ЭВОЛЮЦИОННЫЙ ПОИСК СОБСТВЕННЫХ МИНЕРАЛЬНЫХ ФАЗ АЛЮМИНИЯ В НИЖНЕЙ МАНТИИ ЗЕМЛИ

Еремин Н.Н., Марченко Е.И.

МГУ имени М.В. Ломоносова, Геологический факультет, г. Москва, neremin@geol.msu.ru

Вопрос существования собственных фаз алюминия в мантии Земли до настоящего времени остается дискуссионным [Eremin et al., 2016]. Теоретический расчет содержания кальция и алюминия в трех основных фазах нижней мантии Земли [Марченко и др., 2017] показал, что не все количество Са и Al в мантии может быть в них сосредоточено, следовательно, представляется возможным образование в нижней мантии собственных фаз кальция и алюминия: например, алюмината кальция с простейшей стехиометрией. Это определило основную цель настоящей работы – осуществить эволюционный поиск возможных кристаллических структур алюмината кальция, устойчивых при давлениях и температурах глубинных геосфер.

Известные на сегодняшний момент полиморфные модификации с простейшей стехиометрией CaAl₂O₄ можно разделить на структуры низкого давления, в которых атомы алюминия находятся в тетраэдрической кислородной координации, и фазы высокого давления с алюминием с более высокими координационными числами. Из структур CaAl₂O₄ с октаэдрической координацией АІ наиболее известна фаза, впервые описанная еще в 1957 году [Becker and Kasper, 1957]. Она кристаллизуется в марокитовом структурном типе, в котором в каналах, образованных сдвоенными цепочками октаэдров, располагаются более крупные катионы (рис. 1а). Экспериментально неоднократно показывалось [Yamanaka et al., 2008], что многие соединения (например, CaMn₂O₄, CaTi₂O₄ и CaFe₂O₄) могут находиться в нижней мантии Земли именно в структурном типе марокита в качестве постшпинелевых фаз. Так, CaMn₂O₄ переходит в структурный тип марокита при давлении около 30 ГПа, а CaTi₂O₄ – при 39 ГПа. Также отметим, что в многочисленных работах, посвященных структурным исследованиям сходных с марокитом ферритов, галлатов и титанатов структурные данные часто приводятся в нестандартных установках, что нередко приводит к значительной путанице в интерпретации результатов. Так, группа Стст может обозначаться как *Bbmm*, группа *Pbcm* эквивалентна группе *Pmab* в другой установке, и т.д. Среди этих «туннельных» структур с каналом, образованным шестью октаэдрами выделяются структуры с центрированной

и примитивной элементарной ячейкой. Оба случая топологически эквивалентны. Разница заключается лишь в том, что если в примитивной ячейке позиции атомов Са слегка «гофрированы» в направлении соседних каналов (рис. 1а), то в центрированной ячейке они находятся строго на одной линии. В работе [Lazic et al., 2006] была синтезирована несколько менее плотная моноклинная P2₁/m модификация CaAl₂O₄ со «слоистой» структурой. Слои октаэдров AlO₆ связаны между собой катионами Са, которые находятся в межслоевом пространстве. Проведенный в [Eremin et al., 2016] кристаллохимический анализ экспериментальной и теоретической информации позволил сделать вывод, что для стехиометрии $CaAl_2O_4$ при *P-T* условиях, соответствующих мантии Земли, могут проявляться лишь эти две модификации CaAl₂O₄. При этом поле устойчивости «марокитовой» ромбической модификации должно покрывать практически весь *P-T* мантийный диапазон.

Поиск возможных кислородных фаз высокого давления, аккумулирующих Са и Аl, среди соединений с формулой CaAl₂O₄, был осуществлен с использованием эволюционного подхода, реализованного в программном комплексе USPEX [Oganov and Glass, 2006]. Расчеты кристаллических структур осуществлялись с помощью программ GULP 4.5 [Gale, Rohl, 2003], Quantum Espresso [Giannozzi et al., 2009] и VASP [Kresse and Furthmüller, 1996]. Визуализация кристаллических структур осуществлялась при помощи пакета VESTA [Momma and Izumi, 2011]. Для моделирования структур был использован частично ионный набор потенциалов межатомного взаимодействия из работы [Eremin et al., 2016], хорошо зарекомендовавший себя при моделировании оксидов и силикатов. Расчеты проводились при давлениях 50, 100 и 150 ГПа. Из всех популяций полученных структур для каждого давления выбирались десять лучших представителей, обладающих наименьшими значениями энтальпии. Дальнейшая энергетическая оптимизация этих структур проводилась с использованием ab initio расчетов.

В таблице 1 приведены наиболее выгодные по энергии кристаллических структуры для состава CaAl₂O₄ по результатам настоящих расчетов. Разница в энтальпии приведена относительно наилучшей

Ранг пробной структуры	Пространственная группа	ΔH , эВ GULP	ΔH , эВ <i>ОЕ</i> (после оптимизации)	Ранг структуры после <i>ab initio</i> оптимизации
Р=50 ГПа				
1	Рпта (новый стр.тип – рис. 1г)	0	0	1
2	<i>Стст</i> (стр. тип марокита – рис. 1 <i>а</i>)	0.605	0.166	2
3	$P2_1/m$	0.702	0.200	4
4	C2/m	0.889	0.177	3
5	P4/nmm	1.008	0.471	6
Р=100 ГПа				
1	<i>Рпта</i> (стр. тип марокита – рис. 1 <i>а</i>)	0	0	1
2	Рпта (новый стр.тип – рис. 1г)	1.593	0.370	2
3	<i>Стст</i> (стр. тип марокита – рис. 1 <i>а</i>)	1.737	0.468	3
4	$P2_1/m$	2.353	0.614	4
5	C2/m	3.227	0.615	5
Р=150 ГПа				
1	<i>Рпта</i> (стр. тип марокита – рис. 1 <i>а</i>)	0	0	1
2	<i>Стст</i> (стр. тип марокита – рис. 1 <i>а</i>)	1.952	0.511	3
3	Рпта (новый стр.тип – рис. 1г)	2.113	0.463	2
4	Ст	3.679	1.086	4
5	Сс	3.733	1.200	6

Таблица 1. Результаты эволюционного поиска с использованием комплекса USPEX наиболее выгодных кристаллических структур для состава CaAl₂O₄

структуры. В правом столбце показан ранг структуры после *ab initio* оптимизации.

Как видно из таблицы, среди найденных эволюционным поиском энергетически наилучших фаз присутствуют экспериментально изученные структуры с октаэдрической координацией алюминия, что говорит об эффективности эволюционного подхода в данном случае. *Рпта* «марокитовая» модификация является наиболее энергетически выгодной при давлениях 100 и 150 ГПа. *Р2*₁/*т* модификация менее предпочтительна по энергии и пропускает впереди себя несколько гипотетических структур. Во всех расчетах среди наиболее выгодных по энергии структур при давлении 50 ГПа присутствует ранее не наблюдавшаяся ромбическая модификация (рис. 1г). При давлениях 100 и 150 ГПа эта гипотетическая структура уступает по энергии «марокитовым» модификациям, а при давлении 50 ГПа является вообще наилучшей. В структуре этой гипотетической модификации CaAl₂O₄ (пр. гр. *Pnma*) атомы Al занимают две неэквивалентные кристаллографические позиции и находятся в октаэдрах атомов O, образуя «стенки» из четырёх связанных по ребрам AlO₆ двух ориентаций. В структуре наблюдаются

Рис. 1. Известные и гипотетические структуры CaAl₂O₄ содержащие октаэдры AlO₆: а) *Рпта*-модификация со структурным типом марокита; б) «слоистая» *P*2₁/*m* модификация; в) предсказанная структура нерасшифрованной фазы из работы [Ito et al., 2006] (пр. гр. *P*2₁2₁2); г) новая гипотетическая *Рпта*-модификация. Крупными шарами показаны атомы Ca, полиэдрами – октаэдры AlO₆

сдвоенные каналы, которые по топологии схожи с одиночными «марокитовыми» каналами. Атомы Са находятся в восьмивершинниках атомов О и заполняют все пустоты каналов структуры. Полиморфный переход от новой гипотетической *Рпта* структуры с двойным каналом к «марокитовой», согласно настоящим расчетам, происходит при давлении 60 ГПа.

Из рис. 1 видно, что гипотетическая модификация CaAl₂O₄ со сдвоенным каналом является своеобразной переходной структурой между «слоистой» *P*2₁/*m* (стабильной при более низком давлении) и «марокитовой» модификацией (стабильной при более высоком давлении). Этот процесс может быть схож с трансформацией политипов MgSiO₃ в процессе перехода в постперовскит [Oganov et al., 2005].

В результате расчетов с фиксированными параметрами элементарной ячейки была также найдена гипотетическая слоистая кристаллическая структура с пространственной группой $P2_12_12$. AlO₆ октаэдры в этой структуре сочленяются по ребрам и граням, образуя слои, между которыми располагаются атомы Ca. Сравнение теоретического дифракционного спектра этой предсказанной структуры с данными эксперимента [Ito et al., 1980] показало совпадение основных пиков теоретической и экспериментальной дифрактограммы, что позволяет говорить об идентичности предсказанной и синтезированной в работе [Ito et al., 1980] и до конца не расшифрованной в той работе фазы.

Благодарности. Авторы выражают глубокую признательность доктору физ.-мат. наук, профессору РАН Оганову Артему Ромаевичу за помощь и консультации при проведении эволюционных подходов. Основная часть расчетов осуществлялась с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова и на суперкомпьютере Сколковского института наук и технологий.

ЛИТЕРАТУРА

- Марченко Е.И. и др. Са- и Мд перовскитовые фазы мантии земли как возможный резервуар А1 по данным компьютерного моделирования // Вестник Московского университета. Серия 4: Геология. 2017. № 4. С. 3–7.
- Becker D.F., Kasper J.S. The structure of calcium ferrite // Acta Cryst. 1957. V. 10. P. 332–337.
- Eremin N.N., Grechanovsky A.E., Marchenko E.I. Atomistic and ab-initio modeling of CaAl₂O₄ highpressure polymorphs under Earth's mantle conditions // Cryst. Reports. 2016. V. 61. N. 3. P. 432–442.
- Gale J.D., Rohl A.I. The General Utility Lattice Program (gulp) // Molecular Simulation 2003. V. 29. N. 5. P. 291–341.
- Giannozzi et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials // J. Phys.: Condens. Matter. 2009. V. 21(39). P. 395502.
- Ito S. et al. High-pressure modifications of CaAl₂O₄ and CaGa₂O₄ // Materials Research Bulletin. 1980. V. 15. P. 925–932.
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. 1996. B.54, P. 11169–11186.
- Lazic B. et al. On the polymorphism of CaAl₂O₄ structural investigations of two high pressure modifications // Solid State Sciences. 2006. V. 8. P. 589–597.
- Momma K. and Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // J. Appl. Crystallogr. 2011. V. 44. P. 1272–1276.
- Oganov A.R., Glass C.W. Crystal structure prediction using evolutionary algorithms: principles and applications // J. Chem. Phys. 2006. V. 124. Art. 244704.
- Oganov A.R. et al. Anisotropy of Earth's D" layer and stacking faults in the MgSiO₃ post-perovskite phase // Nature. 2005. V. 438. P. 1142–1144.
- Yamanaka T., Uchida A., Nakamoto Y. Structural transition of post-spinel phases CaMn₂O₄, CaFe₂O₄, and CaTi₂O₄ under high pressures up to 80 GPa // American Mineralogist. 2008. V. 93. Pp. 1874–1881.