КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ФИЛИПСБЕРГИТА

Исмагилова Р.М.¹, Золотарев А.А.(мл)¹, Житова Е.С.^{1,2}, Кривовичев С.В.^{1,3}

¹Санкт-Петербургский Государственный Университет, г. Санкт-Петербург, rezeda_marsovna@inbox.ru, aazolotarev@gmail.com

²Институт Вулканологии и Сейсмологии ДВО РАН, г. Петропавловск-Камчатский, zhitova_es@mail.ru ³Центр наноматериаловедения КНЦ РАН, г. Апатиты, skrivovi@mail.ru

Авторами был изучен образец филипсбергита из месторождения «Голд Хилл» округ Туэле, штат Юта, США, который был отобран из коллекции Минералогического Музея им. Ферсмана, № 88338. Образец был изучен методами сканирующей электронной микроскопии, рентгеноструктурного анализа и Рамановской спектроскопии.

Химическая формула исследуемого минерала была рассчитана по результатам сканирующей электронной микроскопии. Исследование показало равномерное распределение химических элементов с изоморфным замещением (попарно отрицательная корреляция) между Си и Zn, и между As и P. Формульные коэффициенты рассчитывались по сумме катионов Cu + Zn + As + P = 8 [Ciesielczuk et al., 2016], содержание гидроксильных групп рассчитывалось по балансу зарядов, содержание воды согласно уточненной кристаллической структуре. Эмпирическая формула филипсбергита (Cu_{4.69}Zn_{1.23}) (As_{0.86}P_{0.18}O₄)₂(OH)_{5.61}×H₂O. Зональности не наблюдается, распределение химических элементов однородно. Содержание химических элементов, усредненное по 10-ти анализам, в виде весовых % соотношений оксидов показано в табл. 1.

Кристаллическая структура филипсбергита была уточнена авторами в пространственной группе P2₁/c, структурная модель кипушита [Piret et al., 1985] была использована в качестве начальной для уточнения кристаллической структуры филипсбергита. Ранее известная структурная модель кипушита была дополнена локализацией атомов водорода. Атомы водорода

Таблица 1. Химический состав филипсбергита (масс. %)

	Содержание	Стандарт пробы
CuO	48.91	Си мет.
ZnO	13.18	Zn мет.
As ₂ O ₅	26.06	InAs
P ₂ O ₅	3.25	InP
H ₂ O*	8.97	
Всего	100.37	

Примечание: * – Рассчитано по результатам рентгеноструктурного анализа и балансу заряда. были локализованы исходя из анализа распределения остаточной электронной плотности. Межатомные расстояния в О-Н – группах составляют 0.96±0.03 Å, что совпадает со значениями, полученными методом нейтронной дифракции [Jeffrey, 1997]. Было определено, что длина связи Asl-O (1.610 Å) короче, чем As2-O(1.694 Å), что послужило причиной проверки распределения атомов As и P по позициям As1 и As2. Было выявлено, что позиции Asl имеет смешанную заселенность: $As_{0.628(4)}P_{0.372(4)}$, а позиция As2 полностью заселена As. Полученная таким образом структурная формула минерала Cu₅Zn(As_{0.63}P_{0.37}O₄)(AsO₄)(OH)₆·H₂O хорошо совпадает с химической формулой, рассчитанной по результатам электронного микроанализа. Кристаллическая структура филипсбергита была уточнена нами до фактора расходимости $R_1 = 0.046$ на основе 2563 независимых рефлексов, удовлетворяющих условию $|F_{o}| \ge 4\sigma_{F}$.

Кристаллическая структура филипсбергита содержит шесть симметрично-независимых позиций металла. Позиции Cul-Cu5 находятся в искаженной октаэдрической координации. Октаэдры образуют четыре относительно короткие (1.939-2.050 Å) экваториальные и две длинные (2.251-2.837 Å) апикальные связи <Cu-O>. Такое искажение октаэдров характерно для медно-кислородных соединений и вызвано эффектом Яна-Теллера [Jahn and Teller, 1937] и неоднократно подтверждено предыдущими исследованиями [Hathaway, 1987]. Позиция Zn располагается в тетраэдрической координации со средней длиной связи <Zn-O> равной 1.934 Å. Кроме того, в структуре филипсбергита имеется две неэквивалентные тетраэдрические позиции, занятые катионами As⁵⁺ и P⁵⁺. Концентрирование Р происходит в позиции Asl, характеризующейся более короткой связью M-O (M = As, P).

Кристаллическую структуру филипсбергита (рис. 1) можно рассматривать как комплексную трехмерную кристаллическую решетку, состоящую из двух типов слоев, простирающихся перпендикулярно оси *a*. Слой **A**-типа образуют искаженные Cuj_6 октаэдры ($j = O^2$, (OH)⁻, H_2O), соединяясь друг с другом по ребрам. По строению слой **A**-типа напоминает соты с гексагональными незаполненными

Рис. 1. Кристаллическая структура филипсбергита: I) слой А-типа; II) слой В-типа; III) кристаллическая структура в проекции на плоскость *ab*

пустотами (рис. 1, I), которые координируют шесть атомов кислорода (по три снизу и сверху слоя). Три таких атома кислорода являются основанием тетраэдров $As2O_4$, три других протонированы. Тетраэдры $As2O_4$ связывают два соседних октаэдрических слоя (А-типа) так, что основание тетраэдра принадлежат одному слою (каждый атом кислорода при этом связывается с двумя атомами меди), а вершина тетраэдра принадлежит соседнему слою (атом кислорода образует связи с тремя атомами меди). Таким образом, ($As2O_4$)-тетраэдры прочно связаны между двумя слоями медноцентрированных октаэдров. Слой **В**-типа сложен из тетраэдров AsO_4 и ZnO_4 , связанных по вершинам и образующих 8- и 4-членные кольца (Рис. 1, II). ($As1O_4$)-тетраэдры являются менее прочно связанными по сравнению ($As2O_4$)-тетраэдрами. Каждый атом О основания тетраэдров принадлежит одному атому As1 и одному атому Zn, в то время как атом кислорода, лежащий в вершинах тетраэдров связан с тремя атомами Cu соседнего слоя **А**-типа. Соотношение **A:B** слоев **A** и **B** равно 2:1 (Рис. 1, III).

105

Рамановский спектр, записанный с образца 88338 находится в хорошем совпадении со спектрами, полученными ранее Ю. Кизельчук с соавторами [Ciesielczuk et al., 2016]. Характерные для изоморфного ряда кипушит – филипсбергит полосы поглощения гидроксильных групп обнаружены в области 3552 и 3483 см⁻¹. Наибольшую интенсивность проявляют полосы симметричных колебаний группировок AsO₄ в области 865 см⁻¹, а также антисимметричные колебания AsO₄ в области 837, 805 см⁻¹. Несколько полос средней интенсивности обнаружены в области 600-400 см⁻¹, что отвечает колебаниям AsO₄, полосы слабой интенсивности в области 400–300 см⁻¹ вызваны колебаниями фосфатных групп. Полосы в области 300-90 см⁻¹ отвечают валентным колебаниям решетки металл-кислород [Ciesielczuk et al., 2016].

По результатам данного исследования впервые была уточнена кристаллическая структура филипсбергита с локализацией атомов водорода. Уточнение структуры демонстрирует, что позиция As1 является предпочтительной для замещения As на P в филипсбергите из-за менее фиксированного расположения в структуре по сравнению с позицией As2. Если такая селективная замена сохраняется для всего ряда филипсбергит-кипушит, вполне возможно, что для промежуточных минералов с отношениями P:As, близкими к 1:1, существует полностью упорядоченный вид с фосфором, преобладающим в позиции As1, в то время как мышьяк предпочтительно занимают позицию As2. Таким образом, возможно наличие промежуточного члена состава $Cu_{z}Zn(AsO_{a})$ (PO₄)(OH)₄×H₂O с упорядоченным распределением фосфатных и арсенат-ионов. Более детально исследование кристаллохимического распределения фосфатных и арсенатных ионов и гидроксильных групп в структуре филипсбергита описано в статье авторов [Krivovichev et al., 2018].

Авторы благодарны Минералогическому музею им. А.Е. Ферсмана, предоставившему образец для исследования. Исследования проведены с использованием оборудования ресурсных центров Научного парка СПбГУ «Рентгенодифракционные методы исследования» и «Геомодель».

ЛИТЕРАТУРА

- Ciesielczuk J., Janeczek J., Dulski M., Krzykawski T. Pseudomalachite–cornwallite and kipushite–philipsburgite solid solutions: chemical composition and Raman spectroscopy // European Journal of Mineralogy. 2016. V28. P. 555-569.
- Hathaway B.J. Copper // Comprehensive Coordination Chemistry (Ed. Wilkinson G.), Pergamon, Oxford. 1987. V5. P. 533–774.
- Jahn H.A., Teller E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy // Proc R Soc. 1937. A161. P. 220–235.
- Jeffrey G.A. An introduction to hydrogen bonding. New York: Oxford University Press, 1997. 303 p.
- Krivovichev S.V., Zhitova E.S., Ismagilova R.M., Zolotarev A.A. Site-selective As–P substitution and hydrogen bonding in the crystal structure of philipsburgite, Cu₅Zn((As,P)O₄)₂(OH)₆·H₂O // Physics and Chemistry of Minerals. 2018. V45. P. 917-923.
- Piret P., Deliens M., Piret-Meunier J. Occurrence and crystal structure of kipushite, a new copper-zinc phosphate from Kipushi, Zaire // Can Mineral. 1985. V23. P. 35-42.