КАЛЬЦИЕВЫЙ КАТАПЛЕИТ: ОТ ПЕРВЫХ НАХОДОК К ЭФФЕКТИВНЫМ ЛЮМИНОФОРАМ

Леонидов И.И.

Институт химии твердого тела, УрО РАН, г. Екатеринбург, ivanleonidov@ihim.uran.ru

Доклад посвящен обзору исследований минерала катаплеита и катаплеитоподобных силикатов и германатов (рис. 1). Обобщены основные кристаллохимические и физико-химические свойства кристаллов данного структурного типа, позволяющие их использовать при создании кристаллофосфоров нового поколения с величиной квантового выхода люминесценции в видимом спектральном диапазоне выше 90%.

Щелочные цирконосиликаты – катаплеит Na₂ZrSi₃O₀·2H₂O и илерит Na₂ZrSi₃O₀·3H₂O – относятся к одному из наиболее многочисленных классов, насчитывающему более 20 структурных типов. В этих соединениях во всех случаях установлена октаэдрическая координация атомов циркония и тетраэдрическая – у атомов кремния. Конденсация М-октаэдров Zr и T-тетраэдров Si приводит к образованию двух- и трехмерных МТ-структур. За исключением соединений Na₃HZrSi₂O₈ и Na_{8-r}H_rZrSi₆O₁₈ кристаллическая решетка остальных содержит трехмерные МТ-каркасы, в которых вершины полиэдров являются мостиковыми М-О-М, Т-О-Т, М-О-Т. Пространственное разрежение полиздров, не имеющих гранных или реберных контактов, предопределяет появление в МТ-структурах большого числа пустот. Локализация в последних катионов щелочных металлов и особенности их геометрического расположения определяют наличие в структурах 1-, 2- или 3-мерных сеток каналов ионного транспорта [Shannon et al., 1978; Илюшин и др., 1988].

Катаплеит и илерит представляют собой постмагматические минералы комплексов высокощелочных пород [Brunowsky, 1936; Илюшин и др., 1988]. По химическому составу два цеолитоподобных цирконосиликата различаются лишь на одну молекулу воды. Однако их структурные отличия весьма существенны. Смешанный каркас, лежащий в основе решетки катаплеита, состоит из изолированных трехчленных колец [Si₃O₀], у которых все свободные О-вершины SiO₄ тетраэдров поделены с изолированными октаэдрами ZrO₆. Напротив, в каркасе илерита изолированные октаэдры ZrO₆ соединяются по вершинам с бесконечными винтовыми цепочками [Si₃O₉]_∞. В цеолитных пустотах сформированных гетерополиэдрических каркасов размещаются катионы Na⁺ и молекулы воды [Зубкова и др., 2007].

Катаплеит характеризуется двумя модификациями, решетки которых описываются в пр. гр. Р6,/ттс, *a* = 7.40 Å, *c* = 10.05 Å [Brunowsky, 1936] и пр. гр. *B*2/*b*, *a* = 23.917 Å, *b* = 20.148 Å, *c* = 7.432 Å, *y* = 47.46° [Илюшин и др., 1981]. Хотя гетерополиэдрический каркас, состоящий из октаэдров ZrO₆ и кремнекислородных колец [Si₃O₉], идентичен у обоих вариантов структуры, позиции атомов Na и молекул H₂O оказываются инвертированными в моноклинной модели по сравнению с гексагональной. Кроме того, кристаллическая структура катаплеита могла бы быть рассмотрена [Chao et al., 1973] в нестандартной установке I2/c $(a = 12.779 \text{ Å}, b = 7.419 \text{ Å}, c = 20.157 \text{ Å}, \beta = 90.41^{\circ}),$ но к последней можно перейти от моноклинной (пр. гр. B2/b), используя матрицу [110/001/010]. Моноклинная решетка с симметрией пр. гр. I2/c [Chao et al., 1973] может быть также описана в виде псевдогексагональной с параметром $a \approx b\sqrt{3}$. Так что отличие этой ячейки от впервые описанной гексагональной [Brunowsky, 1936] заключается только в удвоении параметра с (~20 Å вместо ~10 Å). Типичным признаком всех модификаций катаплеита является наличие различных искажений гетерополиэдрического каркаса.

Рис. 1. Переход от катаплеитов Na₂ZrSi₃O₉·2H₂O и CaZrSi₃O₉·2H₂O к катаплеитоподобным синтетическим аналогам среди силикатов и германатов. Образец минерала катаплеита

Рис. 2. Смена конформации кольца $[Si_{3}O_{9}]$ в решетке $Sr_{3}Ln_{2}(Si_{3}O_{9})_{2}$ (Ln = Eu–Lu)

Минералогическая группа катаплеита дополнена по результатам минералогических исследований сиенит-пегматитов щелочного массива Бурпала (Северное Прибайкалье) более 50 лет назад структурой природного кальциевого катаплеита CaZrSi₂O₀·2H₂O, первоначально описанного в пр. гр. $P6_3/mmc$ (a = 7.32Å, *c* = 10.15 Å). Однако лишь к началу 2000-х было доказано, что CaZrSi₂O₀·2H₂O кристаллизуется в пр. гр. *Pbnn* (a = 7.378 Å, b = 12.779 Å, c = 10.096 Å) с характерным формированием тройников [Merlino et al., 2004]. К синтетическим катаплеитоподобным аналогам можно отнести $Ca_{2}Y_{2}(Si_{2}O_{0})_{2}$, решетка которого описывается в пр. гр. C2/c [Santamaría-Pérez et al., 2005]. В кристаллической структуре Ca₂Y₂(Si₂O₀), выделяются чередующиеся слои Ca²⁺/Y³⁺ и кольцевых анионов [Si₃O₀]⁶⁻, уложенные перпендикулярно направлению [10-1]. Катионы Са²⁺/Ү³⁺ занимают три типа позиций, при этом четвертая оказывается вакантной - (Cal/Y1:Ca2/Y2:Ca3/Y3:□ = 2:2:1:1). Поэтому запись формулы Ca₃Y₂(Si₃O₉)₂ можно представить в виде (Ca₃Y₂)_{5/6}□_{1/6}SiO₃, и ряд авторов находит сходство решеток этого соединения и псевдоволластонита α-CaSiO, [Yamane et al., 1997]. В структуре последнего можно также обнаружить слои Ca²⁺ при отсутствующих вакантных катионных позициях, которые чередуются со слоями изолированных колец [Si₂O₀]. У α-CaSiO₂ давно обнаружены шестислойные, еще более разупорядоченные по симметрии укладки слоев кольцевых анионов [Si₃O₉]⁶⁻ – и также наиболее часто встречающиеся четырехслойные АВСО – политипы, тогда как в решетке Ca₃Y₂(Si₃O₉)₂ можно выделить лишь слои колец [Si₃O₀] типа АА'ВВ'. Смена ориентации граней SiO₄ тетраэдров в слоях [Si₃O₉] происходит через слой, в котором присутствуют вакансии в катионной

подрешетке. Таким образом, кристаллической решетке $Ca_{3}Y_{2}(Si_{3}O_{9})_{2}$ присущи характерные признаки и кальциевого катаплеита, и псевдоволластонита. Особенности геометрии сильно искаженных трех типов полиэдров (Cal/Yl: KЧ = 8; Ca2/Y2: KЧ = 7; Ca3/Y3: KЧ = 6), внутри которых находятся катионы Ca^{2+/}Y³⁺ с переменной заселенностью позиций, открывают возможности создания ограниченных или непрерывных твердых растворов $Ca_{3}Y_{2-x-y}Ce_{x}Ln_{y}(Si_{3}O_{9})_{2}$ и $Ca_{3}Y_{2-x}Ln_{x}(Si_{3}O_{9})_{2}$ (Ln = Ce–Lu) в зависимости от размера ионного радиуса Ln³⁺ [Chiu et al., 2009].

Относительно недавно синтезирована и кристаллографически описана серия изоструктурных соединений $Sr_{2}Ln_{2}(Si_{2}O_{0})_{2}$ (Ln = Y, Eu-Lu), также кристаллизующихся в пр. гр. C2/c, Z = 4 [Tyutyunnik et al., 2013]. Особенностью строения кольцевых силикатов этой подгруппы является наличие ступенчатообразного изменения параметров элементарной ячейки при замене в решетке Er³⁺ на Tm³⁺. Смена симметрии пространственной группы для структур ряда $Sr_3Ln_2(Si_3O_0)_2$ (Ln = Y, Eu–Lu) не обнаружена. В остальном сходства строения M²⁺₃Y₂(Si₃O₉)₂ при переходе от М = Са к М = Sr очевидны. У всех типов полиэдров (Srl/Lnl: KЧ = 8; Sr2/Ln2: KЧ = 7; Sr3/Ln3: KH = 6), заселенность Sr^{2+}/Y^{3+} меняется от смешанной к соотношениям: 0.5/0.5 в позиции (1), у остальных - к 1.0/0.0 (Sr2/Ln2) и 0.0/1.0 (Sr3/Ln3) при переходе от решеток кристаллов с Eu³⁺-Er³⁺ к Tm³⁺-Lu³⁺. В свою очередь, при смене Er³⁺ на Tm³⁺ (в серии Tm–Lu) происходит незначительное искажение конформации [Si₃O₀] кольца (рис. 2). Допирование ионами Eu³⁺ соединения Sr₂Y₂(Si₂O₀)₂ дает возможность получить неограниченный твердый раствор Sr₃Y₂₋Eu (Si₃O₀)₂ (x = 0.0-2.0), состав которого при x = 0.5 демонстрирует наиболее интенсивную оранжево-красную люминесценцию (595-630 нм) при возбуждении УФ излучением ~233 нм (5.32 eV). Использование $Sr_{2}Y_{2}(Si_{2}O_{0})_{2}$ в качестве оптической матрицы и двух ионов-активаторов в соотношении 0.15Ce³⁺ : 0.70Tb³⁺ позволяет достигать величин квантового выхода стационарной люминесценции в видимом спектральном диапазоне выше 90% [Zhang et al., 2014]. Наконец, кристаллографические исследования Sr₂Ln₂(Ge₂O₀)₂ (Ln = La, Y) подтверждают, что германаты этой группы и Ca₃Y₂(Si₃O₉), являются изоструктурными соединениями [Melkozerova et al., 2017] и также могут быть рассмотрены в качестве оптических матриц для создания люминофоров различного назначения.

Исследования проведены в ЦКП ИХТТ и ИВТЭ УрО РАН в рамках ГЗ ФАНО РФ А16–116122810218– 7–8 и поддержаны стипендией Президента РФ (СП–931.2016.1).

ЛИТЕРАТУРА

- Зубкова Н.В., Пеков И.В., Турчкова А.Г., Пущаровский Д.Ю., Мерлино С., Пазеро М., Чуканов Н.В. Кристаллические структуры калий-замещенных форм катаплеита и илерита // Кристаллография. 2007. Т. 52, №1. С. 68–72.
- Илюшин Г.Д., Воронков А.А., Илюхин В.В., Невский Н.Н., Белов Н.В. Кристаллическая структура природного моноклинного катаплеита // ДАН СССР. 1981. Т. 260. С. 623–627.
- Илюшин Г.Д., Демьянец Л.И. Кристаллоструктурные особенности ионного транспорта в новых ОD-структурах: катаплеите Na₂ZrSi₃O₉·2H₂O и илерите Na₂ZrSi₃O₉·3H₂O // Кристаллография. 1988. Т. 33, №3. С. 650–657.
- Портнов А.М. Кальциевый катаплеит новая разновидность катаплеита // ДАН СССР. 1964. Т. 154, №3. С. 607–609.
- Brunowsky B. Die Struktur des Katapleits (Na₂ZrSi₃O₉·2H₂O) // Acta Physicochim. URSS. 1936. V. 5. 863-892.
- Chao G.Y., Rowland J.R., Chen T.T. The crystal structure of catapleiite // Abstracts with Programs – Geological Society of America. 1973. V. 5. P. 572.
- Chiu Y.C., Liu W.R., Yeh Y.T., Jang S.M., Chen T.M. Luminescent properties and energy transfer of green-emitting Ca₃Y₂(Si₃O₉)₂:Ce³⁺,Tb³⁺ phosphor // J. Electrochem. Soc. 2009. 156. P. J221–J225.

- Melkozerova M.A., Lipina O.A., Baklanova Y.V., Tyutyunnik A.P., Zubkov V.G. Synthesis of new Sr₃RE₂(Ge₃O₉)₂ (RE = La, Y) cyclogermanates by liquid-phase precursor methods // J. Phys. Chem. Solids. 2017. V. 103. P. 76–81.
- Merlino S., Pasero M., Bellezza M., Pushcharovsky D.Yu., Gobetchia E.R., Zubkova N.V., Pekov I.V. The crystal structure of calcium catapleiite // Can. Mineral. 2004. V. 42. P. 1037–1045.
- Santamaría-Pérez D., Vegas A., Liebau F. The Zintl– Klemm concept applied to cations in oxides. II. The structures of silicates // Struc. Bond. 2005. V. 118. P. 121–177.
- Shannon R.D., Taylor B.E., Gier T.E., Chen H.Y., Berzins T. Ionic conductivity in Na₅YSi₄O₁₂-type silicates // Inorg. Chem. 1978. V. 17. P. 958–964.
- Tyutyunnik A.P., Leonidov I.I., Surat L.L., Berger I.F., Zubkov V.G. Crystal structure, morphotropic phase transition and luminescence in the new cyclosilicates Sr₃R₂(Si₃O₉)₂, R = Y, Eu–Lu // J. Solid State Chem. 2013. V. 197. P. 447–455.
- Yamane H., Nagasawa T., Shimada M., Endo T. Ca₃Y₂(Si₃O₉)₂ // Acta Crystallogr., Sect C. 1997. V. 53. P. 1533–1536.
- Zhang M.F., Liang Y.J., Tang R., Yu D.Y., Tong M.H., Wang Q.A., Zhu Y.L., Wu X.Y., Li G.G. Highly efficient Sr₃Y₂(Si₃O₉)₂:Ce³⁺,Tb³⁺/Mn²⁺/Eu²⁺ phosphors for white LEDs: structure refinement, color tuning and energy transfer // RSC Adv. 2014. V. 4. P. 40626–40637.