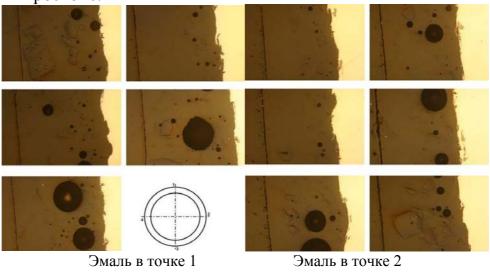
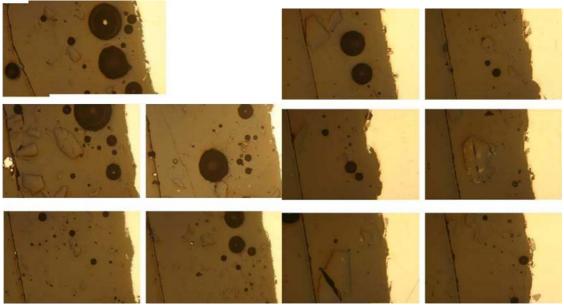
ром образуются сточные воды подобного состава. В подобных технологических схемах к наиболее важным (определяющим) узлам относят узел обессоливания (установки обратного осмоса и выпарные аппараты) и узел обработки осадков (установки реагентной обработки, сгущения, механического обезвоживания и сушки).

Данная технология позволяет:

- 1. Повторно использовать очищенную воду в системе производственного водоснабжения предприятия.
- 2. Подготовить к утилизации образующиеся осадки. Рассматриваемые отходы могут быть утилизированы, например, в качестве добавки к исходному сырью при производстве строительных материалов, уничтожены или направлены на складирование.

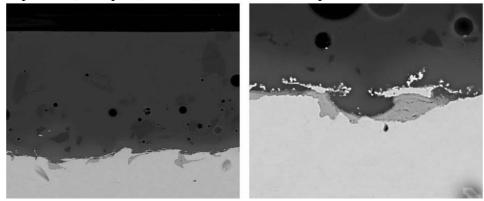

Библиографический список


- 1. Яковлев С.В., Волков Л.С., Воронов Ю.В. Обработка и утилизация осадков производственных сточных вод. М.: Химия, 1999. 448 с.
- 2. Аксенов В.И. [и др.] Опыт и перспективы создания замкнутых систем водного хозяйства промышленных предприятий // Химическая техника. 2010. № 12. С. 16-19.

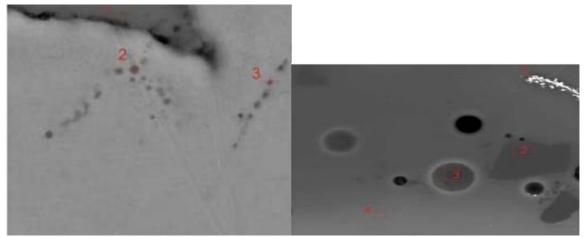
ИССЛЕДОВАНИЕ СТРУКТУРЫ ЗАЩИТНЫХ ЭНЕРГОЭФФЕКТИВНЫХ ЭМАЛЕВЫХ ПОКРЫТИЙ ТРУБОПРОВОДОВ

Ворошилова И.Г., Лазуткина О.Р. $Ур\Phi Y$, Lor5454@mail.ru

Исследование характеристик покрытия производилось на продольных образцах, вырезанных из эмалированной трубы. Для сравнения толщины и качества эмалированного покрытия с каждой трубы было изготовлено по четыре образца шлифа по кругу по точкам 1-4 на трубу. Образцы были отсняты на оптическом микроскопе.



Эмаль в точке 3 Эмаль в точке 4


Толщина эмалированного слоя составляет около 0,3 мм для данного образца. В эмали выявлены множественные поры различного диаметра. Максимальный диаметр пор составляет 150 мкм, что существенно меньше общей толщины эмалированного слоя. Следует отметить неравномерное распределение пор по периметру образца. Кроме пор, в структуре эмали просматриваются включения некой фазы угловатой формы. Энергодисперсионный анализ показал, что это включения оксида кремния, являющиеся, по-видимому, не растворившимися компонентами фритты.

На электронном микроскопе, с использованием энергодисперсионного анализатора, провели исследование внешнего вида и химического состава эмалированного слоя, а также микроструктуры металла по зонам (наружная, центральная и внутренняя поверхности). Исследование границы раздела металлэмаль выявило наличие в приповерхностных слоях следов окалины и мелких плен, не полностью удаленных при абразивной обработке поверхности металла. Их наличие может ухудшить адгезию эмали к металлу. Граница металл-эмаль вдали от перечисленных выше несовершенств имеет развитую структуру, образующуюся при взаимодействии горячей эмали со сталью и частичного растворения стали в эмали.

Энергодисперсионный анализ показал, что в состав эмали входит железо, кремний, марганец, натрий, калий, алюминий и др.

Труба с эмалевым покрытием

Внутренняя поверхность трубы

Таблица 1 Химический состав поверхности трубы после дробеструйной обработки перед эмалированием в точках 1, 2, 3

Точка	Mac. %									
№/элемент	С	O	Si	Mn	Fe					
1	10,2	24,4	0,5	1,2	64					
2	14	2,5	0,3	1,3	82					
3	14,5	2,1	0,25	1,2	82,3					

Таблица 2

Химический состав эмалированной трубы в точках 1, 2, 3

Точка	Mac. %											
№/элемент	С	О	Si	Ca	Ti	Fe	Co	Cu	Na	Al	Mn	K
1	13.0	10.0	4.2	0.5	0.5	37.0	12.0	24.0				
2	12.0	50.0	40.0									
3	16.0	39.0	21.25	3.0	4.0	8.0			5.2	1.0	2.0	1.4
4	·	42.0	24.0	3.0	2.0	18.0			8.6	1.0	1.5	0.6

Эмалированное покрытие на трубах, как видно по результатам проведенного исследования, содержит несовершенства в виде сферических пор и включений оксида кремния с острыми гранями, однако размеры отдельных несовершенств существенно меньше общей толщины эмалированного слоя, который не содержит сквозных пор и трещин и надежно защищает металл от взаимодействия с внешней средой.

ЭНЕРГОСБЕРЕЖЕНИЕ ПРИРОДНОГО ГАЗА В СИСТЕМЕ ХИМИЧЕСКОЙ РЕГЕНЕРАЦИИ

Горбунёва Е.С., Понаморев М.М., Мурзадеров А.В. Магнитогорский государственный технический университет имени Г.И.Носова ponamorevmikhail@mail.ru; murzaderov1994@mail.ru; kartavzw@mail.ru

В российской энергетике и теплотехнологиях широко применяется природный газ. Помимо общих потребностей энергосбережения, природный газ необ-

¹ Работа выполнена под руководством Картавцева С.В.