Внедрение разработки позволит достичь увеличения пропускной способности очистных аппаратов в 4 раза при повышении качества очистки газа, которое выражается в уменьшении размера частиц, улавливаемых на 50 % (диаметра отсекания), со средних для циклонов значений 5–10 мкм до 0,4 мкм. Указанное улучшение качества очистки не требует дополнительных затрат энергии, что является одним из преимуществ перед аналогами: в существующих конструкциях циклонов уменьшение диаметра отсекания на 0,1 мкм после 1 мкм требует не менее чем 15 %-го увеличения затрат энергии. В предлагаемом проекте затраты энергии, связанные с увеличением оптимальной скорости обработки потока с 2–5 м/с до 20 м/с, обеспечивают рост производительности единицы оборудования. При этом практически устраняется проблема абразивного износа корпуса.

Список литературы

- 1. Ватин Н. И., Стрелец К. И. Очистка воздуха при помощи аппаратов типа циклон. СПб. : СПбГТУ, 2003. 65 с.
- 2. Циклон-фильтр: пат. 2361678 РФ / Зиганшин М. Г., Алещенко И. С., Павлов Л. В., Зиганшин А. М., опубл. 20.07.2009. Бюл. № 20.
- 3. Hoffmann A. and Stein L. Gas Cyclones and Swirl Tubes. Berlin, Heidelberg, N. Y.: Springer-Verlag, 2002. 422 p.
- 4. Волков К. Н., Емельянов В. Н. Моделирование крупных вихрей в расчетах турбулентных течений. М.: Физматлит, 2008. 368 с.

УДК 622.7

Запарнюк М. Н., Нешпоренко Е. Г. Магнитогорский государственный технический университет mixaz@list.ru, neshporenkoeg@mail.ru

ТЕРМОДИНАМИЧЕСКОЕ ОБОСНОВАНИЕ УСЛОВИЙ ЭНЕРГОЭФФЕКТИВНОЙ ПЕРЕРАБОТКИ СИДЕРИТОВЫХ РУД

Современные предприятия черной металлургии, базирующиеся на агло-коксодоменной технологии, всё больше сталкиваются с проблемой нехватки железорудных и энергетических ресурсов. Существующие руды, альтернативные классическим железным рудам, такие как сидеритовые и титаномагнетитовые, по своим физико-химическим характеристикам не могут быть широко введены в действующее металлургическое предприятие.

В настоящее время разными научными группами ведутся активные исследования в области переработки сидеритовой руды, запасы которой, например, только в Челябинской области составляют около 1 млрд т. Руда представляет собой сложный комплекс минералов, в основной состав которого входят соединения железа и магния, как правило, в виде карбонатов.

Одним из способов обогащения сидеритовой руды является её обжиг, который реализуют в шахтных печах с применением природного газа (ПГ) при

[©] Запарнюк М. Н., Нешпоренко Е. Г., 2015

температуре 700 °C [1]. Поскольку температура горения ПГ превышает 2000 °C, сжигание ПГ ведут с большим избытком воздуха, из-за чего высокотемпературный источник тепловой энергии используется с низкой эффективностью. В процессе обжига потребляется значительное количество природного газа $-38~\text{m}^3/\text{т}$, при этом на размол и магнитную сепарацию тратится более $50~\text{кВт}\cdot\text{ч}/\text{т}$ электроэнергии. Теплота отходящих продуктов сгорания с температурой 700 °C теряется в окружающую среду, а сам процесс характеризуется низкой удельной производительностью.

Одним из способов интенсификации процесса обжига руды является обработка её при более высокой температуре [2]. Переход на температурный уровень процесса обжига в 1200 °C привел к образованию твердого соединения FeO·MgO, обладающего сильной молекулярной связью. Восстановление железа из такого соединения классическими восстановителями (кокс, природный газ и уголь) при данной температуре термодинамически невозможно, поэтому снова прибегают к химическим методам их разделения, а также ограничивают применение в доменной теплотехнологии получение чугуна из-за образования тугоплавких шлаков.

Таким образом, поставлена задача определения термодинамических температур переработки сидеритовой руды, при которых будет иметь место жид-коподвижный шлак, и созданы условия восстановления только железа. Оксид магния останется в жидкоподвижном шлаке.

Сидеритовая руда Бакальского месторождения имеет комплексный состав, включающий в себя основные компоненты: $FeCO_3$, $MgCO_3$, Fe_2O_3 , FeO_3 , MgO, MnO, SiO_2 , Al_2O_3 , S и пустую пористую породу. В таблице представлены температуры плавления наиболее распространенных в руде оксидов [3].

Температуры плавления материалов

Вещество	Температура плавления, °С
FeO	1370–1420
MnO	1785
MgO	2800

Из таблицы видно, что для полного перевода руды в расплав необходимо ее нагреть до температуры 2800 °С. Процессы, протекающие при такой температуре, относятся к низкотемпературным плазменным технологиям.

При проведении высокотемпературного процесса обжига сидеритовой руды образуются следующие компоненты: Fe-55%, FeO-30%, MgO-12%, S-0,02%, при этом температура плавления образующихся шлаков составляет около 2500 °C. Поскольку данный температурный уровень неприемлем для действующей технологии, необходимо его понизить. Добавками, снижающими основность руды, соответственно и её температуру плавления, являются CaO, SiO_2 и др.

Расчет показал, что при введении дополнительного количества CaO-100 кг на тонну руды и SiO_2-1950 кг на тонну руды образуются шлаки с температурой плавления, равной 1500 °C [4], что технически приемлемо для веде-

ния процесса. С помощью термодинамической диаграммы [3] зависимости изобарного потенциала образования оксидов от температуры, определена температура 2270 °C, при которой начинается восстановление магния из расплава, что в данных условиях не желательно.

Таким образом, диапазон рабочих температур для термодинамически идеального процесса восстановления железа из расплава сидеритовой руды составляет 1500–2270 °C. Если рабочая температура опустится ниже этого диапазона, то образующиеся при восстановлении шлаки станут более вязкими, начнется процесс кристаллизации. При повышении температуры обрабатываемого материала выше верхнего предела в рабочей зоне создадутся условия, при которых интенсифицируется процесс восстановления магния.

Процесс переработки сидеритовой руды требует значительного количества тепловой энергии, поэтому разработка энергоэффективной тепловой схемы процесса является дальнейшей актуальной задачей.

Список литературы

- 1. Комплексная переработка сидеритовых руд с высоким содержанием оксида магния : сб. материалов VIII конгресса обогатителей стран СНГ / Бессмертных А. С., Бигеев В. А., Клочковский С. П., Смирнов А. Н. М. : МИСиС, 2011. Т. 1. С. 70–72.
- 2. Физико-химические свойства окислов: справочник / Самсонов Г. В., Борисова А. Л. [и др.]. М. : Металлургия, 1978. 472 с.
- 3. Вегман Е. Ф. Краткий справочник доменщика. М.: Металлургия, 1981. 240 с.
- 4. Атлас шлаков : справ. изд. / пер. с нем. Γ . И. Жмойдина / под ред. И. С. Куликова. М. : Металлургия, 1985. 208 с.

УДК 621.311.22

Захаров Р. В., Калмыкова Е. А., Картавцев С. В. Магнитогорский государственный технический университет им. Г.И. Носова zaharovrom@gmail.com

ЧИСТАЯ УГОЛЬНАЯ ТЭЦ С ПРИМЕНЕНИЕМ ТЕХНОЛОГИИ АЭРОШЛАКОВОГО РАСПЛАВА

Технология сжигания угля, применяемая на современных промышленных предприятиях, а именно пылеугольное сжигание угля и сжигание угля в кипящем слое, обладает рядом недостатков. К главным недостаткам относятся золошлакоотвалы и унос золы в атмосферу.

В золошлаковых отвалах содержатся такие вещества как SiO_2 , Al_2O_3 , CaO (основные компоненты при производстве цемента) и многое другое. Периодически возникают проекты по переработки отвальных материалов. Для получения полезных и нужных материалов, вроде цемента, железа и прочих компонентов, затрачивается топливо для достижения температурного уровня нужных параметров. А существует ли способ получения строительных материалов и минимизации выбросов золы, минуя золошлакоотвалы?

_

[©] Захаров Р. В., Калмыкова Е. А., Картавцев С. В., 2015