t ∈ [0, T ]. (38)

One can check that

Φ−1(t) =

(

B1,1(t) −B1,2(t)
−B2,1(t) B2,2(t)

)

. (39)

Therefore, we get by substituting (26),(29) and (39) into
Cauchy formula (27) that

wi(t) = −α2B2,1(t)
(

zi(ti) +

T
∫

t

B1,2(τ)f(τ)dτ
)

+α2B2,2(t)
(

wi(ti) +

T
∫

t

B2,2(τ)f(τ)dτ
)

.

(40)

For i = h the boundary conditions are wh(T ) = zh(T ) =−→
0 . Therefore, Applying (35),(36),(38) and with regard to
continuity of the elements of B2,1(·) and B2,2(·), we obtain
that

lim
α→0

�α−2wh(·)�C[T−α,T ] = 0. (41)

We get by applying result (41) to expressions (23) that

lim
α→0

�α−2s̄h(·) −
(

G(T )
)−1

ẋ∗�C[T−α,T ] = 0. (42)

Since elements of G(·) are continuously differentiable,
there exists a constant Ḡ > 0 such that

�Gkj(T )−Gkj(·)�C[T−α,T ] ≤ αḠ, k, j = 1, . . . , n. (43)

So, we get from (42) that

lim
α→0

�α−2s̄h(·)−
(

G(·)
)−1

ẋ∗�C[T−α,T ] = 0. (44)
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Now let us return to the solutions of system (20). We
introduce the discrepancies△x(·) = xα(·)−x̄h(·), △s(·) =
sα(·)− s̄h(·) for the solutions of (22),(19) and (20),(19).

△̇x(·) =− α−2G(t)△s(t)

+ α−2
�

G(T )−G(t)
�

s̄(t),

△̇s(t) =△x(t),

△s(T ) =△x(T ) =
−→
0 , t ∈ [T − α, T ].

(45)

The solution of linear system (45) is continuous in param-
eter α. Therefore, since (41) and (43), when α → 0 it con-
verges pointwise to the solution of the homogenous part of
system (45), which is identical zero due to the zero bound-
ary conditions. So, the solutions (xα(·), sα(·)) of (20),(19)
converge pointwise to the solutions (x̄h(·), s̄h(·)) of sys-
tem (22),(19) on [T − α, T ]. Therefore, since (42),

lim
α→0

�α−2sα(t)−
�

G(t)
�−1

ẋ∗�C[T−α,T ] = 0. (46)

This result can be now expanded for the cases of i = h−
1, h− 2, . . . , 0.

Remark 9. In the proof the estimates for the boundary
conditions for each step are consequently obtained through
the estimates obtained on the previous step. The proof
also considers the signs of these conditions to prove that
the final estimate is not exponential. For briefness, the
accurate proof is left out and will be published in future
papers.

So, one can obtain that

lim
α→0

�α−2sα(t)−
�

G(t)
�−1

ẋ∗�C[0,T ] = 0. (47)

Finally, let us consider functions (21). It follows from (47)
that

lim
α→0

�uα(·)−GT (x∗(·), ·)
·
�

G(x∗(·), ·)GT (x∗(·), ·)
�−1

ẋ∗(·)�C[0,T ] = 0,
(48)

where

GT (x∗(·), ·)
�

G(x∗(·), ·)GT (x∗(·), ·)
�−1

ẋ∗(·) = u∗(·),
(49)

which was proved in section 4, (9)–(12).

Theorem proved. �

6. EXAMPLE

In this section we illustrate the work of the approximate
method suggested in section 5 and compare the results of
it’s numerical simulation with the results obtained for the
exact method described in section 4.

Let us consider the following dynamic control system

ẋ(t) = G(x(t), t)u(t),
x(·) : [0, T ] → R

4, u(·) : [0, T ] → R
5,

�u� ≤ 10, t ∈ [0, 1],
(50)

G(x, t) =
















x2
1 − t 2

√
t+ 1 sin(x3) x2

2 + x2
3

x4

x2
1

2− 3tx3 −x2x4

t+ 1
4x1 cos −7t (x1 + x3)x2

x1 + tx2

x3
t2 − 1 x3 +

√
t x3 − 4x2

2

4

t2 + 1√
t+ x2 4 tx1 + x3x4 x2

2 − x3 5t

















and the trajectory

x∗(t) ≡
�√

t+ 1, 2− t2,− cos(t)− 2, t− 4
�

. (51)

One can check that dynamics (50) and trajectory (51)
satisfy Assumption 1.

We consider the approximate normal control problem (14)
for dynamics (50) and trajectory (51).

System (20) was integrated numerically by classical
Runge-Kutta method to construct the numerical approx-
imations uα

N (t), t ∈ [0, T ] of the functions uα(·) (21) for
various values of the parameter α and various numbers N
of the steps of numerical integration.

The time needed to construct the graph of uα
N (·) vor vari-

ous approximation parameters is presented in Table 1. The
last row in this table is the norm �uα

N(t) − u∗

200(·)�C[0,T ],
where u∗

200(·) is an approximation of u∗(·) constructed as
a linear interpolation of the set of sample points

�

(ti, u
∗(ti)) =

�

ti, G
T (x∗(ti), ti)

�

G(x∗(ti), ti)

·GT (x∗(ti), ti)
�−1

ẋ∗(ti)
�

: ti = iT/M, i = 0, . . . ,M
�

,
(52)

taking M = 200.

Remark 10. The function u∗

200(·) was chosen to measure
the discrepancy for all considered approximations because
increasing the number of sample points M in (52) beyond
200 results in very small changes. Namely, �u∗

200(·) −
u∗

M (·)�C[0,T ] ≤ 10−6, M > 200.

We consider the linear interpolations u∗

M (·) of the sets of
sample points (52) as numerical approximations of the
exact solution of the normal control u∗(·), which was
obtained by the exact method described in section 4.

Table 1. Calculation time of the numerical ap-
proximations uα

N (t), t ∈ [0, T ] of the approxi-
mate solutions uα(·).

α

N

0.5
20

0.05

200

0.02

500

0.01
1000

0.001
10000

calculation time(sec) 0.20 0.31 0.45 0.73 9.03

�uα
N
(t) − u∗

200(·)�C[0,T ] 0.57 0.22 0.07 0.015 10−6

The time needed to construct the graphs of the functions
u∗

M (·) and the discrepancies �u∗

M(t) − u∗

200(·)�C[0,T ] are
presented in Table 2.

Table 2. Calculation time of the numerical
approximations u∗

M (t), t ∈ [0, T ] of the exact
solution u∗(·)

M 3 10 50 200

calculation time(sec) 0.83 4.18 24.06 161,2

�u∗

M
(t) − u

∗

200(·)�C[0,T ] 0.25 0.14 0.006 0

The graphs of the 5-th coordinates of the approximations
uα
N,5(t), u∗

M,5(t), whose approximation parameters are
marked with bold font in tables 1,2, are shown on pictures
1,2.

7. CONCLUSION

Comparing the exact method, described in section 4, and
the approximate method, suggested in section 5, we can
see that the second one reduces the task of finding a
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Now let us return to the solutions of system (20). We
introduce the discrepancies△x(·) = xα(·)−x̄h(·), △s(·) =
sα(·)− s̄h(·) for the solutions of (22),(19) and (20),(19).

△̇x(·) =− α−2G(t)△s(t)

+ α−2
�

G(T )−G(t)
�

s̄(t),

△̇s(t) =△x(t),

△s(T ) =△x(T ) =
−→
0 , t ∈ [T − α, T ].

(45)

The solution of linear system (45) is continuous in param-
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tem (22),(19) on [T − α, T ]. Therefore, since (42),

lim
α→0

�α−2sα(t)−
�

G(t)
�−1

ẋ∗�C[T−α,T ] = 0. (46)

This result can be now expanded for the cases of i = h−
1, h− 2, . . . , 0.

Remark 9. In the proof the estimates for the boundary
conditions for each step are consequently obtained through
the estimates obtained on the previous step. The proof
also considers the signs of these conditions to prove that
the final estimate is not exponential. For briefness, the
accurate proof is left out and will be published in future
papers.

So, one can obtain that

lim
α→0

�α−2sα(t)−
�

G(t)
�−1

ẋ∗�C[0,T ] = 0. (47)

Finally, let us consider functions (21). It follows from (47)
that

lim
α→0

�uα(·)−GT (x∗(·), ·)
·
�

G(x∗(·), ·)GT (x∗(·), ·)
�−1

ẋ∗(·)�C[0,T ] = 0,
(48)

where

GT (x∗(·), ·)
�

G(x∗(·), ·)GT (x∗(·), ·)
�−1

ẋ∗(·) = u∗(·),
(49)

which was proved in section 4, (9)–(12).

Theorem proved. �

6. EXAMPLE

In this section we illustrate the work of the approximate
method suggested in section 5 and compare the results of
it’s numerical simulation with the results obtained for the
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5,
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(50)
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















x2
1 − t 2

√
t+ 1 sin(x3) x2

2 + x2
3

x4

x2
1

2− 3tx3 −x2x4

t+ 1
4x1 cos −7t (x1 + x3)x2

x1 + tx2

x3
t2 − 1 x3 +

√
t x3 − 4x2

2

4

t2 + 1√
t+ x2 4 tx1 + x3x4 x2

2 − x3 5t
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




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




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: ti = iT/M, i = 0, . . . ,M
�

,
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Fig. 1. Graphs of u0.02
500,5(t) and u∗

50,5(t) in comparison with
u∗

200,5(t) (the graph is scaled).
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Fig. 2. Graphs of u0.05
200,5(t) and u∗

10,5(t) in comparison with
u∗

200,5(t).

generalized inverse of a variable n×m matrix G(x∗(t), t)
to the task of solving a system of 2n linear ODEs with
variable coefficients. In some applications numerical in-
tegration of ODE systems may be more preferable than
matrix inversing.

In this paper numerical simulation of both methods is
presented. The quality of approximation of the normal
control in C[0, T ] space for the methods was exposed for
various approximation parameters. It is shown that the
suggested method may allow to obtain the same quality of
approximation as the approach, based on counting matrix
inverses, but in less computation time.

The estimates of the speed of the suggested approximate
method’s convergence and it’s comparison with another
methods for constructing normal controls is the matter of
the future research.
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