На рис. 1 показаны спектры фосфоресценции, зарегистрированные для исходного образца Al_2O_3 (кривая 1) и для Al_2O_3 с InP/ZnS (кривая 2). Для наглядности штриховой линий представлена известная полоса флюоресценции раствора исследуемых КТ. Видно, что в полученном спектре для синтезированного люминофора явным образом проявляется свечение КТ. В этом случае можно говорить о наличии механизма передачи энергии возбуждения от матрицы Al_2O_3 к ядру КТ, длительность которого заметно превышает характерное время излучательных переходов в InP/ZnS. Наблюдаемый эффект может быть использован для создания композитных люминофоров с настраиваемой хроматичностью излучения путём варьирования концентрации и размера КТ.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНОЕ УПОРЯДОЧЕНИЕ В МУЛЬТИФЕРРОИКЕ 0.9(BiFeO₃)+0.1(BaTiO₃)

Lee S.¹, Пирогов А.Н.^{2,3}, <u>Сёмкин М.А.^{3*}</u>

 ¹⁾ Корейский исследовательский институт атомной энергии, Тайджон, Республика Корея
²⁾ Институт физики металлов УрО РАН, Екатеринбург, Россия
³⁾ Уральский федеральный университет имени первого Президента России Б.Н.Ельцина, Екатеринбург, Россия *E-mail: <u>m.a.semkin@urfu.ru</u>

CRISTAL STRUCTURE AND MAGNETIC ODERING IN MULTIFERROIC 0.9(BiFeO₃)+0.1(BaTiO₃)

Lee S.¹, Pirogov A.N.^{2,3}, <u>Semkin M.A.^{3*}</u>

¹⁾Neutron Department, Korea Atomic Energy Research Institute, Daejeon, Korea Republic ²⁾Institute of Metal Physics of UB of RAS, Ekaterinburg, Russia ³⁾Ural Federal University, Yekaterinburg, Russia

Crystal structure and magnetic state of multiferroic $0.9(BiFeO_3) + 0.1(BaTiO_3)$ were studied over temperature interval 300K - 1000K.

Одновременное наличие в мультиферроиках магнитной и ферроэлектрической степеней свободы обуславливает тенденцию к поиску материалов, имеющих высокие показатели взаимосвязи между этими степенями свободы, что позволит реализовать специфические свойства мультиферроиков в промышленных приложениях и приборостроении. Одним из наиболее перспективных представителей мультиферроиков является феррит висмута (*BiFeO*₃). Добавление в процессе синтеза небольшого количества титаната бария (*BaTiO*₃) позволяет существенно повысить магнитоэлектрические свойства мультиферроика. Цель нашей работы состояла в изучении поведения структурного состояния и магнитного упорядочения в мультиферроике $0.9(BiFeO_3)+0.1(BaTiO_3)$ в диапазоне температур от 300*K* до 1000*K*. Образец был получен методом кристаллизации в растворе. Нейтронографические измерения были выполнены на порошковом дифрактометре высокого разрешения, смонтированном на горизонтальном канале исследовательского реактора HANARO (Тайджон, Республика Корея) с длиной волны нейтронов $\lambda = 1.5395$ Å. Обработка нейтронограмм проведена с помощью пакета программ Fullprof [1].

Во всем исследованном температурном интервале кристаллическая структура образца хорошо описывается в рамках ромбоэдрической элементарной ячейки (пространственная группа R3c), подобной ячейке недопированного BiFeO₃. увеличиваются Параметры решетки с температурой. Параметры $a = b = (5.625 \pm 0.0005)$ Å при 300K увеличиваются до $a = b = (5.672 \pm 0.0008)$ Å при 1000K, при этом, параметр С возрастает ОТ $c = (13.779 \pm 0.0004)$ ДО $c = (13.866 \pm 0.0005)$ Å. Ионы Ва размещаются в подрешетке Ві, а ионы Ті – в подрешетке Fe. Определенные нами координаты ионов при 300K приведены в таблице. Координаты изменяются с температурой. Для ионов Fe и Ti компонента z уменьшается с ростом температуры, для ионов кислорода компонента x также понижается с температурой, тогда как, компонента у увеличивается. У компоненты z имеется минимум в интервале температур от 600K до 850K.

Атом(ы)	x	у	Z
Bi, Ba	0.00000	0.00000	0.00000
Fe,Ti	0.00000	0.00000	0.259 ± 0.003
0	0.504±0.002	0.041±0.002	1.002±0.001

Координаты атомов 0.9(*BiFeO*₃)+0.1(*BaTiO*₃) при 300*K*

Согласно [2] *BiFeO*₃ обладает модулированной магнитной структурой с очень малым по величине волновым вектором $k = [0.0045 \ 0.0045 \ 0]$. Полученные нами нейтронограммы хорошо описываются, если принять, что магнитное упорядочение в $0.9(BiFeO_3)+0.1(BaTiO_3)$ подобно приведенному в литературе для $BiFeO_3$. В этом приближении мы получили, что моменты ионов *Fe* направлены антиферромагнитно вдоль c-оси. Повышение температуры приводит к понижению величины магнитного момента ионов от $\mu = (3.13 \pm 0.05)\mu_B$ при 300*K*, до нуля при 600*K*.

- 1. Rodrigues-Carvajal J., Phys. B., 192, 55 (1993).
- 2. Sosnowska I. et al., J. Phys.: Solid State Phys., 15, 4835 (1982).