В период 2015-2020 гг. прогнозируется существенное улучшение ситуации по всем сценариям развития, и она улучшится до начальной предкризисной стадии (ПК1).

Оценка степени кризисности по блоку энергосбережения и энергоэффективности в течение всего ретроспективного периода только ухудшалась, в результате чего Свердловская область от предкризисной стадии (ПКЗ) перешла в кризисную, хотя и нестабильную (К1). До 2012 года улучшение практически не предвидится, и лишь к 2015 году ситуация из кризисной перейдет в предкризисную (ПКЗ по всем сценариям). К 2020 году улучшение продолжится, хотя и несущественно (до ПК2).

Полученные оценки по выделенным индикаторам показали их разнонаправленность. Если ситуация по энергоемкости ВРП заметно улучшилась в период 2000-2009 гг., перейдя из предкризисно критической (ПКЗ) в начальную (ПК1) стадию, а в перспективном периоде прогнозируется ее дальнейшее улучшение вплоть до нормализации к 2020 году, то по индикатору удельного расхода топлива на производство электроэнергии положение меняется иным образом. В ретроспективном периоде 2000-2009 гг. положение неуклонно ухудшалось, перейдя из предкризисной в кризисную угрожающую зону (К2). В дальнейшем прогнозируется улучшение, но оно по вероятному и инерционному сценариям к 2020 году не достигнет даже уровня 2000 года, и лишь по инновационному сценарию выйдет на этот уровень. Такое положение объясняется катастрофическим старением генерирующих мощностей электростанций Свердловской области, не компенсируемым вводом новых мощностей.

По итогам исследований можно сделать вывод о полезности предложенной методики диагностирования ЭнБ региона по состоянию энергосбережения и энергоэффективности как в ретроспективном, так и в перспективном периоде.

Библиографический список

1. Отраслевые и региональные проблемы формирования энергетической безопасности / Под. ред. А.А. Куклина и А.Л. Мызина. Екатеринбург: Изд. ИЭ УрО РАН, 2008. 384 с.

2. Стратегия развития топливно-энергетического комплекса Свердловской области до 2020 года. Екатеринбург: Мин-во энергетики и ЖКХ Свердл. обл., 2010. 68 с.

К ВОПРОСУ О РЕГУЛИРОВАНИИ ТЕМПЕРАТУРЫ УХОДЯЩИХ ГАЗОВ КОТЕЛЬНЫХ УСТАНОВОК

Ветошкина М.В., Хворенков Д.А., Варфоломеева О.И., Шутов В.С. Ижевский государственный технический университет tguug@istu.ru

В настоящее время одной из основных проблем, решаемых в России, является эффективность и рациональность использования энергетических ресурсов, что отражено в Федеральном законе № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Энергетическая эффективность теплоисточников, в первую очередь, зависит от потерь, которые возникают при генерации теплоты. Наиболее существенные потери – это потери с уходящими газами, поэтому эффективность энергосберегающих мероприятий по утилизации теплоты продуктов сгорания дает ощутимый результат. Высокие температуры уходящих газов поддерживают для предотвращения конденсации коррозионно-активных компонентов дымовых газов – водяных паров и паров серной кислоты.

В работе решается задача определения минимально допустимой температуры продуктов сгорания на входе в дымовую трубу, при которой еще выполняется условие отсутствия образования конденсата в дымовой трубе.

Для конкретного энергетического объекта определение такой температуры возможно выполнить на основе многофакторного эксперимента. Постоянными будут являться геометрические параметры дымовой трубы; варьируемыми независимыми параметрами – скорость и влажность (за счет перехода на другой вид топлива) дымовых газов на входе в дымовую трубу, температура наружного воздуха, термическое сопротивление ограждающих конструкций (за счет изменения толщины или материала тепловой изоляции).

Нахождение значения данной температуры возможно путем численного моделирования процессов аэродинамики и теплообмена. Математическая модель включает в себя следующие уравнения [1]:

1. Уравнения Навье-Стокса:

$$\frac{\partial \vec{v}}{\partial t} + \nabla(\vec{v} \otimes \vec{v}) = -\frac{\nabla P}{\rho} + \frac{1}{p} \nabla \left((\infty + \infty_t) (\nabla \vec{v} + (\nabla \vec{v})^T) \right) + S \qquad (1)$$

2. Уравнение неразрывности:
$$\nabla \cdot \vec{v} = 0$$

(2)

3. Уравнение энтальпии:

$$\frac{\partial h}{\partial t} + \nabla(\vec{v}h) = \frac{1}{\rho} \nabla\left(\left(\frac{\lambda}{c_p} + \frac{\omega_t}{Pr_t}\right) \nabla h\right) + \frac{Q}{\rho}$$
(3)

4. Уравнения для k и с:

$$\frac{\partial k}{\partial t} + \nabla(\vec{v}k) = \frac{1}{\rho} \nabla\left(\left(\infty + \frac{\infty_t}{\sigma_k}\right) \nabla k\right) + \frac{G}{\rho} - (\varepsilon - \varepsilon_{ini}) - F \tag{4}$$

$$\frac{\partial\varepsilon}{\partial t} + \nabla(\vec{v}\varepsilon) = \frac{1}{\rho} \nabla\left(\left(\infty + \frac{\infty_t}{\sigma_\varepsilon}\right) \nabla\varepsilon\right) + \frac{\varepsilon}{k} \left(C_1 \frac{G}{\rho} - C_2 f_1(\varepsilon - \varepsilon_{ini})\right)$$
(5)

Геометрия модели выполнена в системе трехмерного моделирования КОМПАС. В работе рассматривается цилиндрическая стальная дымовая труба

Расчетная область (рис. 1) представляет собой участок дымовой трубы в виде сектора с углом раскрытия 90°, диаметром 400 мм и длиной 31,815 м.

Рис. 1. Расчетная область трубы: a) – выход потока; б) – симметрия; в) – стенка; г) – вход потока

Теплофизические свойства дымовых газов заданы функциями от температуры. Использовались следующие начальные условия: t_{нач}=10 °C; v=0 м/c; P=101 кПа. Граничные условия приведены в таблице.

Тип границы	Граничные условия
Вход потока	температура на стенке 100 °С;
	скорость 6 - 25 м/с [2].
Выход потока	$\frac{dv}{dt} = 0; \frac{dt}{dt} = 0;$
	ax ax
Стенка	скорость 0 м/с;
	$\alpha_{\mathfrak{SKB}}\left(t_{\partial,m}^{cmehka}-t_{hap}\right)=q_{w};$
Плоскость симметрии	$\frac{dv}{dt} = 0 \cdot \frac{dt}{dt} = 0$
	dn dn dn

Термическое сопротивление стенки трубы с теплоизоляцией и теплообмен на наружной поверхности теплоизоляции учитывается эквивалентным коэффициентом теплообмена:

$$\alpha_{\mathfrak{K}\mathfrak{G}} = \left(\frac{1}{\alpha_{hap}} + \frac{\delta_{cm}}{\lambda_{cm}} + \frac{\delta_{men, ouson}}{\lambda_{men, ouson}}\right)^{-1}.$$
(6)

В результате решения были получены поля скорости (рис. 2), температуры (рис. 3) и давления (рис. 4), по которым при известном составе продуктов сгорания возможно нахождение температуры точки росы во всем объеме дымовой трубы.

$\cdot \longrightarrow \longrightarrow$	$\rightarrow \rightarrow \rightarrow$
$\cdot \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	
ightarrow ightarro	$\rightarrow \rightarrow \rightarrow \rightarrow$
$\hspace{1.5cm} \hspace{1.5cm} \hspace{11cm} 1$	
$\rightarrow \rightarrow $	
·	

Рис. 2. Поле скоростей

rindra [] las	вивка из Тенпература]	×		
(00)				
Liber	Значение			
	100.005	_		
	99.975			
	99.946			
	99.917			
	99.887			
	99.858			
	99.820			
	99,799			
	99.769			
	99.74			

Рис. 3. Поле температур

Рис. 4. Поле давлений

Выполнение численного эксперимента позволит найти функцию регулирования температуры уходящих газов от температуры наружного воздуха, термического сопротивления ограждающих конструкций трубы, скорости и влажности продуктов сгорания на входе в дымовую трубу при отсутствии конденсатообразования. Эффект от внедрения подобного регулирования был оценен в работе [3]. Для определения степени влияния факторов на искомую функцию и вывода регрессионного уравнения планируется полный факторный эксперимент [4]. Описание поведения и прогнозирование состояния сложных технических объектов затруднено отсутствием достаточного количества математических моделей. В ряде случаев простым выходом из ситуации является использование регрессионных закономерностей, получаемых в ходе планирования эксперимента. Полный факторный эксперимент является наиболее легко реализуемым среди многочисленных методов активного эксперимента.

Библиографический список

1. Система моделирования движения жидкости и газа FlowVision Версия 2.5.4. Руководство пользователя. ООО «ТЕСИС». М., 1999-2008. 284 с.

2. Дужих Ф.П., Осоловский В. П., Ладыгичев М. Г. Промышленные и вентиляционные трубы: Справ. пособие. М.: Теплотехник, 2004. 464 с.

3. Хворенков Д.А., Диденко В.Н., Варфоломеева О.И. Сравнительная оценка эффективности применения теплоизолированных стальных дымовых труб при использовании схемы с утилизацией теплоты продуктов сгорания // Качество внутреннего воздуха и окружающей среды. 2009. С. 450-453.

4. Хамханов К.М Основы планирования эксперимента. Методическое пособие для студентов специальностей 190800 «Метрология и метрологическое обеспечение» и 072000 «Стандартизация и сертификация». Улан-Удэ, 2001. 94 с.

МОДЕЛИРОВАНИЕ КИНЕТИКИ РЕАКТОРА

Вольман М.А., Чусов А.О. Ивановский государственный энергетический университет имени В.И. Ленина maria_volman@mail.ru

Горячий реактор в отличие от холодного состояния обладает отрицательной температурной обратной связью по температуре топлива и теплоносителя. Кинетика реактора с сосредоточенными параметрами с учетом шести групп запаздывающих нейтронов представляет собой задачу Коши на основе системы взаимосвязанных нелинейных дифференциальных уравнений [1]:

$$\frac{dN(t)}{dt} = \frac{\rho - \beta}{\tau} N(t) + \sum \lambda_i N_i(t), \qquad (1)$$