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Abstract. A new exact solution describing the behavior of a vertically swirling fluid and taking into account the 
thermocapillary effect at the free boundary of an infinite layer is obtained. The behavior of temperature and pressure 
fields is analyzed for a particular case of specifying thermal sources only on the lower non-deformable boundary of the 
layer. It is shown that these fields have a complex topology and allow the possibility of the existence of several zones 
with a reverse flow. 

INTRODUCTION 

One of the current problems facing geophysical hydrodynamics is the characteristics of the qualitative behavior 
of fluids with nonzero vertical vorticity [1-6]. The exact solutions of the Navier-Stokes equations describing the 
isobaric large-scale shear flows of a vertically swirling fluid without rotation were presented in [7-9]. It was shown 
that taking into account the vertical vorticity component illustrates a new way of impulse propagation in a fluid. In 
this paper, we consider new exact solutions to take into account the Marangoni convection of large-scale flows of 
vertically swirling fluids, but in the nonisothermal and nonisobaric cases. A comparison with the results obtained 
earlier in [10-26] is made. 

BOUNDARY VALUE PROBLEM FORMULATION 

In this paper we investigate the shear flows of a viscous incompressible fluid in the gravitational field by means of a 
system of thermal convection equations in the Boussinesq approximation [11,27,28], 
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Here, Vx(x,y,z), Vy(x,y,z) are the x - and y - components of the velocity vector V(x,y,z); P(x,y,z) is a 

deviation  from hydrostatic pressure, divided by the average density; T(x,y,z) is the deviation of temperature from 
the reference value; ,  is the kinematic (molecular) viscosity of the fluid and the coefficient of thermal diffusivity; 
 is the three-dimensional Laplace operator [27,28]. 

The solution is sought in the class [6-11] 
 

    yzuzUVx  ,  zVVy  , (2) 

 

      yzTxzTzTT 210  ,      yzPxzPzPP 210   (3) 

 
The use of this class leads to the identical satisfaction of the incompressibility equation, which makes system (1) 
free from overdetermination. 

By substituting the class (2)–(3) describing the motion of a vertically swirling fluid in the absence of 
predetermined external rotation, we arrive at the system of ordinary differential equations 

 

  0 zu ,   0
''

1 zT ,    zTgzP 1

''

1  ,      zTzuzT 1

''

2  ,    zTgzP 2

''

2  ,    zPzV 2
''  ,  

       zPzuzVzU 1
''  ,          zTzVzTzUzT 21

''

0  ,    zTgzP 0

''

0  . (4) 

 
In view of the structure of the class (2)–(3), the system of boundary conditions describing the thermocapillary 

effect on the upper (free) boundary z=h assumes the form [6-10, 13-22, 27] 
 

   0u ,   00 u ,   000 T ,   AT 01 ,   BT 02 ,   hT0 ,   ChT 1 ,   DhT 2 ,  

   ShP 0 ,   01 hP ,   02 hP ,   sin0 WU  ,   cos0 WV  , (5) 

    hThU 1  ,    hThV 2  .  

 
We assume that the lower boundary is absolutely solid. Without loss of generality, we set S=0. We now consider the 
special case C=D=0 of heating only the lower boundary. Note that, with this method of specifying thermal sources 
at the boundaries, taking into account the thermocapillary effect is equivalent to specifying zero shearing stresses at 
the upper boundary of the horizontal infinite fluid layer. 

EQUATION SYSTEM SOLUTION 

Integration of system (4) due to boundary conditions (5) and transition to a new variable zz/h  gives the 
following exact solution for the temperature field and the pressure field: 
 

  11  zAT ,   zzhAB
z
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INVESTIGATION OF THE SOLUTION 

The analysis of the obtained fields shows that these fields do not have extrema in the layer under consideration, 
since the necessary conditions for the existence of an extremum are not satisfied. In addition, there cannot be 
stagnant points inside the layer for the gradients T1, P1 and there is at most one stagnant point for the gradients T2, 
P2. 

The background temperature and the background pressure are determined by the superposition of several 
currents, different in nature. And none of these flows is involved in the isothermal solution, since in this boundary-
value problem the isothermal solution is also isobaric. We note separately that among these flows there is no current 
induced by thermocapillary effects, since in the particular case under study the thermocapillary effect proves to be 
zero. 

All the polynomials involved in the background pressure and the background temperature have a strictly 
monotonic behavior; however, due to their strong nonlinearity, with some combinations of coefficients before them, 
the sum of the corresponding currents will no longer have the monotonicity property, i.e., the background pressure 
and the background temperature can permit the existence of stagnant points. It is possible to obtain rigorous 
estimates of the number of stagnation points for background temperature and background pressure; for example, 
there are at most seven stagnant points for background pressure. As an illustration, Fig. 1 shows the background 
temperature profile in the case of seven stagnant points, and Fig. 2 shows the background pressure profile in the case 
of the existence of five stagnant points. 
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FIGURE 1. The behavior of the background temperature T0 
in the case of the existence of seven stagnant points 

FIGURE 2. The behavior of the background pressure P0 in the 
case of the existence of five stagnant points 

 
The figures illustrate the possibility of stratification of the heat-force fields, which is caused by the appearance of 

stagnant points. The uneven heating/cooling and vertical vorticity of the fluid lead to counterflows. Note that taking 
vertical vorticity into account leads to a significant complication in the topology of the heat-force fields in 
comparison with the exact solutions presented in [13-16]. 

CONCLUSION 

A new solution describing the influence of the Marangoni effect on the motion of a vertically swirled viscous 
incompressible fluid has been proposed. When only the lower boundary is heated/cooled, the tangential stresses on 
the upper boundary are identically equal to zero. It has been demonstrated that the structure of the flow is rather 
complicated; namely, the heat-force fields can be separated into several zones and have up to seven stagnant points. 
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