Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

На правах рукописи

Торопова Любовь Валерьевна

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УСТОЙЧИВОЙ МОДЫ ДЕНДРИТНОГО РОСТА ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ КРИСТАЛЛИЗАЦИИ

Специальность 01.04.14— Теплофизика и теоретическая теплотехника

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена на кафедре теоретической и математической физики Института естественных наук и математики ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина».

Научный руководитель:	доктор физизико-математических наук, про- фессор Александров Дмитрий Валерьевич
Официальные оппоненты:	Кисеев Валерий Михайлович, доктор технических наук, профессор, ФГАОУ ВО «Уральский федеральный уни- верситет имени первого Президента России Б.Н. Ельцина», профессор кафедры физики конденсированно- го состояния и наноразмерных систем;
	Попель Петр Станиславович, доктор физико-математических наук, профес- сор, ФГБОУ ВО «Уральский государственный пе- дагогический университет», г. Екатеринбург, профессор кафедры физики, технологии и ме- тодики обучения физике и технологии;
	Анкудинов Владимир Евгеньевич, кандидат физико-математических наук, ФГБУН Институт физики высоких давлений им. Л. Ф. Верещагина Российской академии наук, г. Москва, научный сотрудник Теоретического отдела.

Защита состоится 23 октября 2020 г. в 17.00 часов на заседании диссертационного совета УрФУ 01.03.15 по адресу: 620002, г. Екатеринбург, ул. Мира 19, ауд. И-420 (Зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», https://dissovet2.urfu.ru/mod/data/view.php?d=12rid=1259.

Автореферат разослан сентября 2020 года.

Ученый секретарь з ченыи секретарь диссертационного совета *Дифи* Ищенко Алексей Владимирович

Общая характеристика работы

Актуальность темы. Рост дендритов из переохлажденной или пересыщенной среды является одним из часто встречающихся типов фазовых превращений, протекающих в различных областях науки: от физики конденсированного состояния и материаловедения до процессов получения различных соединений в химической промышленности. Это обуславливает практическую важность изучения различных механизмов роста дендритных кристаллов в пересыщенных растворах и переохлаждённых расплавах. При этом, наиболее важными процессами, играющими ключевую роль при затвердевании, являются гидродинамические течения расплава в окрестности растущих дендритных структур, нелинейный перенос тепла (и/или растворённой примеси) и атомная кинетика на межфазной границе. Эти процессы полностью определяют устанавливающуюся скорость роста V, а также соответствующий ей диаметр ρ вершин дендритов. Для нахождения величин V и ρ в зависимости от переохлаждения расплава ΔT , а также от теплофизических параметров затвердевающего материала, была развита задача об устойчивом режиме роста дендритного кристалла, возникшая из анализа Иванцовских решений и экспериментальных данных по росту иглообразного кристалла параболической формы. Впоследствии анализ этого решения привёл к заключению, что непрерывное семейство изотропных решений Иванцова является неустойчивым: параболическая форма иглообразного кристалла нестабильна в стационарном режиме его роста. Далее было установлено, что стабилизирующее действие на параболоидальную форму дендрита оказывает кристаллическая анизотропия физических свойств подвижной границы раздела кристалл-жидкость. Поэтому решение Иванцова было использовано в качестве нулевого приближения для поиска решения устойчивого роста в первом приближениии, в котором роль малого параметра играет величина анизотропии поверхностного натяжения или анизотропии кинетики роста.

Степень разработанности темы исследования. После нахождения критерия устойчивой кристаллизации вершины дендрита в однокомпонентной неподвижной среде, задача была расширена на случаи конвективного движения среды и дендритного роста в бинарной (химически двух-компонентной) системе без конвекции. Во многих реальных ситуациях, однако, необходимо проводить сравнительный анализ роста дендритов в бинарной системе с учетом конвективного течения. К этому нужно добавить, что при неизотермическом затвердевании бинарных (химически двухкомпонентных) расплавов появляется, как правило, различие в химическом составе формирующейся твердой фазы с образованием неоднородных твердых растворов, разупорядоченных кристаллических структур и кристаллической разнозернистости. Это, очевидно, обуславливает существенное различие в физических, механических, электрических и химических свойствах получаемого образца или материала. Настоящая работа посвящена комплексному исследованию задачи об отборе устойчивой моды дендритного роста при различных кристаллических симметриях в условиях вынужденной конвекции.

Целью настоящей работы является математическое моделирование устойчивого дендритного роста при различных кристаллических симметриях и реализации конвективного механизма тепло- и массопереноса вблизи поверхности растущего дендрита. Постановка задачи сделана для модели Стефана, включающей анизотропию поверхностной энергии на параболической (и параболоидальной) границе раздела кристалл-жидкость. Задача для вынужденного течения решается в приближении Осеена вследствие малости числа Рейнольдса. В рамках такой обобщенной модели анализ устойчивого режима приводит к критерию роста вершины дендритного кристалла в бинарной системе с учетом конвекции. Это позволяет прогнозировать данные по кинетике роста кристаллов в сопоставлении с данными, полученными методом фазового поля, и экспериментальными измерениями скорости роста и морфологических особенностей кристаллов, зависящих от интенсивности конвективного течения.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- Сформулировать модель и решить систему уравнений устойчивого роста дендритного кристалла в условиях вынужденной конвекции в бинарной системе. Найти распределения температуры, концентрации примеси, а также компонент скорости конвективного течения расплава.
- 2. Провести обобщенный линейный анализ морфологической устойчивости роста вершины дендрита. Вывести уравнения и граничные условия для возмущений относительно найденных стационарных решений. Определить нелинейное дисперсионное соотношение (зависимость частоты возмущений от волнового числа) и уравнение кривой нейтральной устойчивости процесса.
- 3. Вывести новые критерии отбора устойчивой кристаллизации для термического и термо-химического устойчивого роста параболического дендрита с симметрией n-ого порядка.
- 4. Сопоставить модельные предсказания с данными, полученными численным моделированием, а также экспериментальными данными по кинетике роста кристаллов в каплях, обрабатываемых в установках электромагнитной и электростатической левитации.

Научная новизна:

1. Впервые построены теоретические решения, описывающие устойчивый рост параболического (параболоидального) термо-концентрационного дендрита с симметрией n-ого порядка.

- На основе теории микроскопической разрешимости найдены новые критерии отбора для термического и термо-химического устойчивого роста дендритного кристалла при различных симметриях кристаллической решетки, а также при наличии набегающего на дендрит потока и конвекции.
- 3. На основе развитой теории описаны экспериментальные данные по кинетике роста дендритных кристаллов в бинарных системах.

Практическая значимость. Полученные в рамках исследования результаты обусловлены практической необходимостью и значимостью как для литейной и металлургической промышленности Российской Федерации, традиционно заинтересованной в развитии наукоемких технологий, так и для получения материалов со специальными свойствами в условиях невесомости. **Теоретическая значимость** исследования обусловлена тем, что математическое моделирование кристаллизации позволяет существенным образом оптимизировать изучаемые процессы, управлять ими и получать материалы с заданными расчетными характеристиками.

<u>Методология и методы исследования.</u> В работе используются методы математического моделирования дендритного роста на основе уравнений тепло- и массопереноса с подвижными границами, а также теории линейной устойчивости и микроскопической разрешимости.

Основные положения, выносимые на защиту:

- 1. Решение модели устойчивого роста дендритного кристалла в условиях вынужденной конвекции описывает распределения температуры, концентрации примеси, компоненты скорости конвективного течения расплава двумерного и трехмерного параболического (параболоидального) дендрита с учетом анизотропии поверхностного натяжения на границе кристалл-жидкость.
- Линейный анализ морфологической устойчивости роста вершины дендрита определяет маргинальную моду (пограничный режим между устойчивостью и нестабильностью) волнового числа для устойчивого роста дендритного кристалла.
- Критерии отбора и баланс переохлаждений для термического и термо-химического устойчивого роста параболического дендрита с произвольной симметрией определяют зависимости нелинейного закона роста скорости и убывания радиуса вершины анизотропного дендрита от переохлаждения.
- 4. Результаты математического моделирования описывают данные, полученные численными методами, а также экспериментальные данные по кинетике роста кристаллов, как для скорости роста, так и для радиуса вершины дендрита в зависимости от переохлаждения.

Достоверность полученных результатов обеспечивается сравнением теоретически рассчитанных параметров с результатами численного моделирования и экспериментальными данными. Подходы, используемые в работе, широко применимы, неоднократно обсуждались на конференциях с ведущими специалистами и не противоречат современным общепринятым представлениям. Выводы, сделанные в диссертации, логически следуют из теоретически построенной модели, ее анализа и сравнения с экспериментальными данными и не противоречат современным научным представлениям.

Апробация работы. Основные результаты работы докладывались и обсуждались на следующих российских и международных конференциях: XVII всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (г. Екатеринбург, Институт физики металлов УрО РАН, 2016); Структурно-фазовые превращения в материалах: теория, компьютерное моделирование, эксперимент (г. Екатеринбург, Уральский федеральный университет, 2017); V Международная молодежная научная конференция "Физика. Технологии. Инновации ФТИ-2018" (Екатеринбург, Уральский федеральный университет, 2018); Шестая европейская конференция по росту кристаллов (Болгария, Институт физической химии «Ростислав Кейшев», 2018); Национальный Суперкомпьютерный Форум НСКФ-2018 (г. Переславль-Залесский, Институт программных систем имени А.К. Айламазяна РАН, 2018); Международная конференция «Кристаллизация: компьютерные модели, эксперимент, технологии» (г. Ижевск, Удмуртский государственный университет, 2019); VI Международная молодежная научная конференция Физика. Технологии. Инновации ФТИ-2019 (г. Екатеринбург, Уральский федеральный университет, 2019); Всероссийский форум "Математическое моделирование в естественных науках"(г. Пермь. Пермский национальный исследовательский политехнический университет и Институт механики сплошных сред УрО РАН, 2019).

Дичный вклад. Диссертация автора является самостоятельной работой, обобщающей результаты, полученные лично автором, а также в соавторстве. Автор диссертации принимал личное участие в постановке модели дендритного роста, в проведении анализа устойчивости в линейном приближении и определении критериев устойчивого дендритного роста. Автором совместно с научным руководителем и коллективом проведен качественный анализ полученных теоретических результатов в сравнении с экспериментальными данными, а также данными, полученными методами численного моделирования. Обсуждение результатов для опубликования проводилось совместно с соавторами.

Работа и часть научных публикаций выполнена при поддержке гранта по выполнению гос. задания № 1.12804.2018/12.2 от 03.05.2018 и научноисследовательского гранта в рамках программы «Михаил Ломоносов» (2018-19 гг.) на тему «Исследование и экспериментальная верификация устойчивой моды дендритного роста при различных кристаллических симметриях и реализации конвективного механизма тепло- и массопереноса», в котором соискатель являлась руководителем. Также соискатель благодарит за поддержку Министерство науки и высшего образования Российской Федерации (Уральский математический центр, проект № 075-02-2020-1537/1).

Автор выражает **благодарность** научному руководителю, профессору Уральского федерального университета Александрову Д.В., а также профессору Галенко П.К., сотруднику Йенского университета им. Фридриха Шиллера (Германия) и Уральского федерального университета, за помощь в обсуждениях, совместные публикации и плодотворную работу.

Публикации. Основные результаты по теме диссертации изложены в 11 печатных работах, определенных ВАК и Аттестационным советом УрФУ, 10 из которых входят в базы данных Web of Science и Scopus. По результатам работы получены 4 свидетельства о государственной регистрации программ для ЭВМ.

Объем и структура работы. Диссертация состоит из введения, трёх глав и заключения. Полный объем диссертации 110 страниц текста с 32 рисунками и 6 таблицами. Список литературы содержит 169 наименований.

Содержание работы

Во **введении** обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, излагается научная новизна и практическая значимость представляемой работы.

Первая глава посвящена обзору современных исследований дендритного роста. В главе дано описание научных исследований, которые представляют новые методы создания эффективных теоретических и вычислительных моделей, являющихся инновационными с точки зрения их эффективной применимости на атомном, мезоскопическом и макроскопическом уровнях для широкого спектра материалов. Далее приведен обзор различных методов теоретического анализа и компьютерного моделирования, направленных на изучение динамики дендритного роста и процессов кристаллизации: модель кристаллического фазового поля, методы граничного интеграла и клеточных автоматов, теории устойчивости и микроскопической разрешимости.

Одним из центральных методов, описанных в главе, является метод электромагнитной левитации (ЭМЛ), представленный как техника безконтейнерного плавления и кристаллизиции металлических и полупроводниковых образцов. Метод ЭМЛ используется для переохлаждения

капель диаметром несколько миллиметров существенно ниже температуры плавления и позволяет определить как морфологию, так и динамику быстро распространяющейся границы раздела кристалл-жидкость в переохлажденном расплаве.

В конце главы рассмотрено влияние конвекции на кинетику и морфологию дендритного роста. Экспериментальные методы и простейшие оценочные расчеты, а также моделирование по методу фазового поля показывают значительное влияние конвективных потоков расплава на формирование дендритной структуры, растущей в переохлажденном потоке жидкости. Показано, что конвекция приводит к существенному изменению локальных градиентов температуры и концентрации примеси и оказывает воздействие на процессы фазового отбора, измельчение зерна и в целом на кристаллическое структурообразование.

Вторая глава посвящена математическому моделированию устойчивой моды дендритного роста при различных условиях кристаллизации.

Процесс роста кристалла описывается нелинейной термодиффузионной задачей типа задачи Стефана с подвижной свободной границей фазового перехода. Температура T_{int} межфазной границы кристалл-жидкость определяется скрытой теплотой Q, выделяемой на единицу объема твердого тела, удельной теплотой c_p , локальной кривизной фронта \mathcal{K} , анизотропной капиллярной длиной $d(\theta,\phi)$, температурой плавления T_m чистого вещества и интенсивностью атомной кинетики, задаваемой анизотропным кинетическим коэффициентом роста $\tilde{\beta}(\theta,\phi)$ и сферическими углами θ и ϕ между направлением роста и направлениями минимальных функций $d(\theta,\phi)$ и $\tilde{\beta}(\theta,\phi)$. В этом случае температурное поле на границе фазового перехода (на поверхности дендрита) непрерывно и удовлетворяет соотношению Гиббса-Томсона

$$T_{int} = T_l = T_s = T_m - mC_l - T_Q d(\theta, \phi) \mathcal{K} - \tilde{\beta}(\theta, \phi) v_n, \tag{1}$$

где $T_Q = Q/c_p$ - температура адиабатического затвердевания, $v_n = (\mathbf{v} \cdot \mathbf{n})$ - нормальная скорость роста, \mathbf{n} - единичная нормаль к поверхности, m - наклон линии ликвидуса, C_l - концентрация примеси в жидкой фазе, T_l и T_s - температуры жидкой и твердой фаз соответственно.

Кривизна фронта определяется следующими выражениями

$$\mathcal{K} = \begin{cases} 1/R, & \text{двумерное пространство} & (2D), \\ \\ (R_1 + R_2)/(R_1 R_2), & \text{трехмерное пространство} & (3D), \end{cases}$$
(2)

где *R* - радиус вершины дендрита в двумерном случае, а *R*₁ и *R*₂ являются основными радиусами кривизны для трехмерной вершины дендрита.

В случае кубической симметрии роста кристалла капиллярная длина $d(\theta,\phi)$ и коэффициент анизотропного роста $\tilde{\beta}(\theta,\phi)$ определяются следующими уравнениями

$$d(\theta,\phi) = d_0 \left\{ 1 - \alpha_d \left[\cos^4 \theta + \sin^4 \theta \left(1 - 2\sin^2 \phi \cos^2 \phi \right) \right] \right\},\tag{3}$$

$$\tilde{\beta}(\theta,\phi) = \beta_0 \left\{ 1 - \alpha_\beta \left[\cos^4 \theta + \sin^4 \theta \left(1 - 2\sin^2 \phi \cos^2 \phi \right) \right] \right\},\tag{4}$$

где d_0 - капилярная константа, β_0 - константа кинетического коэффициента роста, $\alpha_\beta \ll 1$ - кинетический параметр анизотропии, $\alpha_d \ll 1$ параметр, определяющий прочность (жесткость), которая зависит от малого параметра анизотропии поверхностной энергии ε_c .

Рис. 1 — Схема растущего дендритного кристалла во встречном потоке жидкости.

Рассматривается рост дендрита параболлической формы вдоль пространственной оси z в условиях набегающего конвективного потока жидкости (см. рис. 1). На поверхности дендрита условия баланса тепла и массы записываются как:

$$T_Q\left(\mathbf{v}\cdot\mathbf{n}\right) = D_T\left(\nabla T_s - \nabla T_l\right)\cdot\mathbf{n},\tag{5}$$

$$(1 - k_0)C_l\left(\mathbf{v}\cdot\mathbf{n}\right) + D_C\nabla C_l\cdot\mathbf{n} = 0,$$
(6)

где k_0 представляет собой равновесный коэффициент распределения примеси, D_T и D_C - коэффициенты температуропроводности и диффузии соответственно.

Конвективные уравнения тепло- и массопереноса в жидкой и твердой фазах принимают вид

$$\frac{\partial T_l}{\partial t} + (\mathbf{w} \cdot \nabla) T_l = D_T \nabla^2 T_l, \quad \frac{\partial T_s}{\partial t} = D_T \nabla^2 T_s, \tag{7}$$

$$\frac{\partial C_l}{\partial t} + (\mathbf{w} \cdot \nabla) C_l = D_C \nabla^2 C_l, \tag{8}$$

где w - скорость потока.

Для описания гидродинамического потока используется модель для вязкой жидкости в прибижении Осеена ¹, а также уравнение непрерывности

$$U\frac{\partial \mathbf{w}}{\partial z} = -\frac{1}{\rho_l}\nabla p + \nu\nabla^2 \mathbf{w}, \quad \nabla \cdot \mathbf{w} = 0.$$
(9)

Здесь U - скорость потока вдали от вершины дендрита (см. рис. 1), p - давление, ρ_l - плотность жидкости и ν - кинематическая вязкость.

Далее записывается решение Иванцова для устойчивого роста двумерного и трехмерного дендрита в набегающем конвективном потоке. Вводятся параболические координаты ξ , η (и φ в трехмерном пространстве), связанные с декартовыми (параболоидальными) координатами x, yи z соотношениями

$$x = \rho \sqrt{\xi \eta}, \quad z = \frac{\rho}{2} (\eta - \xi), \quad (2D),$$

$$x = \rho \sqrt{\xi \eta} \cos \varphi, \quad y = \rho \sqrt{\xi \eta} \sin \varphi, \quad z = \frac{\rho(\eta - \xi)}{2}, \quad (3D),$$
(10)

где $\rho/2$ - радиус вершины дендрита, φ - полярный угол, лежащий в плоскости перпендикулярной набегающему потоку, а межфазная граница находится на уровне $\eta = 1$.

Гидродинамическое уравнение в приближении Осеена и уравнение непрерывности (9) позволяют определить компоненты скорости жидкости u_{η} , u_{ξ} (и u_{φ} для трехмерного случая) в параболических (параболоидальных) координатах. Учитывая граничные условия прилипания жидкости на поверхности дендрита и заданную скорость набегающего потока, результат записывается в виде

$$u_{\eta} = -\frac{f_{2D}}{2\sqrt{\xi + \eta}}, \quad u_{\xi} = \frac{\sqrt{\xi\eta}}{\sqrt{\xi + \eta}} \frac{df_{2D}}{d\eta}, \quad (2D),$$

$$u_{\eta} = -\frac{f_{3D}}{\sqrt{\xi + \eta}}, \quad u_{\xi} = \sqrt{\frac{\xi}{\xi + \eta}} \frac{d}{d\eta} \left(\sqrt{\eta} f_{3D}(\eta)\right), \quad u_{\varphi} = 0, \quad (3D),$$
(11)

где введены следующие функции

$$f_{2D}(\eta) = 2(U+V)\sqrt{\eta} - 2Ug_{2D}(\eta), \quad f_{3D}(\eta) = (U+V)\sqrt{\eta} - 2Ug_{3D}(\eta),$$

¹Bouissou Ph., Pelcé P., Phys. Rev. A (1989) 40, p. 6673

$$g(\eta) = \begin{cases} g_{2D}(\eta) = \sqrt{\eta} \frac{\operatorname{erfc}\sqrt{\eta \Re/2}}{\operatorname{erfc}\sqrt{\Re/2}} \\ + \frac{\sqrt{2/(\pi \Re)}}{\operatorname{erfc}\sqrt{\Re/2}} \left[\exp\left(-\frac{\Re}{2}\right) - \exp\left(-\frac{\eta \Re}{2}\right) \right], \quad (2D), \\ g_{3D}(\eta) = \frac{\sqrt{\eta} \operatorname{E}_{1}(\eta \Re/2)}{2\operatorname{E}_{1}(\Re/2)} + \frac{\exp(-\Re/2) - \exp(-\eta \Re/2)}{\sqrt{\eta} \Re \operatorname{E}_{1}(\Re/2)}, \quad (3D), \end{cases}$$
(12)

которые учитывают интенсивность течения в зависимости от величины числа Рейнольдса $\Re = \rho U / \nu$.

Уравнения тепло- (7) и массопереноса (8) могут быть проинтегрированы в соответствии с граничными условиями в параболических (параболоидальных) координатах (10). При этом распределение температуры и концентрации примеси для двумерного и трехмерного случаев определяются как

$$T_{l}(\eta) = T_{i} + (T_{\infty} - T_{i}) \frac{I_{T}(\eta)}{I_{T}(\infty)}, \quad C_{l}(\eta) = C_{i} + (C_{l\infty} - C_{i}) \frac{I_{C}(\eta)}{I_{C}(\infty)}, \quad (13)$$

где

$$I_{T}(\eta) = \int_{1}^{\eta} \exp\left[(j-1)P_{f}\int_{1}^{\eta'} \frac{g(\eta'')}{\sqrt{\eta''}}d\eta'' - P_{0}\eta'\right] \frac{d\eta'}{\eta'^{(j-1)/2}},$$

$$I_{C}(\eta) = \int_{1}^{\eta} \exp\left[(j-1)P_{f}\frac{D_{T}}{D_{C}}\int_{1}^{\eta'} \frac{g(\eta'')}{\sqrt{\eta''}}d\eta'' - P_{0}\frac{D_{T}}{D_{C}}\eta'\right] \frac{d\eta'}{\eta'^{(j-1)/2}},$$

$$T_{i} = T_{\infty} + T_{Q}P_{g}\exp(P_{0})I_{T}(\infty), \quad P_{0} = P_{g} + P_{f},$$

$$C_{i} = \frac{C_{l\infty}}{1 - (1 - k_{0})\exp(P_{0}D_{T}/D_{C})P_{g}I_{C}(\infty)D_{T}/D_{C}}, \quad E_{1}(q) = \int_{q}^{\infty} \frac{\exp(-u)}{u}du.$$
(14)

 T_∞ и $C_{l\infty}$ - температура и концентрация в жидкости вдали от границы раздела фаз, $P_g=\rho V/(2D_T)$ и $P_f=\rho U/(2D_T)$ - ростовое и потоковое числа Пекле, j=2 и j=3обозначают двух- и трехмерную геометрию соответственно.

Далее для нахождения критерия устойчивого дендритного роста используется условие микроскопической разрешимости вида 2

$$\int_{-\infty}^{\infty} G[X_0(l)] Y_m(l) dl = 0, \quad Y_m(l) = \exp\left[i \int_{0}^{l} k_m(l_1) dl_1\right],$$
(15)

 $^2\mathrm{Pelc\acute{e}}$ P., Bensimon D., Nucl. Phys. B (1987) 2, p. 259 которое находится как приближенное решение осесимметричной задачи при линеаризации условий тепло- и массопереноса на поверхности параболического дендрита Иванцова. Это условие позволяет отобрать устойчивый режим роста кристалла через скорость V и радиус $\rho/2$ вершины анизотропного дендрита (то есть при наложенной симметрии кристаллической решетки, учитывающей анизотропию преимущественного направления роста кристалла).

Для решения уравнения (15) необходимо провести анализ линейной устойчивости. Анализ устойчивости в линейном приближении позволяет определить реакцию поверхности дендрита вблизи его вершины по отношению к малому возмущению. Нахождение областей устойчивости, нестабильности и маргинального (пограничного) состояния в функции волнового числа возмущения является основной задачей анализа. Маргинальная мода (пограничный режим между устойчивостью и нестабильностью) находится по критическому значению волнового числа k_m .

Стационарные компоненты скорости (11) раскладываются в ряды по переменной $\eta - 1$ в окрестности параболы, задаваемой уравнением $\eta = 1$. Учитывая только основные вклады, получим

$$u_{\eta} = -\frac{V}{\sqrt{1+\xi}}, \quad u_{\xi} = \sqrt{\frac{\xi}{1+\xi}} \left[V + Ua(\Re)(\eta - 1) \right],$$
 (16)

где

$$a(\Re) = \begin{cases} \sqrt{\frac{\Re}{2\pi}} \frac{\exp(-\Re/2)}{\exp(c\sqrt{\Re/2})}, \quad (2D), \\ \frac{\exp(-\Re/2)}{E_1(\Re/2)}, \quad (3D). \end{cases}$$
(17)

Из выражений (16) и (17) следует, что только касательная составляющая скорости u_{ξ} зависит от скорости набегающего потока жидкости в окрестности растущей параболической вершины дендрита.

Далее вводятся новые локальные декартовые координаты x_c и y_c , связанные с кристаллом, которые соответственно обозначают тангенциальную и нормальную оси к межфазной поверхности в точке, где нормаль к поверхности образует с осью роста угол θ . Эти координаты позволяют представить компоненты скорости и градиент температуры через θ и y_c в виде

$$\bar{u} = -V\sin\theta - \frac{aU}{\rho}\sin\theta\cos\theta y_c, \quad \bar{v} = -V\cos\theta, \quad \frac{d\bar{T}_l}{dy_c} = -\frac{T_QV}{D_T}\cos\theta. \quad (18)$$

Обозначим через u', v' и T' возмущения соответствующих величин, а через ξ' - возмущение стационарной межфазной поверхности с длиной

волны λ , которая много меньше, чем радиус $\rho/2$ вершины дендрита. Это условие позволяет пренебречь конвективным членом в уравнениях Осеена (9) и перейти к следующим гидродинамическим уравнениям для возмущений

$$\nabla p' = \nu \rho_1 \nabla^2 \mathbf{w}', \quad \nabla \cdot \mathbf{w}' = 0, \tag{19}$$

где p'и \mathbf{w}' являются возмущениями давления и скорости жидкости соответственно.

Учитывая, что стационарное распределение температуры не зависит от x_c , температурные возмущения в жидкой и твердой фазах, следующие из уравнений (7), записываются в виде

$$\frac{\partial T'_{l,s}}{\partial t} + \bar{u}\frac{\partial T'_{l,s}}{\partial x_c} + \bar{v}\frac{\partial T'_{l,s}}{\partial y_c} + v'\frac{d\bar{T}_{l,s}}{dy_c} = D_T \nabla^2 T'_{l,s}.$$
(20)

На границе твердой и жидкой фаз, где $y_c = 0$, получим следующие выражения для возмущений

$$T'_{s} = -T'_{l} + \frac{T_{Q}V}{D_{T}}\cos\theta\xi' = T_{Q}d(\theta)\frac{\partial^{2}\xi'}{\partial y_{c}^{2}} - \tilde{\beta}(\theta)\frac{\partial\xi'}{\partial t},$$

$$u' = 0, \quad v' = -\frac{\partial\xi'}{\partial t},$$

$$\frac{T_{Q}}{D_{T}}\frac{\partial\xi'}{\partial t} = \frac{\partial T'_{s}}{\partial y_{c}} - \frac{\partial T'_{l}}{\partial y_{c}} - \frac{T_{Q}V^{2}\cos^{2}\theta}{D_{T}^{2}}\xi'.$$
(21)

Из уравнений (19) следует, что возмущения компонент давления и скорости могут быть выражены как

$$p' = 2\nu\rho_1 A \exp\left(\omega t + ikx_c - \epsilon ky_c\right),$$

$$u' = (B - i\epsilon Ay_c) \exp\left(\omega t + ikx_c - \epsilon ky_c\right),$$

$$v' = [A(y_c + \epsilon/k) + iB\epsilon] \exp\left(\omega t + ikx_c - \epsilon ky_c\right),$$
(22)

где параметры A и B обозначают амплитуды возмущений, ω и k представляют инкремент (частоту) и волновое число возмущений, i является мнимой единицей и параметр ϵ имеет тот же знак, что и вещественная часть k, поскольку возмущения не могут неограниченно возрастать при условии $y_c \to \infty$.

Подстановка возмущений (22) в граничные условия (21) позволяет определить параметры A и B как

$$A = -C \left(\omega K\epsilon + iakU\sin\theta\cos\theta/\rho\right), \quad B = CaU\sin\theta\cos\theta/\rho. \tag{23}$$

Здесь параметр C представляет амплитуду возмущений поверхности дендрита $\xi' = C \exp(\omega t + ikx_c - \epsilon ky_c).$

Подстановка возмущений $T'_{s,l} = \tilde{T}_{s,l} \exp(\omega t + ikx_c - \epsilon ky_c)$, где $\tilde{T}_{s,l}$ -амплитуды температуры в твердой и жидкой фазах, в уравнения (20) и граничные условия (21) позволяет определить дисперсионный закон $\omega(k)$. Выполнение этого закона на кривой нейтральной устойчивости при $\omega = 0$ приводит к маргинальной моде волнового числа k_m , которая определяется следующим кубическим уравнением

$$k_m^3 = \frac{V \exp(i\theta)}{2d(\theta)D_T} k_m + \frac{iaU\sin\theta\cos\theta}{8\rho D_T} k_m - \frac{iV\sin\theta}{2D_T} k_m^2 + \frac{V^2\cos\theta\exp(i\theta)}{4d(\theta)D_T^2} + \frac{iV\tilde{\beta}(\theta)\sin\theta}{d(\theta)T_Q} k_m^2.$$
(24)

Далее, подставляя значение волнового числа k_m (24) в условие микроскопической разрешимости (15), приходим к единому критерию отбора, определяющему комбинацию между скоростью V и диаметром вершины ρ для дендритного роста в двухкомпонентном расплаве под влиянием конвекции и учитывающему анизотропию кинетики роста и поверхностной энергии в виде

$$\sigma^{*} = \frac{2d_{0}D_{T}}{\rho^{2}V} = \frac{\sigma_{0}\alpha_{d}^{7/n}A_{n}^{7/n}}{1+b\bar{\tau}_{n}^{\upsilon_{n}}} \left\{ \frac{1}{\left[1+a_{1}\alpha_{d}^{2/n}A_{n}^{2/n}P_{g}\left(1+\delta_{0}D_{T}\beta_{0}/d_{0}\right)\right]^{2}} + \frac{2mC_{i}(1-k_{0})D_{T}}{\left[1+a_{2}\alpha_{d}^{2/n}A_{n}^{2/n}P_{C}\left(1+\delta_{0}D_{C}\beta_{0}/d_{0CD}\right)\right]^{2}T_{Q}D_{C}} \right\},$$
(25)

где

$$\bar{\tau}_n = \alpha_d^{-3/n} A_n^{-3/n} \left(\frac{aUd_0}{4\rho VP} + \frac{aUd_0D_T}{2\rho VPD_C} \right), \quad P = 1 + \frac{2mC_i(1-k_0)D_T}{T_QD_C}.$$

Термо-химический критерий разрешимости (25), рассчитанный для симметрии кристалла *n*-ого порядка, определяет первое соотношение между скоростью роста V вершины дендрита и ее диаметром ρ как $\sigma^* = 2d_0D_T/(\rho^2 V)$. Это выражение является результатом решений, лежащих в окрестности стационарных решений Иванцова, которые определяют температуру и концентрацию на поверхности двух- или трехмерного дендрита.

Второе соотношение для V и ρ может быть найдено из баланса переохлаждения, который определяется движущей силой роста кристаллов. Общее переохлаждение $\Delta T=T_m-T_\infty$, где T_m - температура плавления вещества и T_∞ - температура вдали от вершины дендрита, представляет собой суммарный баланс переохлаждения на вершине дендрита в виде

$$\Delta T = \Delta T_T + \Delta T_C + \Delta T_R + \Delta T_K.$$
⁽²⁶⁾

Здесь вклады ΔT_T и ΔT_C определяют термическое и концентрационное переохлаждения соответственно, вклад $\Delta T_R = 2d_0T_Q/R$ в двумерном и $\Delta T_R = 2d_0T_Q(R_1 + R_2)/(R_1R_2)$ в трехмерном пространтсве - это переохлаждение, возникающее на вершине дендрита из-за искривления межфазной границы (эффект Гиббса-Томсона) и вклад $\Delta T_K = V/\mu_k$ определяет интенсивность атомной кинетики вследствие кинетического переохлаждения (μ_k - кинетический коэффициент, характеризующий механизм присоединения атомов к границе раздела фаз). Полный баланс переохлаждения (26) связывает температуру T_i на поверхности и температуру T_∞ вдали от вершины дендрита во время его стационарного роста.

Баланс переохлаждения (26) можно переписать в зависимости от числа Пекле P_q в виде

$$\Delta T = \Delta T_T(P_g) + \Delta T_C(P_g) + \frac{4d_0T_Q}{\rho(P_g)} + \frac{2D_TP_g}{\mu_k\rho(P_g)},\tag{27}$$

где

$$\Delta T_T(P_g) = T_Q \mathrm{Iv}_T^*(P_g), \quad \Delta T_C(P_g) = \frac{mC_{\infty}(1-k_0)\mathrm{Iv}_C^*(P_g)}{1-(1-k_0)\mathrm{Iv}_C^*(P_g)}$$

И

$$\operatorname{Iv}_T^*(P_g) = P_g \exp(P_g) I_T(P_g), \quad \operatorname{Iv}_C^*(P_g) = \frac{P_g D_T}{D_C} \exp\left(\frac{P_g D_T}{D_C}\right) I_C(P_g).$$

Рис. 2 — Схематическое изображение завихрения потока, вызванного интенсивным конвективным течением вблизи поверхности дендрита.

Уравнения (25)-(27) являются решениями задачи об устойчивом росте параболического дендрита в условиях вынужденной конвекции при кондуктивных граничных условиях. Однако, в некоторых случаях поле скоростей жидкости вблизи растущих дендритных кристаллов может быть настолько интенсивным (см. рис. 2), что механизм кондуктивного тепломассопереноса (5) и (6) становится неприменимым. Тогда при интенсивном перемешивании жидкости процесс вблизи межфазной границы становится процессом переноса тепла и массы конвективного типа ^{3,4}. Такие потоки могут быть вызваны, например, турбулентным перемешиванием в пограничном слое океана под ледяным покровом ^{3,4}.

При наличии существенного потока жидкости вблизи поверхности дендрита, скорость его роста зависит от конвективных (или турбулентных) потоков тепла и массы в жидкой фазе. В этом случае граничные условия (5) и (6) на поверхности дендрита заменяются на ³⁻⁵

$$\frac{T_Q}{D_T} \mathbf{v} \cdot \mathbf{n} = \nabla T_s \cdot \mathbf{n} + \frac{\alpha_h \rho_l c_l u_*}{k_s} \left(T_i - T_\infty \right), \tag{28}$$

$$(1 - k_0) C_i \mathbf{v} \cdot \mathbf{n} = \alpha_m u_* \left(C_i - C_{l\infty} \right), \qquad (29)$$

где индекс *i* обозначает температуру и концентрацию растворенного вещества на поверхности дендрита, α_h и α_m - конвективные (турбулентные) коэффициенты для тепла и массы, ρ_l и c_l - плотность и удельная теплоемкость жидкой фазы, k_s - коэффициент теплопроводности твердой фазы и u_* представляет скорость трения (проскальзывания) (см. рис. 2). Стоит отметить, что скорость трения обозначается как $u_* = \sqrt{\tau_s/\rho_l}$, где τ_s - это напряжение сдвига. Отношение коэффициентов α_h/α_m зависит от отношения коэффициентов теплопроводности D_T и диффузии примеси D_C , так что $\alpha_h/\alpha_m = (D_T/D_C)^{\overline{n}}$ при 2/3 < \overline{n} < 4/5.

Далее уравнения (7) и (8) интегрируются в параболических координатах (10). Принимая во внимание граничные условия (28) и (29), получаются следующие решения задачи в жидкой фазе для температуры и концентрации (13), где I_T , I_C , T_i и C_i определяются следующими выражениями

$$I_{T}(\eta) = \int_{1}^{\eta} \frac{\exp\left(-P_{g}\eta'\right)}{\eta'^{(j-1)/2}} d\eta', \quad I_{C}(\eta) = \int_{1}^{\eta} \frac{\exp\left(-P_{C}\eta'\right)}{\eta'^{(j-1)/2}} d\eta',$$

$$T_{i} = T_{\infty} + \frac{T_{Q}Vk_{s}}{\alpha_{h}\rho_{l}c_{l}u_{*}D_{T}}, \quad C_{i} = \frac{\alpha_{m}u_{*}C_{l\infty}}{\alpha_{m}u_{*} - (1 - k_{0})V}$$
(30)

при j = 2 и j = 3 в дву- и трехмерном случае соответственно.

Как уже отмечалось, аналитические решения, описывающие устойчивый дендритный рост, можно найти в окрестности классических решений (13) и (30) параболического дендрита Иванцова при малых параметрах анизотропии поверхностной энергии и кинетики роста. В этом случае, для нахождения маргинальной моды волнового числа k_m , рассматривается анализ линейной устойчивости в случае конвективного тепло-массопереноса

³McPhee M.G., Maykut G.A., Morison J.H., J. Geophys. Res. (1987) 92, p. 7017

 $^{^4 \}rm Notz$ D., McPhee M.G., Worster M.G., Maykut G.A.,
Schlünzen K.H., Eicken H., J. Geophys. Res. (2003) 108, p. 3223

⁵Owen P.R., Thomson W.R., J. Fluid Mech. (1963), 15, p. 321

по аналогии с тепло-массопереносом кондуктивного типа и находится следующее уравнение для маргинальной моды волнового числа $k=k_m$

$$k^{2} + \left(2b - \frac{i\beta V \sin\theta}{d} - \frac{iB \sin\theta}{dA}\right)k$$
$$-\frac{2bi\beta V \sin\theta}{d} - \frac{iV \sin\theta}{D_{T}d} - \frac{2biB \sin\theta}{dA} = 0,$$
(31)

где

$$A = 1 + \frac{(1 - k_0)V\cos\theta}{\alpha_m u_*}, \quad B = \frac{(1 - k_0)mC_iV}{\alpha_m u_*T_Q}, \quad \beta(\theta) = \frac{\hat{\beta}(\theta)}{T_Q}.$$

Далее, подставляя значение волнового числа k_m (31) в условие микроскопической разрешимости (15), приходим к единому критерию отбора вида

$$\sigma^{*}(\rho, V) = \frac{2d_{0}D_{T}}{\rho^{2}V} = \frac{\sigma_{0}\alpha_{d}^{5/n}A_{n}^{5/n}\left(1+bD_{T}\beta_{1}\right)\left(1+\mu\tilde{\tau}_{1}^{\frac{n+5}{2(n-1)}}\right)^{2}}{\left[1+\nu_{1}\left(\alpha_{d}^{3/n}A_{n}^{3/n}\rho b+\frac{3\alpha_{d}^{1/4}A_{n}^{2/n}P_{g}\beta_{1}D_{T}}{2^{1/4}d_{0}}\right)\right]^{2}} + \frac{2\sigma_{0}\alpha_{d}^{2/n}A_{n}^{2/n}D_{T}\beta_{1}}{\rho}.$$
(32)

Критерий отбора (32) определяет комбинацию между V и ρ в случае анизотропного термо-концентрационного дендритного роста с симметрией кристалла n-ого порядка при условии конвективного тепло-массопереноса в жидкости.

Выражение для полного переохлаждения $\Delta T = T_m - T_\infty$, представляющее собой второе уравнение модели (32), содержит следующие вклады

$$\Delta T_T = T_i - T_{\infty} = \frac{T_Q V k_s}{\alpha_h \rho_l c_l u_* D_T},$$

$$\Delta T_C = m(C_i - C_{l\infty}) = \frac{(1 - k_0) V m C_{l\infty}}{\alpha_m u_* - (1 - k_0) V},$$
(33)

а также $\Delta T_R = 2d_0 T_Q/R$ в двумерном или $\Delta T_R = 2d_0 T_Q(R_1 + R_2)/(R_1R_2)$ в трехмерном пространтсве и $\Delta T_K = V/\mu_k$ $(R = \rho/2)$. Выражения (33) для ΔT_T и ΔT_C являются независимыми от ρ . Принимая во внимание, что полное переохлаждение $\Delta T = T_m - T_\infty$ является постоянной величиной и объединяя выражения (26) и (33), явную функцию $\rho(V)$ можно выразить в виде

$$\rho(V) = \frac{4d_0 T_Q}{\Delta T - \Delta T_T(V) - \Delta T_C(V) - V/\mu_k}.$$
(34)

Теперь, подставляя $\rho(V)$ из (34) в (32), приходим к неявному уравнению для скорости роста дендрита V в виде

$$\frac{\rho^2(V)V}{2d_0 D_T} \sigma^* \left(\rho(V), V\right) = 1, \tag{35}$$

где $\sigma^*(\rho(V), V)$ обозначает правую часть уравнения (32) после замены $\rho(V)$ из выражения (34).

Таким образом, соотношения (34) и (35) представляют собой точное аналитическое решение в случае конвективного тепло-массопереноса, определяющего устойчивый рост дендритного кристалла.

Третья глава посвящена сравнению развитой теории устойчивого дендритного роста с методами численного моделирования и экспериментом.

Рис. 3 — Сравнение теоретической модели (ShIM) и моделирования методом фазового поля (PFM) для скорости роста V и радиуса вершины дендрита ρ/2 как функции переохлаждения ΔT при симметрии 6-ого порядка кристаллической решетки.

Во-первых, был рассмотрен теоретический анализ дендритного роста в сравнении с моделированием кристаллов льда по методу фазового поля (PFM) (см. рис. 3). Исследование проводилось на суперкомпьютере Myria of Normandy в университете г. Руан во Франции. Это устройство позволяет выполнять массивные параллельные вычисления, которые обеспечивают необходимую вычислительную мощность с помощью памяти и распределения вычислений между ядрами. При таких расчётах ^{6,7} моделирование ледяных дендритов проводится с использованием стандартной компьютерной программы для распараллеливания вычислительных

⁶Demange G., Zapolsky H., Patte R., Brunel M., Comp. Mat. (2017), 3, p. 5

⁷Demange G., Zapolsky H., Patte R., Brunel M., Phys. Rev. E (2017) 96, p. 022803

алгоритмов уравнений, записанных с помощью преобразований Фурье линейных вкладов, а затем сравнивается с теоретической моделью с резкой границей (ShIM) (25)-(27) для описания параметров скорости V и радиуса вершины дендритов $\rho/2$, имеющих неосесимметричную морфологию с произвольной симметрией кристаллической решетки.

Рис. 4 — Сравнение теоретической модели (ShIM) и моделирования энтальпийным методом (EnthM) для скорости роста V и радиуса вершины дендрита $\rho/2$ как функции переохлаждения ΔT при симметрии 4-ого порядка кристаллической решетки.

Сравнительный анализ показал (см. рис. 3), что данные по скорости роста и радиусу вершины дендритов с неосесимметричной морфологией, полученные методом фазового поля, хорошо описываются теоретической моделью (25)-(27).

Далее модель (25)-(27) была протестирована на образце из чистого никеля с симметрией 4-ого порядка кристаллической решетки. Энтальпийный метод ⁸ численного моделирования был сопоставлен с моделью с резкой границей и получил хорошее соответствие как по данным скорости роста, так и по радиусу вершины дендрита (см. рис. 4).

Во-вторых, для демонстрации влияния конвективного потока на кинетику роста кристалла, были рассмотрены четыре различных материала: SCN (сукцинонитрил, неметаллическое прозрачное вещество), Ni (никель - металл, имеющий гранецентрированную кубическую кристаллическую решетку), Ni₂B (конгруэнтно плавящийся сплав, затвердевающий без химической сегрегации) и сплав Ti₄₅Al₅₅.

Сравнительный анализ подтверждает хорошее соответствие теоретической модели, учитывающей как отсутствие течения (U = 0), так и скорость набегающего потока (U > 0), с экспериментально измеренными

⁸Voller V., Int. J. Heat Mass Trans. (2008) 51, p. 823

скоростями роста дендритов различных материалов (более подробно описано в диссертационной работе).

Рис. 5 — Расчёт скоростей V роста кристалла (линии) при различных интенсивностях вынужденной конвекции (U = 0; 0.5; 0.75 м/с) в сравнении с экспериментальным измерением дендритного роста (точки), выполненного Хартманн и др. при затвердевании сплава $Ti_{45}Al_{55}$. Экспериментальная погрешность показана только для четырех наименьших значений переохлаждения ΔT .

В-третьих, рисунок 5 иллюстрирует, что неизотермический вынужденный поток вместе с примесной сегрегацией может в значительной степени оказывать влияние на кинетику дендритного роста. Расчеты по модели с кондуктивными граничными условиями (25)-(27) хорошо описывают данные эксперимента по скорости роста дендритов из сплава $Ti_{45}Al_{55}^9$ в целом диапазоне переохлаждения, однако, при самых малых значениях скоростей роста теоретические кривые, рассчитанные для средних скоростей потока U = 0.5 м/с и U = 0.75 м/с, проходят по самой нижней границе интервалов ошибок экспериментальных данных (см. рис. 5). Более того, при принятой высокой скорости потока в левитирующих каплях происходит переход от ламинарного течения к турбулентному и модель с кондуктивными граничными условиями при ламинарном потоке жидкости может становиться неприменимой. Именно поэтому была применена расчетная модель, учитывающая конвективные граничные условия (32)-(35).

Рисунок 6 иллюстрирует сравнение теоретической модели при конвективных и кондуктивных граничных условиях с экспериментальными данными по кинетике роста дендритов в сплаве $Ti_{45}Al_{55}$. Видно, что

⁹Hartmann H., Galenko P.K., Holland-Moritz D., Kolbe M., Herlach D.M., Shuleshova O., J. Appl. Phys. (2008) 103, p. 073509

Рис. 6 — Сравнение конвективной модели (32)-(35) и кондуктивной модели (25)-(27) с экспериментальными данными по кинетике роста дендритов в сплаве Ti₄₅Al₅₅.

включение конвективных граничных условий в модель дендритного роста (32)-(35) позволяет описать данные в пределах погрешности экспериментальных измерений скорости роста кристаллов. Можно предположить, что характер течения в левитирующих каплях становится турбулентным, а на вершинах растущих дендритов завихрение потока вызывает процессы переноса тепла и массы конвективного типа. Эта особенность позволяет описать экспериментальные данные в пределах низких скоростей роста дендритов в сплаве Ti₄₅Al₅₅.

В заключение следует отметить, что развитая в научном исследовании теория дендритного роста, показывает количественное соответствие с данными, полученными методами численного моделирования, и с данными экспериментов по скорости роста кристаллов с конвекцией и без нее (см. рис. 3-6). Применимость теории подтверждена сопоставлением ее предсказаний с экспериментальными данными, полученными в наземных условиях и в условиях пониженной гравитации на установке ЭМЛ.

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- Разработана модель устойчивого роста дендритного кристалла с симметрией n-го порядка в условиях вынужденной конвекции в бинарной системе. Найдены распределения температуры, концентрации примеси, а также компонент скорости конвективного течения расплава в двумерной и трёхмерной геометриях роста.
- Проведен обобщенный линейный анализ морфологической устойчивости роста вершины дендрита. Выведены уравнения и граничные условия для возмущений относительно найденных стационарных решений. Определены нелинейное дисперсионное

соотношение (зависимость частоты возмущений от волнового числа) и уравнение кривой нейтральной устойчивости процесса.

- Получены новые критерии отбора устойчивой кристаллизации для термического и термо-химического устойчивого роста параболического дендрита с симметрией n-ого порядка, а также при наличии набегающего на дендрит потока и конвекции.
- 4. Сопоставлены модельные предсказания с данными, полученными методами численного моделирования, а также экспериментальными данными по кинетике роста кристаллов в каплях, обрабатываемых в установках электромагнитной и электростатической левитации.

Публикации автора по теме диссертации в рецензируемых научных журналах, определенных ВАК и Аттестационным советом УрФУ:

- Toropova L.V., Alexandrov D.V., Rettenmayr M., Galenko P.K. The role of intense convective flow on dendrites evolving with n-fold symmetry // Journal of Crystal Growth. — 2020. — Vol. 535. — Р. 125540 (0.23 п.л. / 0.18 п.л.) (Scopus / WoS).
- Kao A., Toropova L.V., Alexandrov D.V., Demange G., Galenko P.K. Modeling of dendrite growth from undercooled nickel melt: sharp interface model versus enthalpy method // Journal of Physics: Condensed Matter. - 2020. - Vol. 32 (19). - Р. 194002 (0.46 п.л. / 0.20 п.л.) (Scopus / WoS).
- Toropova L.V., Galenko P.K., Alexandrov D.V., Demange G., Kao A., Rettenmayr M. Theoretical modeling of crystalline symmetry order with dendritic morphology // The European Physical Journal: Special Topics. - 2020. - Vol. 229 (2-3). - Pp. 275-286 (0.63 п.л. / 0.5 п.л.) (Scopus / WoS).
- 4. Toropova L.V. Effect of forced convection on dendrite growth kinetics // American Institute of Physics Inc. — 2019. — Vol. 2174. — P. 020177 (0.23 п.л. / 0.23 п.л.) (Scopus).
- 5. Alexandrov D.V., Galenko P.K., Toropova L.V. Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018. Vol. 376. P. 20170215 (1.725 п.л. / 0.5 п.л.) (Scopus / WoS).
- 6. Торопова Л.В., Александров Д.В., Галенко П.К. К вопросу об устойчивом росте анизотропного дендрита при конвективном теплопереносе в

жидкой фазе у поверхности дендрита // Расплавы. — 2018. — Т. 3. — С. 320–329 (0.52 п.л. / 0.40 п.л.).

- 7. Toropova L.V., Alexandrov D.V., Galenko P.K. How the convective heat transport at the solid/liquid phase interface influences the stable mode of dendritic growth // American Institute of Physics Inc. 2018. Vol. 1997. Р. 020030 (0.23 п.л. / 0.15 п.л.) (Scopus / WoS).
- Toropova L.V., Alexandrov D.V., Galenko P.K. On the theory of dendritic growth under convective heat and mass transfer in a binary alloy // American Institute of Physics Inc. — 2018. — Vol. 2034. — Р. 020003 (0.23 п.л. / 0.18 п.л.) (Scopus / WoS).
- 9. Toropova L.V. On the theory of stable mode of dendritic growth in the case of convective heat and mass transport at the solid-liquid interface // American Institute of Physics Inc. 2018. Vol. 2015. Р. 020103 (0.23 п.л. / 0.23 п.л.) (Scopus / WoS).
- Toropova L.V., Alexandrov D.V., Galenko P.K. Solvability criterion for stable mode of dendritic evolution in the case of convective heat and mass transfer in a binary alloy // American Institute of Physics Inc. — 2018. — Vol. 1953. — Р. 040005 (0.23 п.л. / 0.20 п.л.) (Scopus / WoS).
- Alexandrov D.V., Toropova L.V., Galenko P.K. Thermo-solutal growth of an anisotropic dendrite in the case of convective heat and mass transfer in a binary system // American Institute of Physics Inc. — 2018. — Vol. 1978. — Р. 470065 (0.23 п.л. / 0.18 п.л.) (Scopus / WoS).

Свидетельства о гос. регистрации программ для ЭВМ:

- 12. Александров Д.В., Галенко П.К., Торопова Л.В. DendriteN-symmetry. — Свидетельство о гос. регистрации программ для ЭВМ № 2019617711 от 19.06.2019 г.
- 13. Александров Д.В., Торопова Л.В. DendriteTurbulent. Свидетельство о гос. регистрации программ для ЭВМ № 2018616310 от 29.05.2018 г.
- 14. Александров Д.В., Титова Е.А., Торопова Л.В. DendriteShape. Свидетельство о гос. регистрации программ для ЭВМ № 2018616311 от 29.05.2018 г.
- 15. Александров Д.В., Торопова Л.В. DendriteN-theta. Свидетельство о гос. регистрации программ для ЭВМ № 2018616067 от 22.05.2018 г.

Торопова Любовь Валерьевна

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УСТОЙЧИВОЙ МОДЫ ДЕНДРИТНОГО РОСТА ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ КРИСТАЛЛИЗАЦИИ

Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать _____. Заказ № _____ Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография _____