Климова А.В., Михайловская З.А., Буянова Е.С.

СИНТЕЗ И ЭЛЕКТРОПРОВОДНОСТЬ СЛОЖНЫХ ОКСИДОВ НА ОСНОВЕ МОЛИБДАТА ВИСМУТА

Аннотация. Данная работа посвящена синтезу и изучению свойств и структуры Sb-, Sи Sn-замещенных Bi₁₃Mo₅O₃₄. Сложные оксиды были синтезированы с использованием твердофазного метода. Образцы были исследованы с использованием XRPD. Электропроводность изучалась методом импедансной спектроскопии.

Ключевые слова: молибдат висмута, допирование, электпропроводность.

Abstract. This study is devoted to the synthesis and study of the properties and structure of Sb-, S- and Sn-substituted Bi₁₃Mo₅O₃₄. Complex oxides were synthesized using the solid phase method. Samples were investigated using XRPD. The electrical conductivity was studied by impedance spectroscopy.

Keywords: bismuth molybdate, doping, electrical conductivity.

Введение

Современные научные задачи предусматривают поиск новых материалов, обладающих такими свойствами как термостойкость и высокая кислородноионная проводимость. Такими материалами являются сложнооксидные соединения, свойства которых можно регулировать в широком диапазоне параметров путем направленного допирования.

Данная работа посвящена исследованию возможности получения, установлению специфики структуры и свойств кислородно-ионных проводников на основе Bi₁₃Mo₅O_{34±δ}, замещенного сурьмой, серой и оловом.

Матричное соединение Bi₁₃Mo₅O_{34±δ} обладает редкой колончатой структурой: содержит колончатые фрагменты [Bi₁₂O₁₄]_n⁸ⁿ⁺, ориентированные вдоль оси у, и окруженные кислородно-молибденовыми полиэдрами и изолированными ионами висмута.

Ві₁₃Мо₅О_{34±δ} кристаллизуется в триклинной симметрии, выше 310°С переходит в моноклинную модификацию, что отражается на электропроводящих характеристиках [1]. Замещение в рассматриваемом молибдате висмута может привести к стабилизации моноклинной модификации и оптимизации проводящих свойств

В последнее время ведется поиск анионных проводников, которые применяются как кислородные датчики в каталитических нейтрализаторах, мембраны для разделения кислорода и азота и др., все эти применения требуют быстрого переноса O₂. Bi₂₆Mo₁₀O₆₉ проявляет себя как кислородно-ионный

132

проводник с числом переноса ионов кислорода $t_0^{2-1} = 1$ и общей электропроводностью $\sigma_{700} \approx 10^{-3} \, \text{См} \cdot \text{см}^{-1}$ [2, 3].

Экспериментально было показано, что модификация проводящих свойств сложных оксидов на основе Bi₂₆Mo₁₀O₆₉ возможна в случае изменения химического состава, т.е. допирования, приводящего к снижению температуры перехода и стабилизации моноклинной модификации. Замещение в Bi₂₆Mo₁₀O₆₉ может быть проведено тремя способами: (1) замещение в подрешетку висмута, находящегося в колонках [Bi₁₂O₁₄]_n; (2) замещение «изолированных» позиций висмута; (3) допирование молибден-кислородных полиэдров. Так, Castro с соавторами в своих работах [4] описывали первый способ замещения. Данный случай встречается крайне редко и описан Castro только для семейства $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20}, 0 \le x \le 2$. Было показано, что при допировании может наблюдаться снижение электропроводности, что связывают с различной активностью неподеленных nS^2 электронных пар висмута и теллура [5]. Второй способ дозирования Bi₂₆Mo₁₀O₆₉, основанный на замещении «изолированного» иона висмута, более распространён и приводит к образованию сложных оксидов с формулой Bi_{1-x}Me_x[Bi₁₂O₁₄]Mo₅O_{34±δ}. Также были описаны случаи замещения висмута на Ca, Sr и Ba (x<0.75) [3]. Авторы [6] отмечают, что при введении вакансий В позицию «изолированного» иона висмута электропроводность увеличивается, т.к. становится возможен перенос ионов между полиэдрами МоО₄.

При замещении подрешетки молибдена результате введения допанта в структуру соединения могут быть внесены дополнительные вакансии, или увеличено разупорядочение молибден-кислородных полиэдров. В [2, 7] были получены твердые растворы Bi₁₃Mo_{5-x}V_xO_{34-δ} ($x\leq2$). Замещение полиэдров молибдена катионами Li⁺, Mg^{2+,} Al³⁺, Ge⁴⁺, Si⁴⁺ было изучено в [8]. У сложных оксидов состава Bi₁₃Mo_{4.5}Si_{0.5}O₃₄ и Bi₁₃Mo_{4.5}Ge_{0.5}O₃₄ было обнаружено немонотонное изменение параметров элементарной ячейки, что говорит о дополнительных фазовых переходах. Замещение фосфором и вольфрамом было исследовано в [3]. Были получены образцы состава Bi₂₆Mo_{10-x}W_xO_{69-δ} и Bi₂₆Mo_{10-x}P_xO_{69-δ}, определены области гомогенности $0\leq x\leq2$ и $0\leq x\leq1$ соответственно.

Для молибдата $Bi_{26}Mo_{10}O_{69}$ при переходе в триклинную модификацию наблюдается резкое снижение электропроводности. При замещении температура перехода снижается, а электропроводящие свойства улучшаются, что было показано на примере допантов Pb, Ca, Sr, Ba (замещение в подрешетку висмута) и P, W (замещение в подрешетку молибдена) [3].

Образцы и методика эксперимента

Для синтеза изучаемых твердых растворов в работе использовали следующие исходные оксиды и соли: Bi₂O₃ (ос.ч.), MoO₃ (ос.ч.), Sb₂O₃ (ос.ч.), SnO₂ (ос.ч.), (NH₄)₂SO₄ (ч.д.а..) и SbCl₃ (ч.д.а..). Исходные оксиды предварительно прокаливали для удаления влаги и получения устойчивых модификаций при температурах, указанных в таблице 1.

Таблица 1 – Температуры прокаливания исходных оксидов и солей

Исходное вещество	Тотжига, К	Время выдержки, ч
Bi ₂ O ₃	973	4
MoO_3	773	4
Sb_2O_3	573	4
SnO ₂	773	4

Для синтеза твердых растворов готовили смеси из исходных оксидов и солей.

Синтез сложных оксидов осуществляли в соответствии с уравнениями реакций:

 $6.5 \operatorname{Bi}_{2}O_{3} + 5\operatorname{MoO}_{3} = \operatorname{Bi}_{13}\operatorname{Mo}_{5}O_{34.5},\tag{1}$

6.5 $Bi_2O_3 + (5-y)MoO_3 + 3x(NH_4)_2SO_4 = Bi_{13}Mo_{5-x}S_{3x}O_{34.5\pm\delta} + 6xNH_{3+}3xH_2O(2)$ где $x=0.1-0.7, \Delta x=0.1$

$$SbCl_3 + H_2O$$
 (кипячение)= $Sb_2O_3 \times H_2O = Sb_2O_3$, (3)

$$6.5Bi_2O_3 + (x/2)Sb_2O_3 + (5-x)MoO_3 = Bi_{13}Mo_{5-x}Sb_xO_{34.35\pm\delta}$$
(4)

где *х*=0.1-0.7, *Δх*=0.1

6.5 $Bi_2O_3 + xSnO_2 + (5-x)MoO_3 = Bi_{13}Mo_{5-x}Sn_xO_{34.4\pm\delta}$ (5) где x=0.1-1.0, Δx =0.1

Смеси тщательно перетирали в агатовой ступке с добавлением этилового спирта в качестве гомогенизатора и прессовали в брикеты. Брикеты помещали в тигли на прослойку из порошка этого же состава (для минимизации взаимодействия с тиглем) и подвергали отжигу в две стадии. Первая стадия – отжиг при 823 К, затем закаливание брикета помещением его в воду комнатной температуры. После первой термообработки образцы перетирали с этиловым спиртом для следующей стадии. Вторая стадия – отжиг при 1163 К для образцов замещенных сурьмой и оловом, и 1123 К для составов допированных серой, затем медленное охлаждение вместе с печью. Фазовый состав контролировали методом РФА.

Определение областей существования твердых растворов и их структурную аттестацию осуществляли методом РФА. Твердые растворы состава $Bi_{13}Mo_{5-x}Sb_xO_{34.35-\delta}$, $Bi_{13}Mo_{5-x}Sn_xO_{34.4-\delta}$, $Bi_{13}Mo_{5-x}S_xO_{34,5-\delta}$ и $Bi_{13}Mo_{5-x}S_{3x}O_{34.5-\delta}$ были

синтезированы по стандартной керамической технологии путем гомогенизации и последующего отжига стехиометрических количеств исходных оксидов, хлоридов и карбонатов.

Обнаружено, что при замещении молибдата висмута $Bi_{13}Mo_5O_{34.5}$ серой наблюдается широкая область гомогенности твердых растворов: $x \le 0.6$. Граница области гомогенности твердых растворов $Bi_{13}Mo_{5-x}Sn_xO_{34.4-\delta}$ и $Bi_{13}Mo_{5-x}Sb_xO_{34.35-\delta}$ $x \le 0.3$.

С помощью анализа вида рентгенограмм были установлены группы симметрии соединений. Обнаружено, что при x=0-0.3 все образцы кристаллизуется в триклинной модификации, а при x>0.3 – в моноклинной. Примеры рентгенограмм приведены на рисунках 1.

Рисунок 1 – Рентгенограмма $Bi_{13}Mo_{5-x}Sn_xO_{34.5-\delta}$

При изучении химического состава рассматриваемых сложнооксидных соединений методом атомно-эмиссионной спектроскопии выявлено несоответствие химического состава заданным формульным значениям с точностью до ошибки эксперимента (табл. 2).

X	Bi:Mo:S	Bi(±0.05):Mo(±0.05):S(±0.05)
	теоретическое	экспериментальное
0	13:5:0	12.98:5.05:0
0.1	13:4.9:0.1	12.99:4.92:0.03
0.2	13:4.8:0.2	13.02:4.84:0.07
0.3	13:4.7:0.3	13.01:4.74:0.10
0.4	13:4.6:0.4	13.02:4.65:0.14
0.5	13:4.5:0.5	12.99:4.55:0.17
0.6	13:4.4:0.6	12.98:4.45:0.21
0.7	13:4.3:0.7	12.99:4.92:0.23

Таблица 2 – Результаты химического анализа образцов $Bi_{13}Mo_{5-x}S_xO_{34,5-\delta}$

В соответствии с результатами химического анализа (таблица 2) был проведен синтез образцов с утроенным содержанием серы. Методом РФА была установлено, что данные образцы также однофазы, но отличаются значениями параметров элементарной ячейки и заселенностями кристаллографических плоскостей.

Общая электропроводность образцов номинального состава Ві13Мо5- $_{x}A_{x}O_{34.5\pm\delta}$, где A=Sn, Sb, S исследована методом импедансной спектроскопии в интервале температур 825 – 200 °C в режиме охлаждения. Для каждого состава измерения проводились на таблетированных образцах с платиновыми электродами. Как основная форма представления результатов измерений выбраны импедансные диаграммы (или спектры) в координатах мнимая действительная часть импеданса (Im_Z=f(Re_z)), называемые также годографом импеданса. Форма зависимости мнимой части комплексного сопротивления от действительной меняется при изменении температуры. Вид зависимостей одинаков для всех замещенных соединений. В явном виде можно выделить высокотемпературную И низкотемпературную область измерений, характеризующуюся определенным типом годографов. На основе годографов импеданса были построены температурные и концентрационные зависимости проводимости. По результатам импедансных измерений построены температурные зависимости общей электропроводности. Полученные данные представлены в виде графиков температурной зависимости электропроводности в аррениусовских координатах (см. рисунок 2). Подобный вид зависимостей характерен для всех исследуемых составов.

Рисунок 2 – Избранные температурные зависимости электропроводности соединений состава Bi₁₃Mo_{5-x}Sn_xO_{34.5-δ}

Наблюдается заметное увеличение электропроводности по сравнению с матричным соединением. Зависимость проводимости от температуры для образцов, кристаллизующихся В диапазоне измерения температур В моноклинной симметрии линейна образцов, монотонна; И У кристаллизующихся триклинной симметрии, В имеется ИЗЛОМ, соответствующий полиморфному фазовому переходу. Видно, что в области высоких температур значения проводимости практически не зависят от состава, а в области низких температур наблюдается куполообразная зависимость, причем максимальными значениями электропроводности обладают составы, близкие к концентрационной границе существования триклинной И моноклинной форм.

Из полученных данных видно, что наибольшую электропроводность проявляют составы $Bi_{13}Mo_{4.7}Sn_{0.3}O_{34.2}$, $Bi_{13}Mo_{4.7}Sb_{0.3}O_{34.05}$ и $Bi_{13}Mo_{4.8}S_{0.6}O_{35.7}$. Электропроводность $Bi_{13}Mo_5O_{34.5\pm\delta}$ допированного Sb будет несколько ниже во всей области температур, чем электропроводность при допировании Sn и S (пример на рисунке 3). Значения для электропроводности избранных составов приведены в таблице 3.

Рисунок 3 – Сравнение температурных зависимостей электропроводности соединений состава Bi₁₃Mo_{5-x}A_xO_{34.5±δ}, где A=Sn, Sb, S

Таблица 3 – Удельная электропроводность избранных составов $Bi_{13}Mo_{5-x}A_xO_{34.5\pm\delta}$, где A=Sn, Sb, S

Состав	σ _{623 K} , См∙см ⁻¹	$\sigma_{1023 \text{ K}}, \text{Cm} \cdot \text{cm}^{-1}$
$Bi_{13}Mo_{4.7}Sn_{0.3}O_{34.2}$	6.06×10 ⁻⁴	1.79×10 ⁻²
$Bi_{13}Mo_{4.7}Sb_{0.3}O_{34.05}$	3.06×10 ⁻⁴	1.17×10 ⁻²
$Bi_{13}Mo_{4.8}S_{0.6}O_{35.7}.$	5.77×10 ⁻⁴	1.62×10 ⁻²
YSZ [9]	$3.16 \times 10^{-5} - 3.16 \times 10^{-4}$	$1 \times 10^{-1} - 3.16 \times 10^{-2}$

Таким образом, в исследованной области температур все исследованные составы имеют величину общей электропроводности в пределах в среднем $4.95 \times 10^{-8} - 2.25 \times 10^{-2}$ Ом⁻¹·см⁻¹. Наибольшую электропроводность, сопоставимую с проводимостью YSZ, показывают молибдаты висмута допированные оловом и сурьмой *x*=0.3, и серой *x*=0.2.

Заключение

В ходе работы выполнено исследование класса низкосимметричных замещенных молибдатов висмута с уникальными колончатыми фрагментами

структуры. Найдена взаимосвязь состава, температурных и концентрационных областей устойчивого существования, специфики структуры и свойств твердых растворов на основе Bi₂₆Mo₁₀O₆₉.

Синтезированы и исследованы во всем концентрационном интервале сложные оксиды $Bi_{13}Mo_{5-x}A_xO_{34.5\pm\delta}$, где A=Sn, Sb, S.

Определены концентрационные границы области гомогенности полиморфных модификаций замещенных молибдатов висмута Bi₁₃Mo_{5-x}A_xO_{34.5±δ}, где A=Sn, Sb, S. Определены области существования триклинной и моноклинной модификации твердых растворов.

Методом спектроскопии электрохимического импеданса выявлены особенности характер И импедансных спектров, температурных И концентрационных зависимостей электропроводности керамических материалов на основе замещенных молибдатов висмута.

Зависимость электропроводности от концентрации допанта имеет куполообразный вид с максимумом вблизи «переходного состояния»: области появления моноклинной модификации или триклинной модификации, близкой по параметрам к моноклинной.

Таким образом, в исследованной области температур все исследованные составы имеют величину общей электропроводности в пределах в среднем $4.95 \times 10^{-8} - 2.25 \times 10^{-2}$ Ом⁻¹·см⁻¹. Наибольшую электропроводность, сопоставимую с проводимостью YSZ, показывают молибдаты висмута допированные оловом и сурьмой *x*=0.3, и серой *x*=0.2. Наибольшие значения общей проводимости имеют составы Bi₁₃Mo_{4.7}Sn_{0.3}O_{34.2}, Bi₁₃Mo_{4.7}Sb_{0.3}O_{34.05} и Bi₁₃Mo_{4.8}S_{0.6}O_{34.5}.

По совокупности электрофизических характеристик, термической и структурной устойчивости, замещенные молибдаты висмута с колончатой структурой можно считать перспективными материалами для использования в электрохимических устройствах.

Библиографический список

- Buttrey J. D. Compositional and structural trends among the bismuth molybdates / J. D. Buttrey // Topics in Catalysis. – 2001. – Vol. 15, Is. 2/4. – P. 235–239.
- 2. $Bi_{26}Mo_{10}O_{\delta}$ Solid Solution Type in the Bi_2O_3 -MoO₃-V₂O₅ Ternary Diagram / R. N. Vannier, G. Mairesse, F. Abraham [et al.] // Journal of Solid State Chemistry. 1996. Vol. 122, Is. 2. P. 394–406.
- A new class of mono-dimensional bismuth-based oxide anion conductors with a structure based on [Bi₁₂O₁₄][∞] columns / R. N. Vannier, S. Danzé, G. Nowogrocki [et al.] // Solid State Ionics. 2000. Vol. 136/137, Is. 8. P. 51–59.

- 4. Synthesis and Structural Evolution of the Solid Solution $Bi(Bi_{12-x}Te_xO_{14})Mo_{4-x}V_{1+x}O_{20}(0 \le x \le 2.5)$ / A. Castro, R. Enjalbert, P. Baules [et al.] // Journal of Solid State Chemistry. 1998. Vol. 139, Is. 2. P. 185–193.
- Ionic conductivity of the new oxide family Bi(Bi_{12-x}Te_xO₁₄)Mo_{4-x}V_{1+x}O₂₀ / P. Begue, J. M. Rojo, R. Enjalbert [et al.] // Solid State Ionics. – 1998. – Vol. 112, Is. 12. – P. 275–280.
- 6. Lone pair stereoactivity versus anionic conductivity. Columnar structures in the Bi₂O₃–MoO₃ system / J. Galy, R. Enjalbert, P. Rozier [et al.] // Solid State Sciences. 2003. Vol. 5, Is. 1. P. 165–174.
- Enjalbert R. [Bi₁₂O₁₄E₁₂]_n Columns and Lone Pairs E in Bi₁₃Mo₄VO₃₄E₁₃: Synthesis, Crystal Structure, and Chemistry of the Bi₂O₃-MoO₃-V₂O₅ System / R. Enjalbert, G. Hasselmann, J. Galy // Journal of Solid State Chemistry. – 1997. – Vol. 131, Is. 2. – P. 236–245.
- 8. Ionic conductivity of the oxide family Bi[Bi₁₂O₁₄][(Mo,M)O₄]₅ with M=Li, Mg, Al, Si, Ge and V / B. Bastide, R. Enjalbert, P. Salles [et al.] // Solid State Ionics. 2003. Vol. 158, Is. 4. P. 351–358.
- 9. Joo J. H. Electrical conductivity of YSZ film grown by pulsed laser deposition / J. H. Joo, G. M. Choi // Solid State Ionics. 2006. Vol. 177, Is. 10/11. P. 1053–1057.