
Н. М. ПИРУМЯН, М. Г. РЕЗИН, М. Г. МУРДЖИКЯН, Е. Д. ЯКОВЛЕВ

ВЫБОР ЛИНЕЙНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ДЛЯ ПРИВОДА ЛЕНТОЧНОГО КОНВЕЙЕРА

Увеличение производительности и длины ленты конвейеров выдвигает ряд новых проблем. Применение резиновой ленты, стоимость которой составляет около 80% общей стоимости конвейера, приводит к увеличению капитальных затрат. Усложняется кинематика конвейера из-за необходимости устанавливать несколько натяжных и приводных станций по длине конвейера. Как показывают исследования, желательно тяговое усилие двигателей распределить более равномерно по всей длине ленты. Без усложнения конструкции конвейера решение этой задачи возможно в случае применения линейного асинхронного двигателя (ЛАД).

На рис. 1 показан возможный вариант расположения ЛАД по длине конвейера. В случае применения линейного двигателя длина конвейера может быть неограниченной, стоимость его сооружения небольшая, а угол подъема конвейера максимально допустимый из условия осыпания транспортируемого материала. Наличие нескольких ЛАД дает возможность уменьшить износ конвейерной ленты на барабанах, так как барабаны перестают быть ведущими. С другой стороны, отсутствие механического сцепления ленты с тяговым приводом исключает потери от силы трения.

Несомненно, стоимость таких электродвигателей может оказаться несколько больше, чем стоимость обычных асинхронных электродвигателей с вращающимся ротором. Однако следует учесть, что стоимость двигателя на современных конвейерах составляет 0,3—1,5% стоимости конвейера. Поэтому удешевление ленты, несомненно, окупит увеличение стоимости электропривода. Поскольку за последние годы идея использования ЛАД в качестве привода конвейеров привлекает большое внимание исследователей [1, 2], представляет интерес рассмотрение некоторых особенностей, связанных с применением этого нового типа двигателя. В качестве примера рассматривается привод конвейера,

предназначенного для транспортировки мелкой щебенки на расстояние 2 км.

Привод этого механизма должен обеспечить скорость движения ленты конвейера $v_{_{\rm J}}\!=\!10~\text{м/ce}\text{к}$ и тяговое усилие $F_{_{\rm ТЯГ}}\!=\!210~\text{кг}$. Исходя из технологических требований заданными являются толщина Δ и ширина 2c реактивной шины, а также величина немагнитного зазора δ . Специфические особенности, связанные с разомкнутостью магнитопровода и нарушением непрерывности в картине магнитного поля, практически исключают возможность использования известных результатов решения аналогичных задач для обычных систем с барабанным приводом.

Важным звеном в электромагнитном расчете двигателя конвейера является определение индукции магнитного поля в немагнитном зазоре с учетом продольного и поперечного краевых эффектов. Поскольку готовой методики расчета в известной нам литературе не встречалось, то ниже приводится пример расчета, учитывающий некоторые положения [3, 4]:

- 1. Число полюсов 2p=6 выбирается из условия уменьшения влияния продольного краевого эффекта.
 - 2. Полюсное деление

$$\tau = \frac{v}{2f(1-s)} \,. \tag{1}$$

3. Расчетная длина статора

$$l = 2p\tau. (2)$$

4. Тяговое усилие с учетом продольного краевого эффекта

$$F = \frac{F_{\text{TSI}}}{K_{\text{TD}}},\tag{3}$$

где $K_{\rm np}$ — коэффициент, которым учитывается продольный краевой эффект.

5. Давление на реактивную шину

$$P = \frac{F}{S}, \tag{4}$$

где S — поперечное сечение шины.

6. Давление на реактивную шину с учетом поперечного краевого эффекта

$$P_0 = \frac{P}{k_{\text{pc}}},\tag{5}$$

где $k_{\rm oc} = f\left(\frac{c}{\tau}, \ \epsilon\right)$ — коэффициент ослабления давления; ϵ — магнитное число Рейнольдса.

7. Индукция магнитного поля в немагнитном зазоре

$$B = \sqrt{\frac{P_0 \rho^2}{f_1 s l \tau}}, \tag{6}$$

где р — удельное сопротивление реактивной шины. Магнитная индукция на активной поверхности статора

$$B_0 = k_n B. (7)$$

Здесь $k_{\rm n}$ — коэффициент, с помощью которого учитывается степень ослабления поля в центре немагнитного зазора по сравнению с полем на поверхности статора.

Магнитодвижущая сила на полюс

$$F = 0.8k_0'k_0''k_0'''\delta B, \tag{8}$$

где k_{δ}' — коэффициент Картера (определяется обычным путем); k_{δ}'' — коэффициент воздушного зазора, обусловленный дополнительным рассеянием при больших зазорах,

$$k_{\delta}'' = \frac{1}{1 - 0.048 \frac{\delta}{2c}};$$

 $k_{\rm b}^{'''}$ — коэффициент, учитывающий ослабление индукции на краях сердечника,

$$k_{\delta}^{"'} = \frac{\sinh \frac{\pi \delta}{2\tau}}{\frac{\pi \delta}{2\tau}}.$$

В таблице показаны основные конструктивные параметры модели статора линейного двигателя.

Расчетные данные ЛАД

Параметры	Величииа	Параметры	Величина
Число полюсов Расчетный немагнитный зазор, мм Полюсное деление, см Число пазов на полюс и фазу	$2p=6$ $\delta = 5,86$ $\tau = 9$ $z = 36$ $q = 2$	Расчетная длина индуктора, м	$h_{\rm n} = 33,9$

Дальнейшим этапом является выбор типа обмотки ЛАД. Этот вопрос имеет важное значение, ибо распределение индукции

в немагнитном зазоре носит сложный характер. Так, в активной средней зоне выражение для индукции имеет следующий вид:

$$B = B_m \sin(\omega t - \alpha x) - (-1)^p B_{mc} \cosh \beta x \sin \omega t - (-1)^p B_{ms} \sinh \beta x \cdot \cos \omega t.$$
(9)

Выражение для B_m , B_{mc} , B_{ms} и для индукций в краевых зонах приводится в [3]. Первый член в этом выражении представляет нормальное бегущее поле, а два последних — неподвижные в пространстве пульсирующие поля. Наличие пульсирующих полей

особенностью является данного типа двигателя. Эти последствия тельно ухудшают техникоэкономические показатели линейных двигателей. Принимаем для упрощения расчета, что $\mu_c = \infty$, т. е. $\beta = 0$. Тогда необходимо считаться только с пульсирующей составляющей. соответствующей последнему члену выражения (9)

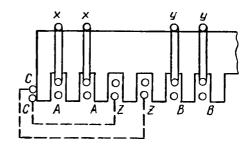


Рис. 2. Расположение коррегирующих элементов.

Эта пульсирующая компонента поля обусловлена явлением магнитного шунтирования и зависит от типа обмотки статора и расположения ее концевых катушек, которые играют роль компенсирующих элементов (к. э.). Поэтому от правильного выбора типа обмотки и размещения к. э. существенно зависят показатели ЛАД. Важными являются конструктивные вопросы выполнения к. э., например их крепление. В [3] даются рекомендации по выбору типов обмоток и расположения к. э., отдается предпочтение олному из способов размещения к. э. и указываются его положительные и отрицательные стороны.

Проведенные авторами настоящей работы экспериментальные исследования показали, что возможно иное расположение к. э. (рис. 2), выгодно отличающееся от предложенного в работе [3]. При таком расположении концевых сторон катушек к. э. фазы с можно располагать непосредственно у торцов сердечника статора ближе к воздушному зазору. В этом случае сопротивление рассеяния к. э. этой фазы наименьшее, а эффект компенсации наибольший. Несимметрия фаз также несколько уменьшается. В случае применения обмотки с укороченным шагом эффект компенсации не ухудшается, так как количество к. э. остается прежним. Такое исполнение к. э. наиболее удобно конструктивно, ибо теперь на торцах необходимо закреплять проводники только одной фазы, а не трех. Достигается также некоторая экономия меди в результате уменьшения длины некоторых катушек фаз.

Значение такого расположения возрастает по мере увеличения мощности. На рис. 3 показаны тяговые характеристики ЛАД с известным расположением к.э. (прямая 1) и с предлагаемым для двигателя ленточного конвейера (прямая 2).

Было проведено экономическое сравнение стоимости ленточного конвейера с линейным двигателем со стоимостью конвейера

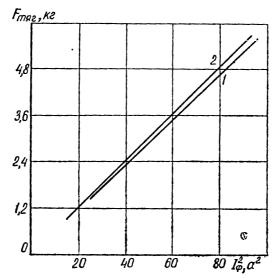


Рис. 3. Тяговые характеристики.

с барабанным приводом на роликоопорах. Годовая экономия по стоимости конвейерной ленты 5804 руб.

ЛИТЕРАТУРА

1. R. Laithwaite, D. Tipping, D. Hesmondhalgh. The application of induction motors to conveyors. Proc. IEE, 1960, 107A, 284.
2. Укр. НИИ Научно-технической информации и технико-экономических

исследований. Разработка и внедрение линейных электродвигателей в народиом хозяйстве. Киев, «Наукова думка», 1968.

3. А. И. Вольдек. Индукционные магнитогидродинамические машины с жидкометаллическим рабочим телом. М., «Энергия», 1970.
4. Л. А. Верте. Электромагнитный транспорт жидкого металла. М.,

«Металлургия», 1965.