В цикле синтеза «чернового» продукта $K_2Cr_2O_7$ на стадии отстаивания суспензии обменного разложения получают сгущенную пульпу и раствор $K_2Cr_2O_7$, которые отделяют друг от друга. В данной операции в осветленный раствор $K_2Cr_2O_7$ переходит большая часть последнего, почти полностью растворенные $Na_2Cr_2O_7$ и Na_2SO_4 и приблизительно половина NaCl.

Маточные растворы после центрифугирования и извлечения суспензии из кристаллов NaCl, а также маточные растворы, полученные после «черновой» кристаллизации $K_2Cr_2O_7$ и последующего отделения их на патронных фильтрах, возвращаются на стадию обменного разложения, поскольку содержат значительное количество Na₂Cr₂O₇ и $K_2Cr_2O_7$. С учетом необходимости возвращения маточных растворов в реактор обменного разложения (POP) степень конверсии исходных растворов не может быть равна нулю и по данным предприятия составляет 19,06 % отн.

Конечная степень конверсии $Na_2Cr_2O_7$ в $K_2Cr_2O_7$ после отстойника составляет 78,14 % отн., что сопоставимо с показателем одного из лучших циклов (79,4 % отн.). Технологический режим конверсии позволяет из всего загруженного в POP $Cr_2O_7^{2-}$ конвертировать 59,08 % отн. последней в дополнительное количество $K_2Cr_2O_7$. Масса $K_2Cr_2O_7$, конвертированного из $Cr_2O_7^{2-}$ в POP, составит 1051,9 кг на тонну товарного бихромата калия.

Суммарные потери $Cr_2O_7^{2-}$ в технологии составляют 8,096 % отн. Из них наибольшая часть приходится на потери с $K_2Cr_2O_7$ (5,061 % отн.), далее – с $Na_2Cr_2O_7$ (2,95 % отн.) и, кроме того, неучтенные потери (0,085 % отн.).

В количественном выражении по технологическим данным в расчете на 10^3 кг товарного $K_2Cr_2O_7$ эти потери составляют 54,9 кг $K_2Cr_2O_7$ (или 40,306 кг $Cr_2O_7^{2-}$) и 28,5 кг $Na_2Cr_2O_7$ (или 23,498 кг $Cr_2O_7^{2-}$).

Наибольшая часть потерь $Na_2Cr_2O_7$ приходится на механические потери при загрузке POP и связаны с пылением (21,2 кг/1 т $K_2Cr_2O_7$) порошкообразного $Na_2Cr_2O_7$. Эти потери можно устранить посредством герметической загрузки $Na_2Cr_2O_7$ из контейнеров в растворитель с оборотными растворами и последующим перекачиванием их в POP. Механические потери бихроматов на стадиях центрифугирования при отделении осадка NaCl, а также при извлечении товарного $K_2Cr_2O_7$ можно существенно уменьшить посредством улавливания их в локальных аспирационных системах и последующего возвращения их в цикл в составе оборотных растворов. Эти мероприятия позволяют существенно (на 25-28 кг хроматов) сократить потери, снизить расходный коэффициент по $Na_2Cr_2O_7$ и снизить себестоимость продукта.

ОЧИСТНЫЕ СООРУЖЕНИЯ КАНАЛИЗАЦИИ ПОСЕЛКА КАРГОПОЛЬЕ

Шамова К.В., Дубровина О. Б. УрФУ, e-mail: olgadubrov@mail.ru

Анализ состояния существующих очистных сооружений канализации по-казал, что в сложившейся ситуации при неудовлетворительной эксплуатации,

устаревшей конструкции и технологии очистки ОСК МУП «ЖКХ» поселка Каргаполье (Курганская область) работает недостаточно эффективно. Кроме того, увеличился расход сточных вод, поступающих на очистные сооружения. Фактически на текущий период они принимают в среднем 600 м³/сут. Состав существующих очистных сооружений:

- одноэтажное прямоугольное здание, с размерами в плане 9х12 м;
- приемная камера;
- две (обогреваемые в зимнее время) компактные установки КУ-200, установленные в ангаре;
 - иловые площадки;
 - биопруды;
 - контактный резервуар.

Существующая схема очистки сточных вод сочетает механическую и биологическую очистку.

Общий коэффициент неравномерности притока составляет 2,4. Для получения стабильной устойчивости очистки (коэффициент неравномерности 1,5) предусмотрена установка камеры усреднения.

Механическая очистка осуществляется на решетках с прозорами -8 мм. Удаление отбросов выполняет оператор очистных сооружений (ОС) вручную. Влажность снимаемых отбросов до 89 %, относительная плотность 0.8 кг/дм 3 , зольность до 10 %.

После решеток осветленные сточные воды поступают на компактные установки КУ-200, предназначенные для полной биологической очистки, где в присутствии кислорода воздуха происходит окисление органики.

Продолжительность пребывания сточной жидкости в зонах аэрации – одни сутки, в зоне отстаивания — 1,5 часа по максимальному часовому притоку. Подача воздуха производится от воздуходувок роторного типа (2 рабочих, 2 резервных), производительностью 105 n/c.

Избыточный активный ил, образующийся в процессе очистки, 2 раза в неделю удаляется на иловые площадки.

Очищенная сточная вода после компактных установок поступает в биопруды — 4 небольших озера. Из биопрудов по руслу ручья Поцелуйка очищенные сточные воды попадают в р. Миасс.

Иловые площадки приняты на естественном основании с дренажем. Размеры иловых карт составляют 10x19 м (4 шт.) и общая площадь -760 м². Удаление дренажной воды осуществляется в контактный резервуар, который предназначался для 30-ти минутного обеззараживания сточных вод. В настоящее время обеззараживание сточных вод не производится.

На выпуске расход сточных вод не измеряется и рассчитывается по договорным объемам водоотведения.

Показатели эффективности очищения сточных вод приведены в таблице.

Показатель	Вход, мг/дм ³	Выход, мг/дм ³
Температура, ⁰ С	10	10
Взвешенные вещества	413,0	38,4
Сухой остаток	1895,0	1717,1
БПКп	393,8	55,7
Хлориды	374,5	354,8
Сульфаты	112,7	101,0
Аммоний-ион	103,6	80,7
Нитрит-ион	0,006	0,02
Нитрат-ион	0,02	0,41
Фосфаты (по Р)	8,0	6,6
Нефтепродукты	0,33	0,2

Как видно из таблицы, поселковые сточные воды, поступающие на очистные сооружения, содержат значительное количество загрязняющих веществ, т.е. являются высококонцентрированными. Низкую эффективность очистки по взвешенным веществам вызывает отсутствие песколовок и первичных отстойников. Недостаточная эффективность по иону аммония указывает о полном отсутствии процесса нитрификации.

Учитывая несоответствие оптимальных параметров эффективности биологической очистки требованиям по качеству очищенных сточных вод для сброса в водоем рыбохозяйственного назначения, физический износ сооружений, отсутствие обеззараживания, принято решение о ликвидации существующих очистных сооружений и проектировании новых.

Предлагается современная схема полной биологической очистки с применением метода SBR (Sequencing Batch Reactor). Сооружения, построенные по этому принципу, отличаются от традиционных сооружений проточного действия тем, что процесс биологической очистки происходит последовательно в одной единственной емкости. Полностью автоматизированная система управления позволяет измерять любые параметры и, таким образом, регулировать качество сливаемой воды. Основные технические параметры (соотношение зон анаэробной, аноксидной, аэробной, возраст и доза ила, коэффициент рециркуляции) будут получены при расчете проекта. Схема включает следующие сооружения: решетки с прозорами от 1 до 3 мм, тангенциальные песколовки, реактор SBR, блок доочистки на фильтрах с плавающей загрузкой, аэробный стабилизатор, блок обезвоживания ИАИ, блок УФ-обеззараживания.

Управление технологическим процессом осуществляется с помощью специального контроллера.

Современные технологические процессы требуют новые конструкции перемешивающего оборудования с оптимальным расходом энергии. Предлагаем использовать оборудование компании КSB: мешалки Amamix с высоком КПД, погружные насосы Amailne. За счет высокого КПД требуется меньшее количество мешалок, благодаря чему сокращаются инвестиционные и эксплуатационные расходы. Подбор погружного перемешивающего оборудования осуществляется при помощи специальной компьютерной программы «Offert Mixrs», разработанной специалистами фирмы.

Таким образом, можно сделать вывод — предложенная схема является энергосберегающей технологией глубокой биологической очистки малых количеств сточных вод:

- автоматическое регулирование мощности в зависимости от количества поступающих сточных вод дает экономию электроэнергии, экономию ресурса работы компрессора и перемешивающего оборудования;
- очистка сточных вод происходит до состояния продуктов потребления
 технической воды и органоминерального удобрения.

О СНИЖЕНИИ ЭНЕРГЕТИЧЕСКИХ ЗАТРАТ ПРИ ПОЛУЧЕНИИ ЭГИРИНА ГИДРОТЕРМАЛЬНЫМ СПОСОБОМ

Шопперт Н.В., Колесникова, М.П. Никоненко Е.А. $Ур\Phi У$, kolesnikovamp@land.ru

Бокситовый (красный) шлам получают как отход переработки основного сырья для алюминия — боксита. При переработке бокситов по способу Байера на каждую тонну глинозема получается более тонны красного шлама, а в способе спекания — до 2,5 т. Основными составляющими красных шламов являются соединения железа, кремния, кальция, алюминия. Рудными материалами являются гидроксиды алюминия, а основными примесями — кремнезем, оксиды железа и титана. Основная масса бокситовых шламов сливается в отвалы.

В данной работе рассмотрена возможность использования шлама для получения пигмента зеленой окраски, основной составляющей которого служит эгирин $NaFeSi_2O_6$. Выбор пигмента для синтеза обусловлен значительным содержанием оксидов железа, кремния и натрия в бокситовом шламе. Для сравнительного анализа энергозатрат использовали два варианта получения эгирина: спекательный и гидротермальный.

Обычно эгирин получают сплавлением соответствующих количеств кремнезема, гематита, соды и хлористого натрия [1]. Авторами данной работы синтезирован эгирин спекательным способом с использованием красного шлама [2].

Принципиальная возможность получения эгирина в гидротермальных условиях была определена при исследовании разрезов систем силикат натрия – хлорное железо – щелочной раствор [3]. Есть сообщения о получении присыпок эгирина при обработке кварца в щелочной среде в стальных стаканах при температуре $380...400\,^{\circ}$ С и давлении $700-1900\,^{\circ}$ атм. [4]. На основании выше указанных исследований был получен эгирин в сильно щелочной среде [5], при этом использовали гидроксид железа (III), осажденный из раствора хлорного железа аммиаком при рН = 8, и аморфную кремниевую кислоту. Вещества, взятые в необходимом молекулярном отношении, подвергали 3-часовой обработке щелочным раствором, содержащим $100\,^{\circ}$ Na₂O, в автоклавах при $280\,^{\circ}$ C. Анализ химического состава показал соответствие формуле, принятой для пироксенов Na_{1,08}Fe³⁺_{1,08}Si_{1,92}O_{6,0} [6]. В этой же работе проведен термографический анализ, и выявлено соответствие природного и синтезированного эгирина. Рентгенографическое и спектроскопическое исследование показало идентич-