Материалы докладов Международной научно-технической конференции «Энергетика—2008: инновации, решения, перспективы». В 5 кн. Кн. 3. Электроэнергетика и электроника. Казань: Казан. гос. энерг. ун-т, 2008. С. 26—30.

3. Осипов А.Г. Применение системы нечеткого вывода для управления выпрямительным агрегатом СЭС алюминиевой промышленности // Научный поиск: материалы первой научной конференции аспирантов и докторантов. Технические науки. Челябинск: Изд-во ЮУрГУ, 2009. С. 254–259.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАЗЛИЧНЫХ МЕТОДОВ РАСЧЕТА ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ РАБОТЫ ТЭЦ

Охорзина Е.С., Суворов Д.М. Вятский государственный университет, г. Киров e-mail: dmilar@mail.ru

Энергетическая эффективность теплофикации определяется экономией топлива при комбинированном производстве электроэнергии и тепла по сравнению с раздельным производством. Показателями, определяющими эту эффективность, являются, во-первых, коэффициент использования теплоты топлива (η_{um}), во-вторых, удельные расходы топлива (или теплоты топлива) на единицу отпущенной потребителю энергии каждого вида (электроэнергии и теплоты среднего и низкого потенциалов, то есть в паре и сетевой воде соответственно). Дополнительным показателем эффективности является удельная комбинированная выработка электроэнергии (θ_m), которая имеет особое значение при работе ТЭЦ по тепловому графику (при отсутствии или минимизации потерь в конденсаторах).

В данной работе выполнены расчеты основных показателей эффективности для характерных режимов работы отопительной ТЭЦ с турбинами типа Т-50-12,7 (такие условия характерны для всех отопительных ТЭЦ России с паротурбинными установками сверхвысокого начального давления) и для ТЭЦ промышленного предприятия, имеющей турбины с противодавлением типа ПР-6-3,4/0,98/0,49. В первом случае расчеты режимов проводились на адекватной математической модели турбоустановки, построенной на базе реальных энергетических характеристик отсеков проточной части, во втором случае — на математической модели промышленной ТЭЦ с двумя турбинами указанного типа, тремя энергетическими котлами, при давлении в отборе 1,2 МПа и противодавлении 0,3 МПа, при постоянной технологической нагрузке, покрываемой из отбора и равной 56,28 МВт, и переменной отопительной нагрузке, составляющей около 2 МВт в летний период и 26,7 МВт в расчетном режиме. Температура питательной воды на входе в котлы обеспечивалась на уровне 120 °С. В летний период работает одна турбина, в отопительный период — две.

Расчеты были проведены по методикам, представленным в [1], четырьмя наиболее представительными методами: эксергетическим, коэффициентов ценности пара, балансовым (физическим) и нормативным (метод фирмы «ОРГРЭС»). Для турбины Т-50-12,7 были рассчитаны три наиболее характерных режима: конденсационный, по тепловому графику с полностью закрытой

РД ЧНД и по электрическому графику с открытой полностью РД ЧНД при одноступенчатом (только в нижнем сетевом подогревателе) подогреве сетевой воды при ее расчетном расходе и температуре обратной сетевой воды 50 °C. Расход пара на турбину принимался неизменным и составлял 49 кг/с.

Основные результаты расчетов представлены в табл. 1.

Результаты расчетов режимов работы турбины Т-50-12,7

Таблица 1

			ты туройны т-эо-т	
Показатели / расчетный метод		Тепловой	Электрический	Конденсационный
		график	график	режим
Электрическая мощность, МВт		40,807	45,232	47,097
Тепловая нагрузка, МВт		78,956	34,718	0
Расход теплоты топлива, МВт		135,03	134,99	134,98
Коэф. использ. теплоты топлива		0,887	0,592	0,349
η_{um}				
Удельный	эксергетический	309,1	331,8	351,9
расход топлива	ценности пара	336,2	339,5	351,9
на выработку	физический	148,0	264,0	351,9
электроэнергии,	ОРГРЭС	226,5	276,4	351,9
г у.т./кВт∙ч				
Удельный	эксергетический	2,517	2,738	2,866
расход теплоты	ценности пара	2,738	2,765	2,866
топлива на	физический	1,205	2,150	2,866
выработку э/э,	ОРГРЭС	1,845	2,250	2,866
$q_{\mathfrak{B}}$				
Удельный	эксергетический	0,409	0,368	-
расход теплоты	ценности пара	0,295	0,286	-
топлива на	физический	1,088	1,088	-
выработку т/э,	ОРГРЭС	0,757	0,956	-
q_m				
$q_{\mathfrak{I}}/q_{m}$	эксергетический	6,153	7,336	-
	ценности пара	9,282	9,650	-
	физический	1,108	1,977	-
	ОРГРЭС	2,437	2,353	-

Полученные результаты позволяют сделать следующие основные выводы.

- 1. При расчете реальных режимов работы ТЭЦ на точных моделях удельные расходы топлива и теплоты на выработку электроэнергии снижаются при переходе от конденсационного режима на работу по тепловому графику даже при применении эксергетического и балансового методов, а не только методов ОРГРЭС и физического.
- 2. Применение метода ОРГРЭС дает достаточно стабильное отношение параметров $q_{\it 9}/q_m$ для теплофикационных режимов работы, близкое к величине $q_{\it 9}$ в конденсационном режиме, что говорит о том, что для турбин с отопительными отборами на давление 12,7 МПа применение этого метода дает возможность распределить энергетический эффект от теплофикации по двум

видам энергетической продукции достаточно пропорционально, и для таких ТЭЦ применение данного метода следует признать целесообразным.

3. Применение методов учета ценности отбираемого пара и эксергетического является возможным, в частности, в исследовательских целях, но неподходящим для большинства реальных практических ситуаций в энергетике, поскольку они устанавливают коэффициент q_9/q_m на уровень от 6 до 10, то есть существенно завышают эффективность отпуска тепловой энергии, отдавая именно на экономику отпуска тепла весь энергетический эффект от комбинированной выработки.

Основные результаты расчетов двух характерных режимов работы охарактеризованной выше промышленной ТЭЦ и для сравнения ТЭЦ с турбиной Т-50-12,7 при работе по тепловому графику приведены в табл. 2.

Таблица 2 Результаты расчетов режимов работы ТЭЦ при работе по тепловому графику

Показатели / расчетный метод		ПР- 6/3,4/0,98/0,49, летний режим	ПР- 6/3,4/0,98/0,49, расчетный режим	Т-50-12,7, тепловой график
Электрическая мощность, МВт		3,894	9,587	40,807
Суммарная тепловая нагрузка, МВт		58,194	82,959	78,956
Расход теплоты топлива, МВт		68,662	104,055	135,033
Коэф. использ-я теплоты топлива η_{um}		0,904	0,889	0,887
Удельный	эксергетический	339,3	340,3	309,1
расход топлива	ценности пара	450,1	379,2	336,2
на выработку	физический	164,2	147,8	148,0
э/э, г у.т/кВт∙ч	ОРГРЭС	404,2	328,0	226,6
Удельный	эксергетический	2,763	2,772	2,517
расход теплоты	ценности пара	3,665	3,088	2,738
топлива на вы-	физический	1,337	1,203	1,205
работку э/э, $q_{\it ext{\scriptsize 9}}$	ОРГРЭС	3,291	2,671	1,845
Средний удель-	эксергетический	0,995	0,934	0,409
ный расход теп-	ценности пара	0,934	0,898	0,295
лоты топлива на	физический	1,090	1,116	1,088
выработку т/э,	ОРГРЭС	0,959	0,946	0,757
q_m				
$q_{\scriptscriptstyle \Theta}/q_m$	эксергетический	2,777	2,968	6,153
20 2111	ценности пара	3,923	3,439	9,282
	физический	1,227	1,079	1,108
	ОРГРЭС	3,431	2,824	2,437
Удельная выработка электроэнергии \mathfrak{I}_m		0,067	0,116	0,487

Удельная выработка электроэнергии \mathfrak{I}_m 0,067 0,116 0,487 Таким образом, расчеты показывают, что применение для ТЭЦ среднего давления, имеющих преимущественно паровую тепловую нагрузку, обеспечиваемую паровыми турбинами с противодавлением, иных методов, кроме физического, практически нецелесообразно, что связано с низкой удельной выработкой электроэнергии \mathfrak{I}_m . В этих условиях, например, снижение удельного

расхода теплоты q_m на 13 % в летнем режиме (метод ОРГРЭС по отношению к физическому) приводит к увеличению q_9 в 2,5 раза, что формально делает электроэнергию неконкурентоспособной на рынке при том, что η_{um} имеет наивысшее значение, равное 0,904. Завышенные значения q_9 в этом случае свидетельствуют о том, что при замене такой ТЭЦ на ТЭЦ с давлением пара 12,7 МПа или на ГТУ-ТЭЦ удельная и абсолютная выработка электроэнергии на базе тех же тепловых нагрузок возросла бы в несколько раз.

Библиографический список

1. Киселев Г.П. Варианты расчета удельных показателей эффективности работы ТЭЦ: Методическое пособие. М.: Изд-во МЭИ, 2003. 32 с.

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ УСЛОВИЙ ПИРОЛИЗА БЕРЕЗОВСКОГО УГЛЯ И РАСЧЕТ РАВНОВЕСНОГО СОСТАВА ПИРОЛИЗНОГО ГАЗА

Папченков А.И., Каграманов Ю.А., Мунц В.А. УрФУ, papchenkov@yahoo.com

Целью настоящей работы является определение оптимальных условий пиролиза угля. Использование данной технологии обусловлено необходимостью применения двух видов топлив из исходного (угля): пиролизного газа и полукокса в технологической схеме [1] ПГУ с паровоздушным котлом. Предложенная схема снижает затраты на термообработку угля для топливообеспечения обоих циклов — ГТУ и ПТУ, а также дает возможность повышения КПД существующих котлов за счет сжигания полукокса, вместо угля.

Для расчета был взят Березовский уголь следующего состава: C^P =44,3 %; W^P =33 %; H^P =3 %; N^P =0,4 %; O^P =14,4 %; O^P =14,4 %; O^P =0,2 %; O^P =4,7 % с низшей теплотой сгорания O^P =22650 кДж/кг [2]. Окислителем является кислород топлива, незначительные присосы воздуха, а также регулируемая подача дополнительного окислителя для поддержания адиабатной температуры процесса. Принципиальное описание конструкции пиролизера можно найти в [1].

Рассматривается процесс, когда свободного углерода в системе нет, а образование сажи термодинамически невозможно ($\alpha_B > \alpha_C$), где α_B — коэффициент подачи окислителя; α_C — значение, ниже которого неизбежно выделение сажи в равновесных продуктах. Расчет был произведен с использованием уравнений материального баланса и равновесия химических реакций водяного газа и конверсии метана водяным паром [3].

Температура пиролиза в условиях, близких к адиабатным, была найдена из уравнения теплового баланса. Чтобы с достаточной полнотой описать химические превращения в пиролизере и найти конечную теплоту, выделившуюся в процессе пиролиза, за основу были взяты уравнения равновесия следующих реакций:

C+H₂O=CO+H₂; CO+H₂O=CO₂+H₂; CH₄+H₂O=CO+3H₂;
$$K_1 = \frac{M_{CO_2} \times M_{H_2}}{M_{CO} \times M_{H_2O}}; \quad K_2 = \frac{M_{H_2} \times M_{CO} \times p^2}{M_{CH_4} \times M_{H_2} \times M_T^2}$$