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Abstract. There are two primary parameters that characterize operation of modern energy generation units that burn fuel, 
namely – unit efficiency and the amount of noxious emissions. Usually units that operate at the maximum efficiency 
produce maximum potential emissions of noxious substances (as NOx) into the atmosphere. This work provides theoretical 
substantiation for control of the combustion process by superimposing controlled irregularities to the fuel supply rate in 
order to suppress NOx generation while retaining the unit’s technical parameters and cost efficiency. The substantiation 
uses known empirically obtained NOx generation dependency from the air excess ratio. Evaluation of the generated NOx 
content was performed using numerical integration of the composed time sequences describing changes in the NOx 
concentration in the combustion products for various types of control actions. Evaluation of bands of operating frequencies 
for the proposed method of combustion control are presented. The proposed theoretical substantiation made it possible to 
determine conditions and technics for experimental work. 

INTRODUCTION 

Nowadays fuel combustion is a fundamental process in different industry fields. Out of all ways to fuel burn the 
torch combustion method used most often. In this method, fuel and oxidizer (usually air) are supplied to the burner to 
be mixed and produce a burning torch on the burner outlet. 

Because of combustion, a number of environmentally harmful substances that belong to the group of nitrogen 
oxides (NOx) are formed. Reduction of NOx content in exhaust gases is one of the primary ways to improve 
environmental safety of combustion processes and make the process cleaner [1]. In most cases, the application of NOx 
reduction methods directly affects the degradation of combustion efficiency. Therefore, to implement each method, it 
is necessary to develop a substantiation of NOx reduction mechanism and evaluate its effectiveness. 

Unfortunately, existing combustion models are quite simple, and can adequately describe only stationary processes 
[2]. Therefore, it is often necessary to perform experimental studies and develop new mathematical models for each 
new NOx reduction mechanism. 

В This paper presents a theoretical and empirical substantiation for the reduction of nitrogen oxides content in 
power equipment exhaust gases by pulsating of the prime thermal parameters in the combustion zone, which makes 
possible to maintain the efficiency of equipment at the same level and avoid increasing of heat losses. 

PRINCIPLE OF DETERMINING THE VALUE OF THE AIR EXCESS FACTOR 

A critical parameter to take into account when burning fuels in power generation units, industrial furnaces, etc., is 
the excess air factor, which is the ratio between the actual volume of air supplied to the furnace or combustion chamber 
and the minimum amount of air necessary to completely burn the fuel fed to the furnace at the given flowrate. This 
factor is usually referred to as α. It specifies the ratio between actual volume of air supplied to the furnace and the 
minimum amount of air necessary to completely burn the fuel fed to the furnace at the given flowrate 
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The volume of the needed air can be analytically found from the content and flowrate of the air fed into the furnace. 
The actual volume of air fed to the furnace in practice is found from air flowrate per boiler, e.g. through the readings 
of orifice meters. Apparently, at α = 1 the combustible fuel-oxidizer mixture is stoichiometric, meaning that it contains 
oxidizer in the amount it equal to that necessary for complete oxidation of the fuel. 

The excess air factor shall be selected based on the composition of losses in the thermal balance of the unit. 
Generally, the thermal balance of a power boiler can be expressed as the equation [3]: 

 1 2 3 4 5 6
p
pQ Q Q Q Q Q Q

,  (2) 

where 
p
pQ

 - heat available in 1 kg of solid or liquid fuel or 1 m3 of gaseous fuel,  

1Q  - utilized heat, i.e. the heat passed to the working medium, 2Q  - heat lost due to residual gases, 3Q  - heat lost 

due to underburning, 4Q  - heat lost due to mechanical incompletion of burning (for solid fuel), 5Q  - heat lost due to 

external cooling, 6Q  - heat lost with ash (for solid fuels). 
Dividing both parts of the equation (2) by available heat one can expressed the thermal balance in a 

dimensionless form: 

 
.

2 3 4 5 61 бр q q q q q
,  (3) 

where 

. 1бр
p
p

Q
Q

 - gross thermal boiler efficiency factor, 2q … 6q  - related losses of heat expressed in fractions. 

Since this work discusses combustion of gaseous fuel, heat losses due to mechanical incompletion ( 4q ) and heat 

losses with ash ( 6q ) are assumed to be equal to 0. 
In practical applications to determine the best value for the excess air factor two aspects are taken into account: 

heat losses with residual gases and those due to chemical underbirning. Both parameters are used when computing 
thermal balance of a power unit. Typical dependencies of losses q2 and q3 from the excess air factor in the furnace are 
presented in the Figure 1. 
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FIGURE 1. Typical dependencies of losses q2 and q3 from the excess air factor in the furnace. 

 
Figure 1 demonstrates that the best excess air factor is determined as the x-axis value for the minimal value of the 

curve. The torch-type combustion systems described above ensure efficient burning of fuels and low losses of heat. 
During the period of investigation and application of torch combustion systems, there were constructed several 
mathematical models, which allow to create efficient automated control systems. Even though the processes in the 
boiler are stochastic, the system can be controlled rather easily by changing the flowrate of the air pumped into it and 
– in case of balanced flue units – exhausters load. 

PECULIARITIES OF THE NITROGEN OXIDES FORMATION IN THE TORCH 
COMBUSTION SYSTEM 

As described above, the maximum reduction in heat losses and, consequently, the maximum efficiency of the unit 
(in line with the Equation 3) is achieved when fuel is burned at the optimal value of the air excess factor. In this mode 
of combustion, fuel and oxidizer (air in our case) are mixed efficiently, which increases the rate of chemical oxidation 
reactions. This results in generation of large amount of heat in a relatively short section of the gas-air path in the 
boiler's combustion chamber. This amount of heat is sufficient for the endothermic reaction of oxidation of nitrogen 
contained in the air. A model describing the formation of nitrogen oxides in this process was introduced by Zeldovich 
[4] and named "thermal nitrogen oxides". Formation of nitrogen oxides is inevitable where air serves as an oxidizer 
because the nitrogen content in the air is about 78%. 

The dependence of nitrogen oxides generation on the excess air factor in the combustion zone follows a well-
known pattern. Figure 2 shows the relation of the volumetric share of NOx and the excess air factor in the combustion 
zone. The data was obtained for methane combustion in the air in a mixing reactor [5]. This data represent the “perfect 
case” in terms of mixing conditions, so we will discuss the rationale for pulsating combustion based on this curve. 
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FIGURE 2. Dependency between NOx content in combustion products and factor α, for methane combustion in the mixing 

reactor. 
 

Fig. 2 demonstrates that the greatest amount of thermal nitrogen oxides formation takes place at the optimal value 
of excess air factor, which is equal to 1.0 for the mixing reactor (due to the almost perfect conditions for mixing gases 
in the combustion zone). The figure also shows that where the value of air excess factor deviates in either direction 
from the optimal value, a significant decrease in the intensity of formation of nitrogen oxides is observed. This is due 
to the fact that combustion modes when air excess factor is greater or lower than the optimal value, which translates 
into too lean or too rich fuel-oxidizer mixes respectively, the reaction rates and heat release levels are considerably 
lower. 

REDUCTION OF THE NITROGEN OXIDES FORMATION BY PULSATING  

It is possible to reduce the content of nitrogen oxides without increasing thermal losses by creating inhomogeneous 
areas in the combustion zone where the air excess factor differs greatly from the optimal value and subsequently 
mixing these areas so that the average value of the excess air factor in combustion products is equal to the optimal 
value. The most efficient methods for NOx reduction are based on this concept [6]. 

However, in order to implement this methods it is necessary to arrange several fuel and oxidant supply lines to the 
combustion zone and then ensure that the combustion products are mixed completely in the boiler furnace. This is 
often difficult or impossible to implement in practice. 

The intensity of formation of nitrogen oxides can be reduced if, instead of stationary combustion process, 
combustion will change in time through changes in the excess air factor t , where t  is a time-dependent 
function, e.g. a periodic one. To control air excess value a regulation valve should be installed in the fuel supply line 
connected to the burner. That valve will change fuel flowrate periodically while the air supply flowrate will be kept 
unchanged. Under these conditions the excess air factor will change following a similar periodic pattern. This will 
make the torch consisting of alternating zones where opt  and opt  while the average excess air factor per 

cycle  will be equal to the optimal factor for this unit opt . In the course of longitudinal heat and mass trnsfer in the 
torch and combustion products in the furnace these zones will mix with each other and the interim combustion products 
will undergo further oxidation thus ensuring complete extraction of heat and reduced formation of NOx. 

We will now discuss the case where the immediate excess air factor changes following a sine pattern. The 
dependency of the air excess factor for this case can be described by typical sin low. The Figure 3 shows result of 
computations based on empirically obtained dependency (Fig. 2) for burning methane in the air. 
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FIGURE 3. Dependency of NOx content in combustion products during one period of air excess factor changing by sin pattern. 

Horizontal dotted line is represent NOx volume fraction value for stationary mode (without pulsations). 
 
It can be seen that by superimposing periodic pulsations of the excess air factor even in the range of 30% from the 

optimal value results in reduction of NOx in the combustion products. When changing the excess air factor following 
a sine pattern for some period of time, the torch operates in the area of elevated formation of NOx due to chemical 
underburning and generation of prompt nitrogen oxides. Most of the time though the torch operates in areas where 
formation of NOx is considerably less than in case of operation at the constant excess air factor. 

Nonetheless, it is possible to get rid of the modes where the torch operates with increased NOx generation as 
compared with the pulsation-free combustion. This can be achieved by changing the excess air factor following a 
pattern of periodic square pulses. In this case the combustion process can be only in two alternating modes that differ 
by the values of the excess air factor. The Figure 4 shows result of computations based on empirically obtained 
dependency (Fig. 2) for burning methane in the air, during one period of air excess factor changing by sequence of square 
pulses. 
 

 
FIGURE 4. Dependency of NOx content in combustion products during one period of air excess factor changing by sequence of 

square pulses. Horizontal dotted line is represent NOx volume fraction value for stationary mode (without pulsations). 
 

The analysis showed that when the air excess factor value is changed following a periodic pattern consisting of 
square pulses, the total amount of NO formed during 1 period in combustion products is reduced by 65.6% as 
compared with the operation of a torch with a steady air excess factor equal to the optimal value. 
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The introduction of periodic changes in the value of excess air factor results in formation of zones with different 
excess air in the combustion area. To that end, the primary factor that controls the combustion process is the rate of 
these periodic changes. Let’s evaluate the pulsation rate range. 

The lower boundary of that range is driven by the length of time Tc when the fuel and oxygen are in the furnace 
or combustion chamber. It is necessary to make sure that the combustion process comes to completion in the furnace 
or combustion chamber. Nonetheless, it is clear that full oxidation won’t achieved if pulsation half-period is equal or 
greater than the time when the gases are in the furnace/combustion chamber, so the lower boundary of the range can 
be found frequency, that corresponds to period, that equal to doubled residence time of gases in the furnace. 

The upper boundary of the range of operating rates corresponds to the rate at which transient processes start 
distorting the square sequence. This takes place due to compressibility of gaseous fuels that causes changes in gas 
density and introduces inertia to the process. 

DISCUSSION AND CONCLUSIONS 

At present, there are no math models that would adequately describe combustion process under non-stationary 
values of the excess air factors. Since the available theoretical combustion models depend on a number of parameters 
which values are either unknown or greatly differ in estimates made by different researchers, it was not feasible to 
obtain reliable parameters for pulsating combustion mode. This necessitated targeted experimental studies of pulsation 
combustion. 

The analysis of the possibility of using pulsating combustion mode, based on the empirical dependence of the 
nitrogen oxides content on the air excess factor in the combustion zone, showed that pulsating combustion improves 
the environmental qualities of power units. The control cycle rate, i.e. the rate of pulsations of excess air factor in the 
combustion zone is the primary parameter of pulsating combustion. There is a range of rates where pulsating 
combustion applications make positive impact on unit operation 

The outcome of the analysis made it possible to design an experimental setup and develop a research plan. To 
determine the influence of the pulsation frequency on the mechanism of pulsating combustion, experiments are run 
using measurements of the concentration of nitrogen oxides in the combustion products by a gas analyzer and optical 
diagnostics of the combustion zone in the infrared band with subsequent frequency-domain analysis [7]. 

The results of the experiments together with the theoretical rationale will help develop a mathematical model of 
the pulsating combustion mode that will enable developers to design new power generation equipment and complex 
automatic combustion control systems. 
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