ФАЗОВЫЕ ОТНОШЕНИЯ В СИСТЕМЕ К-Fe-S-Cl В ОБЛАСТИ СОСТАВОВ Fe-FeS,-KFeS,-KCl ПРИ ТЕМПЕРАТУРАХ 400-600 °C

Воронин М.В.¹, Осадчий В.О.^{1,2}, Баранов А.В.^{1,2}

¹Институт экспериментальной минералогии им. акад. Д.С. Коржинского РАН, г. Черноголовка, voronin@iem.ac.ru

²Московский государственный университет им. М.В. Ломоносова, г. Москва

Щелочные сульфиды, в связи с многочисленными находками в кимберлитах, карбонатитах и метеоритах, привлекают все большее внимание исследователей, в том числе, как индикаторы условий минералообразования и состава мантии [Clay et al., 2014; Abersteiner et al., 2019]. В настоящее время описано порядка полтора десятка сульфидов щелочных металлов, и около половины из этого числа минеральных видов принадлежит системе K–Fe–S–Cl, или она является краевой для них системой. Среди сульфидов калияжелеза описаны следующие минералы (www.mindat. org): расвумит (KFe₂S₃), бартонит (K₆Fe₂₁S₂₇), хлорбартонит (K₆Fe₂₄S2₆(Cl,S)), мурунскит (K₂(Cu_{0.75}, Fe_{0.25})₄S₄) и джерфишерит (K₆Na_{1-x}(Fe, Cu, Ni)_{Σ24+x} S₂₆Cl).

Paнee нами [Osadchii et al., 2018] проведены исследования фазовых отношений в системе K-Fe-S методом сухого синтеза в диапазоне 300-600 °С. В результате было определено, что при температуре выше 513±3 °C реализуется равновесие KFeS₂ – пирит (FeS_2) – пирротин (Fe_{1,x}S). При понижении температуры эта ассоциация становится нестабильной, и в системе реализуются равновесия пирит-расвумит-КFeS, и пирит-пирротин-расвумит. Наличие в природе равновесных расвумита и пирита ограничивает верхнюю температуру образования минеральных ассоциаций. Была оконтурена область существования фазы $K_{x}Fe_{2\text{-}y}S_{2}$ $(K_{0.74\text{--}1.0}Fe_{1.67\text{--}1.93}S_{2}$ или $\sim KFe_{2}S_{2})-$ синтетического, не содержащего медь, аналога минерала мурунскита. При исследовании фазовых отношений в изученном температурном диапазоне бартонит не был обнаружен.

Непосредственно к системе K–Fe–S–Cl можно отнести джерфишерит и хлорбартонит. Фазовые и кристаллографические взаимоотношения между ними на данный момент не ясны, и в этой работе принята идентичность этих минералов. Небольшое количество хлора в бартоните [Czamanske et al., 1981; Пеков и др., 2003] и в некоторых образцах джерфишерита [Barkov et al., 1997; Barkov et al., 2015; Abersteiner et al., 2019] может свидетельствовать о том, что преобразование хлорбартонита и джерфишерита начинается с выноса из структуры хлора, которое может происходить как в процессе выветривания, так и при подготовке образцов для анализа. Экспериментальные данные по четверной системе в литературе отсутствуют.

Материалы и экспериментальные методы, использованные в данном исследовании, подробно описаны в [Osadchii et al., 2018]. В качестве исходных веществ использовались KFeS₂, Fe, S, KCl. Эксперименты проводились в вакуумированных ампулах из кварцевого стекла при температурах 400 и 600 °C. Фазовый состав определялся методом рентгенофазового анализа на дифрактометре D8 ADVANCE BRUKER, излучение Co-K_{аl}. Полученные рентгеннограммы анализировались в программе Match! Software.

В результате проведенных исследований было определено, что для составов, лежащих выше линии KFeS₂ – расвумит – троилит, в температурном диапазоне 400–600 °C однозначно определяются два варианта, смена которых происходит в соответствии с данными по системе K-Fe-S при температуре 513 °C:

пирит – пирротин – расвумит – сильвин	(1a);
пирит – KFeS ₂ – расвумит – сильвин	(1b);
пирротин – расвумит – KFeS ₂ – сильвин	(2a);
пирит – KFeS, – пирротин – сильвин	(2b).

При температуре ниже 513 °C реализуются парагенетические ассоциации (1а) и (1b), выше указанной температуры парагенезисы (2а) и (2b).

Предварительные данные по равновесиям ниже линии KFeS₂ – расвумит – троилит свидетельствуют, что при температуре 400 °C существуют следующие фазовые ассоциации: железо – троилит – KFe₂S₂ – джерфишерит; троилит – KFe₂S₂ – расвумит – джерфишерит; железо – троилит – сильвин – джерфишерит; троилит – кFe₂S₂ – джерфишерит; троилит – сильвин – джерфишерит; троилит – расвумит – сильвин – джерфишерит; расвумит – сильвин – КFe₂S₂ – КFeS₂

В связи с тем, что при температуре несколько ниже 600 °С происходит плавление/разложение джерфишерита с образованием новой фазы неизвестного состава, фазовые отношения при этой температуре не поддаются интерпретации. Следует отметить, что в работе [Clarke, 1979] указывается на наличие при высоких температурах неизвестного сульфида, названного им калиевым моносульфидным твердым раствором.

Таким образом, ранее [Osadchii et al., 2018] высказанные предположения были подкорректированы с учетом вновь полученных данных. Обращает на себя внимание то, что полученная в данной работе температура устойчивости джерфишерита сильно отличается от данных работы [Clarke, 1979], в которой приводятся данные о плавлении/разложении железистого джерфишерита между 649 и 851 °С. В работе [Minin et al., 2016] сообщается, что не удалось получить джерфишерит при температурах 800 °С и выше и давлении 3 ГПа. Несмотря на некоторые различия в полученных данных, можно утверждать, что РТ-диапазон устойчивости джерфишерита в условиях мантии весьма незначителен, и верхняя температурная граница существования минерала в зависимости от давления и от соотношения железа, никели и меди лежит в пределах 600-700 °C.

ЛИТЕРАТУРА

- 1. Пеков И.В., Щербачев Д.К., Кононкова Н.Н. Бартонит из Ловозерского массива (Кольский полуостров) // ЗРМО, 2003, № 3. С. 97-101.
- Abersteiner A., Kamenetsky V.S., Goemann K., Golovin A.V., Sharygin I.S., Giuliani A., Rodemann T., Spetsius Z.V., Kamenetsky M. Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution // Contributions to Mineralogy and Petrology, 2019, V. 174(1), 8.

- Barkov A.Y., Laajoki K.V.O., Gehor S.A., Yakovlev Y.N., Taikina-Aho O. Chlorine-poor analogues of djerfisherite-thalfenisite from Noril'sk, Siberia, and Salmagorsky, Kola Peninsula, Russia // The Canadian Mineralogist, 1997, V. 35(6), P. 1421-1430.
- Barkov A.Y., Martin R.F., Cabri L.J. Rare sulfides enriched in K, Tl and Pb from the Noril'sk and Salmagorsky complexes, Russia: new data and implications // Mineralogical Magazine, 2015, V. 79(3), P. 799-808.
- Clarke D.B. Synthesis of nickeloan djerfisherites and the origin of potassic sulphides at the Frank Smith Mine. The Mantle Sample: Inclusion in Kimberlites and Other Volcanics, American, Geophysical Union, Washington, 1979, V. 16, P. 300-308.
- Clay P.L., O'Driscoll B., Upton B.G., Busemann H. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites // American Mineralogist, 2014, V. 99(8-9), P. 1683-1693.
- Czamanske G.K., Erd R.C., Leonard B.F., Clark J.R. Bartonite, a new potassium iron sulfide mineral // American Mineralogist, 1981, V. 66(3-4), P. 369-375.
- Minin D., Sharygin I., Litasov K., Sharygin V., Shatskiy A., Ohtani E. High-pressure behavior of djerfisherite: Implication for its origin in diamonds and mantle xenoliths. In AGU Fall Meeting Abstracts, 2016.
- Osadchii V.O., Voronin M.V., Baranov A.V. Phase equilibria in the KFeS₂–Fe–S system at 300–600 °C and bartonite stability // Contributions to Mineralogy and Petrology, 2018, V. 173(5), 44.