КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО ПЕНТАБОРАТА ЦЕЗИЯ, CsB₅O₇(OH)₂*0.5H₂O, С ТОПОЛОГИЕЙ МИНЕРАЛА ЛАРДЕРЕЛЛИТА

Сапегина А.В.^{1,2}, Шванская Л.В.¹

¹Московский государственный университет им. Ломоносова, г. Москва, ann-sapegina@yandex.ru ²Институт экспериментальной минералогии РАН, г. Черноголовка

На сегодняшний день известно несколько природных пентаборатов щелочных металлов/аммониевой группы NH,⁻, кристаллические структуры которых построены на основе пентаблоков, состоящих из одного борного треугольника и четырех связанных с ним вершинами тетраэдров (схематично 5:[4Δ+1T]). Это лардереллит NH₄B₅O₇(OH)₂·H₂O [Merlino, 1969], сантит KB₅O₈·4H₂O [Merlino, 1970], (Rb) и (Cs) - раманиты *A*[B₅O₆(OH)₄]·2H₂O [Thomas, 2008], сборгит NaB₅O₆(OH)₄·3H₂O [Merlino, 1972] и аммониоборит (NH₄)₃B₁₅O₂₀(OH)₈·4H₂O [Merlino, 1971]. Три последних минерала относятся к сороборатам, так как в их кристаллических структурах указанные пентаблоки являются изолированными и объединяются посредством водородных связей и за счет ионов щелочных металлов. В кристаллических структурах лардереллита, сантита и раманитов борные пентаблоки формируют цепочечные анионные радикалы. Одномерные фрагменты, топологически

идентичные наблюдаемым в структуре лардереллита, обнаружены и в структурах синтетических фаз с общей формулой $AB_5O_7(OH)_2*0.5H_2O$, где A =Rb⁻ [Belokoneva, 2003], NH₄⁻ [Li, 2003]. Химические формулы, полученных в гидротермальных условиях и методом раствор-расплавного синтеза, рубидиевого и аммониевого аналогов, соответственно, отличаются от природного лардереллита меньшим содержанием молекул воды. Следует отметить, что среди структурно изученных синтетических пентаборатов цезия описаны соединения только с изолированными и каркасными борными анионными радикалами. Интерес к данной группе соединений вызван возможностью их технологического применения в качестве преобразователей лазерных частот. Так, нелинейно-оптические свойства выявлены у полярных представителей семейства $Me[B_5O_6(OH)_4]*4H_2O \ c \ Me = K \ [Dmitriev, 1997], Cs,$ NH, [Becker, 2000].

Рис. 1. Фрагмент кристаллической структуры CsB₅O₇(OH)₂*0.5H₂O: зигзагообразные ленты из блоков [B₅O₇(OH)₂]⁻, топологически идентичные структурным фрагментам минерала лардереллита, и расположенные между ними ионы Cs⁺ и молекулы H₂O

А	<i>a</i> , Å α, °	b, Å β, °	<i>c</i> , Å γ, °	<i>V</i> , Å ³	Ссылка
NH_4	7.6207(15) 99.46 (3)	9.2328(18) 105.89 (3)	11.926(2) 91.54 (3)	793.8(3)	[Li, 2003]
Rb	7.679(4) 98.55(5)	9.253(6) 106.80(5)	12.053(9) 91.71(5)	808(2)	[Belokoneva, 2003]
Cs	7.8107(5) 98.98(1)	9.1929(8) 106.32(1)	12.3553(11) 91.10(1)	839(2)	данная работа

Таблица 1. Кристаллографические характеристики изоструктурных соединений группы $A[B_5O_7(OH)_2]*0.5H_2O$, пр. гр. $P\overline{1}$, Z=4

Методом спонтанной кристаллизации из раствора в расплаве борной кислоты при температуре 200°С были получены бесцветные прозрачные монокристаллы пластинчатого габитуса нового цезиевого представителя группы пентаборатов щелочных металлов с общей формулой $A[B_5O_7(OH)_2]*0.5H_2O$. Методом рентгеноструктурного анализа изучена его кристаллическая структура и проведен сравнительный кристаллохимический анализ с известными ранее рубидий и аммоний-содержащими представителями семейства.

Экспериментальный набор интенсивностей дифракционных отражений получен на дифрактометре Xcalibur-S-CCD (МоКа излучение, λ =0.71073). Кристаллическая структура определена и уточнена с учетом двойникования осью 2-ого порядка вдоль оси *b* (с относительным весом компонент 0.54:0.46) в анизотропном приближении для всех неводородных атомов до R1=5.9% (для 7529 отражений с I >2 σ (I)) с помощью SHELX [Sheldrick, 2015]. Все вычисления проводились в рамках программного пакета WinGX 32.

Соединения группы $A[B_5O_7(OH)_2]*0.5H_2O$ (где A= Cs, Rb, [NH₄]), включая полученное нами, кристаллизуются в триклинной симметрии, пространственная группа $P\overline{1}$. В табл. 1 приведены их кристаллографические характеристики.

Основу кристаллических структур обсуждаемого семейства составляют зигзагообразные цепочки из пентаборатных блоков состава $[B_5O_7(OH)_2]^-$, вытянутые вдоль направления [010] (рис. 1). Висячие вершины BO₃ треугольников цепочек протонированы и гидроксильные группы участвуют в формировании водородных связей с атомами кислорода соседних цепочек, в результате чего образуются слои, параллельные плоскости *ab*. Катионы Cs⁺ и молекулы H₂O располагаются в пространстве между этими слоями, формируя дополнительные водородные связи. Установлено закономерное увеличение объемов элементарных ячеек в ряду соединений $A[B_5O_7(OH)_2]^*0.5H_2O$ при увеличении ионного радиуса щелочного катиона NH₄ \rightarrow Rb \rightarrow Cs (табл. 1). При этом увеличиваются также параметры *a*

и *с*, в то время как параметр *b* для цезиевого аналога имеет наименьшее значение. Различия наблюдаются и в габитусах кристаллов изоструктурных соединений. Кристаллы $Rb[B_5O_7(OH)_2]^*0.5H_2O$ [Belokoneva, 2003] характеризуются близким к изометричному габитусом, в то время как аммоний-содержащего [Li, 2003] и полученного нами цезиевого аналога имеют пластинчатую форму. Изменение габитусов обсуждаемых соединений, по-видимому, объясняется силой водородных связей между слоевыми фрагментами, образованными пентаборатными цепочками. Исследованное в данной работе $CsB_5O_7(OH)_2^*0.5H_2O$ соединение является первым представителем среди пентаборатов цезия с цепочечной кристаллической структурой.

Работа выполнена при финансовой поддержке гранта РФФИ № 18-03-00908.

ЛИТЕРАТУРА

- Becker P., Held P., Bohaty L. Crystal Growth and Optical Properties of the Polar Hydrated Pentaborates Rb[B₅O₆(OH)₄]₂·H₂O and NH₄[B₅O₆(OH)₄]·2H₂O and Structure Redetermination of the Ammonium Compound // Crystal Research and Technology. – 2000. – T. 35. – №. 11/12. – C. 1251-1262.
- Belokoneva E. L., Borisova T. A., Dimitrova O. V. New rubidium pentaborate Rb[B₅O₇(OH)₂]·0.5H₂O with a 5:[4Δ+ 1T] anionic block and its relation to larderellite (NH₄)[B₅O₇(OH)₂]· H2 O on the basis of the OD theory //Crystallography Reports. - 2003. - T. 48. - №. 4. - C. 583-590.
- Dmitriev V. G., Gurzadyan G. G., Nikogosyan D. N. Properties of nonlinear optical crystals //Handbook of Nonlinear Optical Crystals. – Springer Berlin Heidelberg, 1997. – C. 67-288.
- Li L. Y. et al. A new hydrated ammonium hydroxyborate, (NH4)₂[B₁₀O₁₄(OH)₄]·H₂O //Acta Crystallographica Section C: Crystal Structure Communications. – 2003. – T. 59. – №. 11. – C. 1115-1116.

- Merlino S., Sartori F. The crystal structure of larderellite, NH₄B₅O₇(OH)₂·H₂O //Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. – 1969. – T. 25. – №. 11. – C. 2264-2270.
- Merlino S., Sartori F. Santite, a new mineral phase from Larderello, Tuscany //Contributions to Mineralogy and Petrology. – 1970. – T. 27. – № 2. – C. 159-165.
- Merlino S., Sartori F. Ammonioborite: new borate polyion and its structure //Science. – 1971. – T. 171. – №. 3969. – C. 377-379.
- Merlino S. The crystal structure of sborgite, NaB₅O₆(OH)₄·3H₂O //Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. - 1972. - T. 28. - №. 12. - C. 3559-3567.

- Sheldrick G. M. Crystal structure refinement with SHELXL //Acta Crystallographica Section C: Structural Chemistry. – 2015. – T. 71. – №. 1. – C. 3-8.
- Thomas R., Davidson P., Hahn A. Ramanite-(Cs) and ramanite-(Rb): New cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy //American Mineralogist. – 2008. – T. 93. – №. 7. – C. 1034-1042.