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Abstract. The thin interface limit aims at minimizing the effects aris-
ing from a numerical interface thickness, inherent in diffuse interface
models of solidification and microstructure evolution such as the phase
field model. While the original formulation of this problem is restricted
to transport by diffusion, we consider here the case of melt convection.
Using an analysis of the coupled phase field-fluid dynamic equations,
we show here that such a thin interface limit does also exist if trans-
port contains both diffusion and convection. This prediction is tested
by comparing simulation studies, which make use of the thin-interface
condition, with an analytic sharp-interface theory for dendritic tip
growth under convection.

1 Introduction

Letting aside critical phenomena, physical interfaces often have a width in the
nanometer range. For problems on the mesoscale (i.e., dealing with micrometers
or larger scales), this thickness is negligible and the physical interface can safely be
approximated to as a mathematically sharp boundary separating the phases of inter-
est. The major aim of modeling at the mesoscale is thus to solve problems involving a
sharp interface (SI). On the other hand, in the past thirty years, the so-called diffuse
interface models such as the phase field (PF) approach [1,2] have proved quite pow-
erful in studying solidification and microstructure evolution. These models involve
a finite interface thickness, W, which, in view of the above mentioned fact, is of a
numerical nature. Ideally, one would like to minimize the effect of this numerical
parameter. The equivalence of a PF model of solidification to the SI formulation
was established by Caginalp [3] as the diffuse interface becomes progressively narrow
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(W — 0). This ideal limit, however, is numerically quite expensive and often imprac-
tical. A major advancement was achieved in the mid 1990s by Karma and Rappel [4]
with the so-called thin-interface limit for problems involving diffusive transport. They
found that instead of vanishing interface thickness, it is sufficient to have W small
compared to the diffusion length of the solidification problem. This diffusion length
is defined as Lq = %, where D is the thermal diffusivity and V is the normal velocity
of the interface.

2 Thin interface analysis in the presence of flow

To account for transport due to convection in the solidification phenomena, a couple
of melt flow and PF couplings have been proposed and analyzed. Anderson et al.
performed [5] a sharp interface asymptotics of a PF model where the viscosity of liquid
melt-solid interface diverges while approaching solid end of the interface (known as
the variable viscosity model [6-8]). Beckermann et al. [9] proposed a dissipative drag
force ansatz that acts a momentum sink within the liquid melt-solid interface.

The strength of such a dissipative force, that is suitable for wide ranges of interface
width to characteristics flow length ratio to ensure no-slip boundary condition, is
then termed as an optimum coupling parameter h*. Due to numerical simplicity of
this approach, many researchers have employed it for the simulation studies [10-12],
notwithstanding the fact that, a formal thin interface limit, for both of these coupling,
has not been established. The goal of present work is to summarize our findings on
the existence of a thin interface limit in such a case.

To keep the analysis tractable, anisotropies of the surface energy and kinetic coef-
ficient are neglected. Diffusion coefficients and densities of the liquid and solid phases
are assumed to be identical. Due to this equal density assumption, the melt veloc-
ity in a direction normal to the interface vanishes, thus simplifying the analysis. The
growing solid is assumed to be stationary and does not move under the forces exerted
by melt flow. Special attention is paid to ensure the no-slip boundary condition.

We introduce the following notation: u is the reduced temperature field u = %,
T is temperature, Ty, is melting temperature, L/C), is the so-called hypercooling limit,
0 is capillary length, (3 is kinetic coefficient, w is the melt velocity, p is density, p
is dynamic viscosity of the melt, p is pressure, g is acceleration due to gravity. The
phase field (¢) and reduced temperature field equations are,

dy w
T = WV — f1(9) — Aisug (9), (1)
Ju 10¢
— -Vu = DV?u+ - 2
at+w Vu Vu+2at, (2)
where f'(¢) = —p + ¢ is the well-known double well potential corresponding to

phase field with values ¢ = —1, +1 in the liquid and solid phases, respectively. ¢’(yp) =
(1—?)? is an interpolating function that is non-zero only inside the interface, A; is
a numerical constant and 7 is the relaxation time. For the melt flow, we first proceed
with an improved version of the drag force model that ensures Galilean invariance of
the melt flow equations [13]. With this choice, the Navier-Stokes equations read,

H{(yp)
W2

w, (3)

ow
P (m +w- VW> = —Vp+mV?w+ p(1 —yu)g — h*

where « is a coefficient related to thermal expansion, and H(yp) is an interpolating
polynomial with H(£1) = 0. The description of melt flow dynamics is completed
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with the continuity equation,

ap

at-i—V-pw:O. (4)

The small parameter for the asymptotic expansion is identified as a ratio of inter-

face width to diffusion length, ¢ = % = LE A curvilinear orthogonal system of
d

coordinates that is attached to the moving interface, with unit vectors ¢ (normal to
the interface) and § (tangential) is chosen to analyze the coupled set of equations.
The scaled length in a direction normal to the interface, Z, is denoted by 7. The limit
1 — too corresponds to the liquid and solid side of the interface, respectively.

Melt flow is expanded for inner w (microscopic) and outer w (macroscopic) vari-
ables, up to second order in € as W = wg +ew; + 2wy and W &~ Wo +ewy +e2Wa. A
similar expansion is used for ¢ and u, where u,,, @, denotes order of approximation in
¢ for integer n. The macroscopic melt velocity can be Taylor expanded in the direc-
tion normal to the interface around the position of a hypothetical sharp interface at
r =0 as follows [14],

00 ) et (2O 20 o).

In the present case, the no-slip boundary condition at the liquid-solid interface
can be written as w~(0) = 0. The superscript — denotes the quantity evaluated at
the interface when approached from the solid side of the phase. W(0) reminds us that
these macroscopic quantities are evaluated at the sharp interface position, r = 0,
which coincides with the center of the diffuse interface. From the no-slip boundary
condition we conclude that a’*'\g:k(o) = 0, for positive natural integer k. We denote
the normal and tangential components of the melt velocity by w® and w”. We write
the continuity and momentum balance equations for the melt flow dynamics as,

W = Wo(0) + ¢ (n

1 1
—Ohuw" " 78‘; S:Oa 6
677w + Kw —|—1+577H W (6)
2
w’ w’ w*?k 1 1 1
— O+ 0 | W' = pr—— = ——0 —0, — K0, T
p(e "+1+577/<c )w p1+775,€ 6np‘*‘M(gg nn+€mn)w
T * H(SD) 7
+p(1 —yu)g" —h lew, (7)
w” w?e wiSw' K 1 1
g iy K = Os = (@ By) W
p<5 1 T e )w P nen 1+enk P+ pi 5 Oy + k) w
s .+ H(p)
+p(1 —yu)g® — h*m L352 w?, (8)

where £ is interface curvature and g", g° are normal and tangential components of the
gravity. Noting that the densities of the melt and solid are the same, the variation of
the normal component of the melt velocity w” across the interface is neglected. With

this assumption, we proceed with analysis of equations (6) and (8) at successive orders
0wy~
of . At the second order, in combination with equation (5), we obtain 2_ =

or?
1— s
,w. This means that the matching condition on the solid side of the

2l
interface is not satisfied in the second order of e-expansion for the drag force model. In
view of this result, we also examined the variable viscosity model [7]. For this choice,
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. 9
through a similar analysis, we obtain ow (0 _ 0, 9 WE’Q(O) = 0. An extensive account

of this approach and additional issues faced by the original drag force model [9] due
to violation of the Galilean invariance can be found in reference [14]. We just here
conclude that, the variable viscosity model can satisfy matching condition for inner
and outer velocity fields, even in the presence of body forces like gravity. For both
MW
5.
that was originally devised for the diffusive transport [4], remains valid. This relation
is necessary to comply with macroscopic energy balance and Gibbs-Thomson relation
at the interface. The constant M depends on the chosen forms of f/(¢) and ¢'(y) in
equation (1).

of these couplings the relation between phase field parameters 7 = W?2 (% +

3 Numerical simulations

To test the above analysis, we perform numerical simulations of a 2D dendrite, grow-
ing in the direction opposite to an externally imposed melt flow. We include a fourfold
surface energy anisotropy in equation (1) as described in reference [4]. The phase field
equation in this cases is,

¢

oW W
9% _ . (w2 . 2177 OV — B A1 — 022
T o V- (WVyp)+V <|V<p| W(?ch) +o—¢p 15 u(l — p?)?, (9)

where 7 = 1pa(n)?, W = Wya(n), a(n) = 1+ecos(46) and @ is the angle between nor-
mal to the interface and some fixed direction. 79 and W are the reference relaxation
time and interface width. € denotes the strength of surface energy anisotropy and a
positive value of € is a necessary condition to achieve a steady state. This construction
effectively ensures the capillary length § to be of the form ¢ = (1 — 15¢ cos(40)). In
addition to equation (9), the heat transport and melt flow dynamics are solved with
equation (2), equations (3) and (4).

To compare the simulated growth velocity with the corresponding sharp-interface
solution, we refer to a recently developed analytic Alexandrov-Galenko (AG) the-
ory [15], which predicts,

_ 5 YoneT/4 P2 11q-1
ngvi: op€ g 1+b(i)14 ' (10)
D " (1+ayeh,) =

Here: b, a1, 09 are numerical constants,

_ a(Re)lweo | a(Re) = do e Re/2).
o= 4RV, (Re) \v/;erfc(\/m)7

and R is the tip radius of resulting steady state parabola (|W| is the far field melt
PRIW|
o

= is the Reynolds number

velocity). Vj is the steady state growth velocity, Re =

and P, = V;R/(2D) is the growth Péclet number.

To predict the behaviour of dendritic growth and compare it with the AG theory,
the constants of computations have been taken from reference [14]. Figure 1a shows
a typical growth of a dendrite along with iso-temperature curves and velocity vector
arrows surrounding the dendrite. Figure 1b compares the scaled velocity V; versus P,
for the PF simulations and the AG theory, showing excellent agreement between the
two. Simulations with higher flow velocities confirm this agreement further (results
not shown). This agreement suggests that neglecting anisotropic terms in thin inter-
face asymptotics does not alter the main conclusion regarding the independence of
the simulation results on the interface thickness.
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Fig. 1. (a) A growing dendrite subject to convection. For numerical solution, coupled system
of equations (2), (3), (4) and (9) are solved. The arrow head shows direction while length
shows strength of melt flow velocity. (b) The dimensionless tip velocity versus the growth
Péclet number P, calculated by the present PF model (triangles) and AG theory [15].

4 Conclusion

A thin-interface analysis of the phase field equations in the presence of melt convec-
tion is provided. It is shown that, as in the case of diffusive transport, the thickness
of the diffuse interface can be chosen such that its effects on the obtained results
are minimized. This prediction is verified by a comparison of the numerical simula-
tion results for dendritic tip velocity and an analytic theory, which accounts for flow
effects. As an outlook for further work, it shall be noted that, unlike the temperature
or the solute fields, the melt velocity identically vanishes in the solid domain.

The non-vanishing normal gradients of the tangential velocity contribute to the
shear stress tensor that generates an equal and opposite resulting force on the growing
solid. The solid structure, when allowed to move, in turn, influences the melt flow
field and thereby transport of heat and solute. In such a case, the unbalanced shear
stresses on solid might play an important role.
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