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Abstract

We consider special patterns of lengths 5 and 6 in a ternary alphabet. We show
that some of them are unavoidable in square-free words and prove avoidability of the
other ones. Proving the main results, we use Fibonacci words as codes of ternary
words in some natural coding system and show that they can be decoded to square-
free words avoiding the required patterns. Furthermore, we estimate the minimal
local (critical) exponents of square-free words with such avoidance properties.
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1 Introduction

Repetition-free words and morphisms are among the most important objects of study
in combinatorics on words and formal language theory. At the beginning of the 20th
century Axel Thue constructed an infinite square-free word over ternary alphabet [18]
and an infinite binary cube-free (and, moreover, overlap-free) word [19]. Since Thue, the
most popular constructions for infinite repetition-free words were based on repetition-free
morphisms, intensively studied in many works; see, e.g., the book [8], and also papers
[4, 7, 16]. Sometimes, more general substitutions were used instead of morphisms, for
example in the Arshon words [1].

Constructing repetition-free words with additional restrictions forms a significant share
of important and interesting tasks in the study of repetition-free words. In [19] Thue
posed a question: which of the three-letter words over ternary alphabet are avoidable by
square-free words? He showed that the word abc and thus any word obtained from it by
permuting the alphabet is unavoidable. Also he considered the pairs of words, where the
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first one is from the set {aba, bcb, cac} and the other is from {bab, cbc, aca}, and proved
that all these pairs are avoidable. Related research was also done for other repetition-free
words, like the binary cube-free words. A full description of binary patterns avoidable by
these words was obtained in [10]. Another interesting restriction was offered in [14] where
the authors constructed an infinite binary cube-free word with squares of length at most
4. In [2, 3], it was shown that there exist infinite words over a k-letter alphabet, where
k > 3, containing only a finite number of distinct factors of exponent RT (k), which is
the repetition threshold from Dejean’s conjecture [6] equal to the infimum of avoidable
powers over the k-letter alphabet.

In this paper, we continue the investigations of Thue and consider the avoidability of
more general patterns in ternary square-free words. These patterns are words over an
alphabet of variables {x, y, z}, where each variable stands for one letter from {a, b, c} and
different variables denote different letters. For example, the pattern xyxzx represents
the set of words {abaca, acaba, babcb, bcbab, cacbc, cbcac}; to prove that this pattern is
avoidable, we need to build an infinite square-free word over {a, b, c} containing no factors
from this set. We call such patterns “letter patterns”. It follows immediately from the
results of Thue that square-free letter patterns of length 3 and 4 are unavoidable. We
consider all square-free letter patterns of lengths 5 and 6 and clarify their avoidability
status, proving the following

Theorem 1. The following ternary square-free letter patterns are avoidable by ternary
square-free words: (a) xyxzx, xyzxy; (b) xyxzyz and all patterns of length 6 containing
a pattern from (a). All other such patterns of length 6 6 are unavoidable by ternary
square-free words.

To construct square-free words for avoidable letter patterns and to prove that the
other ones are unavoidable we use an idea by Pansiot [12] who proposed, in relation
with Dejean’s conjecture, a binary encoding for k-ary words avoiding “local” repetitions.
Pansiot used a morphism to generate an infinite binary word which “decodes” into a
quaternary word avoiding all powers greater than RT (4) = 7/5. The approach based on
Pansiot’s encoding was used in all later papers devoted to the proof of different cases of
Dejean’s conjecture. For example, Rao [15] built the appropriate binary codewords as
morphic images of the Thue-Morse word (which is itself generated by a morphism).

Shur developed the idea of Pansiot’s encoding for the case of ternary square-free
words [17]. Namely, in this case the Pansiot codeword can be represented by a walk
in a weighted K3,3 graph, where each vertex has edges of weights 1, 2, and 3. Due to
symmetry, such a walk is just a ternary sequence of weights, called a codewalk. In the cited
paper, codewalks generated by means of morphisms were used to generate circular square-
free words. It appears that letter patterns of lengths 5 and 6 have clear representations
in terms of codewalks. The only three avoidable letter patterns correspond to codewalks
containing just two weights of the three available. Also by means of codewalks it is easy
to prove that the remaining letter patterns are unavoidable by square-free words. In each
case of an avoidable pattern the famous Fibonacci word (also generated by a morphism)
is used as the codewalk. After proving that the Fibonacci word decodes to a square-free
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word in all cases, we describe more precisely the fractional powers avoided by each of
obtained square-free words.

2 Preliminaries

2.1 Notation and definitions

An alphabet Σ is a nonempty finite set, the elements of which are called letters. We
consider finite and infinite sequences of letters both called words over the binary alphabet
{a, b}, the ternary alphabet {a, b, c}, and some auxiliary alphabets.

The empty word is denoted by λ. We write |W | for the length of a word W . The
letters of nonempty finite and infinite words are numbered from 1; thus, W = W [1..|W |]
for a finite word.

We use standard definitions of factors, prefixes, and suffixes of a word. Words U and V
are called conjugates if there exist two words X and Y such that U = XY and V = Y X .
We also call V a cyclic shift of U . A positive integer p 6 |W | is a period of a word W if
W [1..|W |−p] = W [1+p..|W |]. If p is the minimal period of W , we use a standard notation
W = Uk, where U = W [1..p] and k = |W |/p. In this case, we call U the root of W and k
the exponent ofW (denoted by exp(W )). Words of exponent 2 and 3 are called squares and
cubes, respectively. A square is minimal if it does not contain shorter squares as factors.
The local exponent of a word is the number lexp(W ) = sup{exp(V ) | V is a factor of W}.
Local exponents of infinite words are also called critical exponents.

A word W is β-free [β+-free] if lexp(W ) < β [respectively, lexp(W ) 6 β]. The 2-free
words are called square-free. It is obvious that a word is square-free if and only if it
contains no minimal squares as factors.

2.2 Fibonacci words

Consider the Fibonacci morphism φ, defined over the binary alphabet by the equalities
φ(a) = ab, φ(b) = a. The iteration of this morphism on the letter b gives the Fibonacci
words: f−1 = b, f0 = a, f1 = ab, f2 = aba, f3 = abaab, f4 = abaababa, and so on. Since
fn is a prefix of fn+1 for any n ∈ N, one can consider the infinite word f = limn→∞{fn}
which is the fixed point of φ. We call f the Fibonacci ω-word to distinguish it from finite
Fibonacci words (notice that in [9] the term “Fibonacci word” is used only for this infinite
word). We will use the following properties of the Fibonacci words:

1. f is a Sturmian word, i.e. it has exactly n + 1 different factors of length n [9].

2. fn = fn−1fn−2 for all n ∈ N.

3. The length of the nth Fibonacci word is the nth Fibonacci number Φn for all n ∈ N

(assuming Φ0 = 1, Φ1 = 2; follows from property 2).

4. The Fibonacci ω-word does not contain factors aaa and bb (words with such factors
have no preimages under φ).
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5. If a factor of the Fibonacci ω-word has nontrivial periods, then its minimal period
is a Fibonacci number [5].

6. lexp(f) = 2 + ρ, where ρ is the golden ratio; this supremum is not reached, so the
local exponent of any Fibonacci word is smaller than 2 + ρ [11].

7. If uk is a factor of f, where u 6= λ, k > (2+ ρ)/2, then there exists n > 1 such that u
is a conjugate of fn and, moreover, each occurence of uk is contained in a maximal
one of f s

n for some s ∈ [2, 2 + ρ) [13].

8. The length of a factor in f whose period is Φn is at most Φn+1 + 2Φn − 2 [11].

2.3 Codewords and codewalks

Any ternary word U of length > 3 containing no squares of letters (in particular, any
ternary square-free word) can be encoded by a binary Pansiot codeword cwd(U) of length
|U | − 2.

cwd(U)[i] =

{

0 if U [i] = U [i+2],

1 otherwise;

for example,
U = a b c b a c b c · · · ,

cwd(U) = 1 0 1 1 1 0 · · · .
This type of encoding was proposed in [12] for bigger alphabets and studied in [17] for
the ternary alphabet. We recall some facts from [17].

The codewords of square-free words are also called square-free. Let us consider them.
They do not contain the factors 00 and 1111 encoding the squares of period 2 and 3,
respectively. Zeroes in a codeword correspond to the “jumps” of one letter over another
letter in the encoded word. There are six such jumps, represented by the factors aba, bcb,
cac, aca, bab, and cbc. We call the first three jumps right and the remaining jumps left.
A right jump in a square-free word is always followed by a left jump and vice versa. The
next jump is obtained from the previous one by
- changing the central letter (e. g., aba ↔ aca) if the 0’s are separated by 1;
- changing the side letters (e. g., aba ↔ cbc) if the 0’s are separated by 11;
- switching the letters (e. g., aba ↔ bab) if the 0’s are separated by 111.

aba bcb cac

bab cbc aca

3

2

1

1 3 2

2

1

3

Figure 1: The graph of jumps in ternary words. Bold edges mark the closed codewalk
(1213).
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In order to describe square-free codewords, the complete bipartite graph K3,3 is used.
Left [right] jumps correspond to the bottom [resp., top] part of the graph. The number
of 1’s between two jumps equals the weight of the edge connecting the corresponding
vertices. Each square-free codeword not equal to 0 corresponds to a walk represented
as a sequence of edge weights (i. e., words over {1, 2, 3}) in the weighted graph shown in
Fig. 1. We call such sequences codewalks. Note that Thue [19] proved that for any pair of
vertices (x, y), where x is from the top part and y is from the bottom part, there exists
an infinite walk which does not contain x and y and correspons to a square-free word. In
order to decode a word from a codewalk uniquely, one has to keep the first two letters of
this word and the information about the leading and trailing 0’s in the codeword.

Example 2. A ternary word abacbabcacbcabc has the codeword 0111011010111 and the
codewalk 3213. Depending in the leading and trailing zeroes, this codewalk corresponds
to three more codewords 111011010111, 1110110101110, and 01110110101110. Starting
with the same letters ab, the second of these codewords decodes as abcabacbcacbaca, which
has little in common with the initial word.

Since we are interested in constructing codewalks (corresponding to square-free words),
for convenience we assume that codewords corresponding to these codewalks always start
with 0.

Remark 3. If a codewalk X decodes to a word W , then a suffix of X decodes, in general,
to an image of the corresponding suffix of W under some permutation of the alphabet.

Due to symmetry, the sequence of weights in K3,3 determines whether the walk is
closed independently of the initial vertex. Any closed walk is a combination of simple
cycles (a closed walk of length two is considered as a simple cycle also).

Remark 4. [17] There are no minimal squares with periods 5, 7, 9, 10 over a ternary
alphabet. The roots of length > 11 in periodic words are coded by the codewalks of
length > 4.

Remark 5. [17] Any infinite codewalk of a square-free word does not contain 11, 222,
223, 322, 333 as factors.

The next lemma is crucial for constructing ternary square-free words from codewalks.

Lemma 6 ( [17]). A codewalk having (a) no factors 11, 222, 223, 322, 333, and (b) no
factors of the form XYX such that |Y | = 2, |X| is even, and (XY ) is the label of a closed
walk, decodes to a square-free word.

By square-free codewalks we mean the codewalks decoding to square-free words. Note
that square-free codewalks are ternary words with much weaker restrictions than square-
freeness: squares in codewalks are permitted if their roots are not closed walks.

3 Letter patterns and codewalks

In this section we start the proof of Theorem 1. We show which of 5-letter and 6-
letter patterns are unavoidable using the properties of codewalks and present an idea for
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constructing ternary square-free words avoiding the remaining such patterns. Note that
all words represented by a letter pattern have the same codeword.

First, consider all square-free 5-letter patterns and their codewords.

x y x z x x y x z y x y z x y x y z x z x y z y x
0 1 0 0 1 1 1 1 1 1 1 0 1 0 1

By Remark 5, letter patterns xyxzy and xyzxz are unavoidable since 11 is prohibited
in codewalks of square-free words. The pattern xyzyx is also unavoidable since 00 and
1111 in codewords correspond to squares. The other two letter patterns of length 5 are
avoidable if there exist codewalks of infinite square-free words using only two of the letters
{1, 2, 3} ({1, 2} for xyzxy and {2, 3} for xyxzx).

Suppose that we have constructed such codewalks and proved the avoidability of xyxzy
and xyxzx by square-free words. Then, we need to consider only those 6-letter patterns
which do not contain avoidable 5-letter patterns as factors:

x y x z y z x y z x z y x y z y x z
0 1 1 0 1 1 0 1 1 0 1 1

By the same argument as for the 5-letter case, we conclude that the last two 6-letter
patterns are unavoidable. The first one corresponds to 2 in a codewalk, hence, if there
exists a codewalk of an infinite square-free word using only the letters 1 and 3 then xyxzyz
is an avoidable letter pattern.

Summarizing the above considerations, we want to answer the following question: are
there infinite square-free codewalks using only two of the letters {1, 2, 3}? It is easy to
see that if such codewalks exist, they contain no cubes of one letter and no squares of
the other letter according to Remark 5. (If the pair is {2, 3}, then the codewalk cannot
contain the factor 22 because it has no possible extensions leading to square-free words.)
This property is exactly the property 4 of the Fibonacci words. What if we take the
ω-word f as a codewalk?

4 Constructing square-free words from the Fibonacci words

Consider the codewalks obtained from Fibonacci words by three substitutions:

σ21 : a → 2, b → 1 (1a)

σ31 : a → 3, b → 1 (1b)

σ32 : a → 3, b → 2 (1c)

We call such codewalks Fibonacci codewalks and denote by Fn [F] the codewalk obtained
from the word fn [resp., the ω-word f] under one of these substitutions. If we need to
specify the substitution being applied we write F ij

n [Fij] for σij(fn) [resp., σij(f)].
Let us have a look at ternary words w21, w31, w32 decoded from Fibonacci codewalks

F21, F31, F32 respectively. Suppose we always start decoding with ab.
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f = abaababaabaab . . .

(1) F21 = 2122121221221 . . .

w21 = abacbcacbabcacbcabacabcbacabacbcabac . . .

(2) F31 = 3133131331331 . . .

w31 = abacbabcbacbcabcbabcabacabcacbacabacbabcabac . . .

(3) F32 = 3233232332332323323232 . . .

w32 = abacbabcacbacabcacbabcabacbcabcbacbcabacbabcabacb . . .

Combining the properties of Fibonacci words with Lemma 6 we will show that Fi-
bonacci codewalks correspond to square-free words. The following lemma and the con-
siderations from Section 3 together imply Theorem 1.

Lemma 7. Fibonacci codewalks decode to square-free words.

Proof. In this proof, we show that Fibonacci codewalks Fij satisfy the conditions (a) and
(b) of Lemma 6 and hence they are decoded into square-free words.

Using property 4 of Fibonacci words we can easily see that Fibonacci codewalks do
not contain forbidden factors from condition (a) of Lemma 6. Then we need to check that
Fibonacci codewalks do not contain factors of the form XYX , where XY labels a closed
walk and |Y | = 2.

Let us consider periodic factors of Fibonacci ω-word. The argument in the case where
the period is a Fibonacci number is quite different from the argument in the other case;
so we study these cases separately.

Case 1: Periods not equal to Fibonacci numbers. Due to property 7 we know that
f does not contain periodic factors with exponent greater than (2 + ρ)/2 whose root
is not a Fibonacci word. For p big enough, (2p − 2)/p > (2 + ρ)/2, so we have no
forbidden factors XYX , where |XY | = p. Let us check short periods p such that p is
even, (2p − 2)/p 6 (2 + ρ)/2 and p is not a Fibonacci number. Such values of p are
4, 6, and 10. Factors in f of these lengths corresponding to closed codewalks are baab,
abaaba, baabaa, aabaab, abaababaab, baababaaba, aababaabab, ababaababa, babaababaa (for
all three encodings of f into codewalks). Let us check the words XYX in each of these
cases. It is obvious that baabba is not a factor of f. Consider the factor abaaba and its
cyclic shifts. If XY = abaaba then XYX = abaabaabaa. But this is φ(ababab)a and
ababab = φ(aaa), contradicting property 4. We conclude that such a factor does not exist
in f . A similar analysis is applied to the other length 6 closed codewalks.

Suppose XY = abaababaab. Then abaababaab = (abaab)2 = f 2
3 . Then XYX =

(abaab)3aba. This has period 5 = Φ3 and length 18 which is greater than (|f4|+2|f3|−2 =
16, contradicting property 8). The other listed factors of length 10 are conjugates of f 2

3 ,
so the same observation is true for them.

Case 2: Periods equal to Fibonacci numbers. We will show that the codewalk generated
by fn is not closed for any n. Without loss of generality we will use substitution (1a).
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Due to the symmetry in K3,3, the same proof works in the two other cases. Consider a
sequence {Sn} of shortest codewalks (over {1, 2}) such that FnSn is a closed codewalk
(see Fig. 1). We want to show that all codewalks Sn are nonempty. Since FnSn−2Sn−1 =
Fn−1Fn−2Sn−2Sn−1 is a closed codewalk, the codewalk Sn is obtained from Sn−2Sn−1 by
deleting all maximal cycles.

F0 = 2 ⇒ S0 = 2,
F1 = 21 ⇒ S1 = 12,
S2 = 212,
S3 =✘✘✘1221 2 = 2,
S4 = 21✚✚22 = 21,
S5 =✚✚22 1 = 1,
S6 = 2✚✚11 = 2 = S0,
S7 = 12 = S1,
S8 = 212 = S2, . . ..

We see that Sn is a periodic sequence with period 6 and all words Sn are nonempty,
implying that the codewalk generated by any Fibonacci word is not closed. Now note that
any conjugate of a closed codewalk is closed (effectively, two such closed walks coincide
up to the origin). Hence we conclude that the codewalks generated by all conjugates of
Fibonacci words are not closed. Note also that if FnSn is a closed walk then FnFnSnSn

is closed too, and SnSn is closed if and only if FnFn is closed. Looking at the sequence
Sn, we conclude that SnSn is closed for n = 6k, 2 + 6k, 3 + 6k, 5 + 6k, k ∈ N0, where the
lengths of the words Sn are odd. Therefore, FnFn generates a closed walk if and only if
the length of Fn is odd.

Assume that f contains a factor XYX from Lemma 6(b), where XY is a cyclic shift
of fnfn for some n. Then the word XYX has the period Φn and the length < (2 + ρ)Φn

by property 6. Then the length of XYX is less than (2|XY | − 2) for all n big enough.
It is easy to check that n = 5, and so |XY | = 2Φ5 = 26, is sufficient. The smaller cases,
which are n = 2 and n = 3, lead to the periods 6 and 10, considered above.

Thus, the lemma is proved.

5 Exponents of square-free words avoiding 5 and 6-letter pat-

terns

In this section we estimate the minimal exponents of ternary square-free words avoiding
letter patterns xyxzx, xyzxy, and xyxzyz. By finding critical exponents of the con-
structed words wij and obtaining some lower bounds, we prove the following

Theorem 8. The minimal critical exponent of a ternary square-free word avoiding a letter
pattern of length 6 6 is:
(1) 15/8 for the pattern xyxzx; (2) 11/6 for the pattern xyzxy; and (3) at most 1 + ρ/2
for the pattern xyxzyz, where ρ is the golden ratio.
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Remark 9. Using property 2 we obtain the next sequence of equalities:

fn = fn−1fn−2

= fn−2fn−3fn−2

= fn−3fn−4fn−3fn−3fn−4

= fn−3fn−4fn−4fn−5fn−4

= fn−3fn−4fn−4fn−5fn−5fn−6

= fn−3fn−4fn−4fn−5fn−6fn−7

= fn−3fn−4fn−4fn−4fn−7 . . .

Hence, for each n > 2 a cube fnfnfn occurs in f and for n > 3 this cube is a φ-image of
a cube fn−1fn−1fn−1. Note that Fibonacci words alternately end with ab and ba; so the
period |fn| cannot be extended to the left.

Lemma 10. One has lexp(w21) = 11/6, lexp(w31) = 1 + ρ/2, lexp(w32) = 15/8.

Proof. To compute the critical exponents of w21, w31, w32 we need to consider two types
of factors in F decoded into periodic words:
(1) the factors of the form XYX , where |XY | > 6 and XY is a label of closed walk (the
case |XY | = 4 is impossible, see the proof of Theorem 7; as we saw earlier, the maximal
such factors of F have the form FnFnFnZ, where Z is a prefix of Fn);
(2) the factors decoded into words with periods less than 11 (see Remark 4).

For convenience, we assume that codeword corresponding to any given codewalk begins
with 0 and ends with 1. For example, the codewalk (121)3 corresponds to the codeword
(0101101)3. Then the length of the codeword always equals the length of the codewalk
plus the sum of its digits. Recall that a codeword of length n is decoded to a ternary
word of length n+2.

1. Firstly, let us estimate exponents of words generated in wij by the factors of type
(1). The minimal period of the word u decoded from FnFnFnZ, where FnFn is a closed
walk, equals the length of the codeword corresponding to FnFn, which is p = s+ l, where
s is the sum of digits in FnFn and l = |FnFn|. The length of the word u is the sum of
digits of FnFnFnZ plus |FnFnFnZ|+ 2.

Further, the periodic factor in wij with the period generated by FnFn is several symbols
longer that the word u decoded from FnFnFnZ. Consider F21. Assume that FnFnFnZ
is preceded by 1. Since this 1 breaks the period |Fn| (see Remark 9), this period would
extend if we replace this 1 by 2. Hence, in terms of codewords, the period can be extended
to the left by 011; since we have 01 instead, the period extends to the left just by one
symbol in the codeword, and then, by one symbol in w21. Note that exchanging the roles
of 1 and 2 does not affect this result. Now consider the right extension: if the next symbol
after Z in the codewalk is 1 [2], then the codeword continues with 010 [resp., 011]. Hence,
the period in the codeword extends by exactly two symbols to the right. In total, the
periodic factor in w21 with the period generated by FnFn has the length equal to sum
of digits of FnFnFnZ plus |FnFnFnZ| + 5. Exactly the same argument for the other two
words give the same constant five for w31 and the constant seven for w32.
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Using property 8, we obtain |FnFnFnZ| 6 Φn+1 + 2Φn − 2 = Φn + Φn−1 + 2Φn − 2 =
3Φn + Φn−1 − 2, i.e., Z is a prefix of Fn of length 6 Φn−1 − 2. The number of letters a
in fn is Φn−1 and the number of letters b is Φn−2. Let α and β denote images of a and b
respectively under the substitution σij .

Remembering that the last two letters of any fn is ab or ba, we can establish an upper
bound for the local exponent of a periodic word w generated in wij by FnFnFnZ:

|w| 6 3(αΦn−1 + βΦn−2 + Φn) + α(Φn−2 − 1) + β(Φn−3 − 1) + (Φn−1 − 2) +m,

where m = 5 for w21, w31, m = 7 for w32,

lexp(w) 6
3(αΦn−1 + βΦn−2 + Φn) + α(Φn−2 − 1) + β(Φn−3 − 1) + (Φn−1 − 2) +m

2(αΦn−1 + βΦn−2 + Φn)

=
3

2
+

αΦn−2 + βΦn−3 + Φn−1 − α− β − 2 +m

2(αΦn−1 + βΦn−2 + Φn)
.

For α = 2, β = 1 one has

lexp(w) 6
3

2
+

2Φn−2 + Φn−3 + Φn−1

2(2Φn−1 + Φn−2 + Φn)
=

3

2
+

Φn+1

2Φn+2

= 1 +
Φn+3

2Φn+2

.

This bound tends to 1 + ρ/2 as n approaches infinity and its maximum 29/16 is reached
when n = 2.

For α = 3, β = 1:

lexp(w) 6
3

2
+

3Φn−2 + Φn−3 + Φn−1 − 1

2(3Φn−1 + Φn−2 + Φn)
=

3

2
+

2Φn − 1

4Φn+1

= 1 +
Φn+2 − 1/2

2Φn+1

.

This bound also tends to 1 + ρ/2 as n approaches infinity. Using the explicit formula

Φn =
1√
5

(

ρn + (−1)n+1ρ−n
)

for Fibonacci numbers, it is easy to check that this bound is less than 1 + ρ/2 for all
n > 2. Thus, this value can be approached arbitrarily close, but is never reached.

For α = 3, β = 2:

lexp(w) 6
3

2
+

3Φn−2 + 2Φn−3 + Φn−1

2(3Φn−1 + 2Φn−2 + Φn)
=

3

2
+

Φn+1 + Φn−1

2(Φn+2 + Φn)
= 1 +

Φn+3 + Φn+1

2(Φn+2 + Φn)
.

Again, the limit of this bound as n → ∞ is 1 + ρ/2. The fraction behaves, up to the
factor 1/2, quite similar to the ratio between the (n+1)st and nth Fibonacci numbers:
converges to ρ and is alternately higher and lower than ρ. Its maximum 9/11, giving us
the upper bound 20/11, is reached for n = 2.

2. Now let us check short periodic factors directly. Due to Remark 4, it is sufficient
to check the periods 6 and 8 only.
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1. The Fibonacci codewalk F obtained by substitution (1a) contains the factor 1221

decoded to the word a bacabc bacab a of local exponent 11/6 > 29/16. w21 has no
factors with period 8, because codewalks of such factors contain 33. Hence, the local
exponent of w21 is 11/6.

2. The Fibonacci codewalk F obtained by substitution (1b) does not contain factors
1221 and 2332 decoded to words of local exponents greater than 1+ρ/2 with periods
6 and 8 respectively, hence, the local exponent of w31 is 1 + ρ/2. Note that, unlike
the two other cases, this value is unreachable.

3. The Fibonacci codewalk F obtained by substitution (1c) contains the factor 2332 de-
coded to word a bacbcabc bacbcab a of local exponent equal to 15/8 > 20/11. Hence,
local exponent of w32 is 15/8.

Proof of Theorem 8. (1) Every infinite ternary square-free word w avoiding letter pattern
xyxzx have a factor with codewalk 2332 due to Lemma 6, hence lexp(w) > 15/8, as we
see in the proof of Lemma 10. The word w32 is the example proving that this value is
precise.
(2) Replacing 2332 with 1221, w32 with w21 and 15/8 with 11/6 in the previous case we
obtain the required result.
(3) The word w31 avoids xyxzyz and lexp(w31) 6 1 + ρ/2.

6 Discussion

The exploration of letter pattern avoidance by ternary square-free words can be extended
to larger lengths of patterns. It is easy to check that the only 7-letter pattern which does
not contain avoidable letter patterns of smaller lengths as factors is xyzxzyx. Proving
its avoidance will finalize the classification of letter patterns avoidable by ternary square-
free words. This pattern has codeword 11011. The codewalk of an infinite ternary word
avoiding this pattern does not contain 22, 23, 32, and 33 as factors, hence, after each 2

and 3 there must be a 1. It is not clear whether such a codewalk can be constructed;
but again, what we need is a binary sequence over the alphabet {12, 13}, so the approach
similar to that used in this paper could work.
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