СИНТЕЗ, ОСОБЕННОСТИ СТРОЕНИЯ И СВОЙСТВА ПРЕДСТАВИТЕЛЕЙ СИСТЕМЫ SrMoO₄-Bi₂Mo₃O₁₂ СО СТРУКУТРОЙ ШЕЕЛИТА

Михайловская З.А.^{1,2}, Замятин Д.А.¹, Петрова С.А.³

¹Институт геологии и геохимии УрО РАН, г. Екатеринбург, zamyatin@igg.uran.ru ²Уральский федеральный университет, г. Екатеринбург, zozoikina@mail.ru ³Институт металлургии УрО РАН, г. Екатеринбург, danaus@mail.ru

Типы кристаллических структур соединений типа АВО, очень разнообразны, причём диапазон структур весьма широк: от структур типа кварца, с тетраэдрическим окружением ионов А и В, до сложных оксидов, содержащих обособленную8-12 координированную Аⁿ⁺ – катионную подрешетку, и изолированные (BO₄)ⁿ⁻ полиэдры, образующие анионную подрешетку [Уэллс, 1987]. В последнем случае можно выделить структурные типы шеелита (тетрагональная симметрия, пр. гр. 141/а) и фергусонита (моноклинная симметрия), включающих в себя такие сложные оксиды, как $A^{1+}B^{7+}O_4$, $A^{2+}B^{6+}O_4$, $A^{3+}B^{5+}O_4$. Также следует отметить, что подкласс соединений со структурой дефектного шеелита образует катион-дефицитные фазы [Guo et al., 2015; Sleight, Aykan, 1975 и анион-избыточные фазы, в результате чего общая формула шеелитоподобного соединения может быть далекой от АВО₄. Вариации химического состава и относительная легкость замещения позиций металлов определяет большое число синтетических аналогов минералов со структурой шеелита. Химический состав и дефектность структуры позволяют регулировать функциональные характеристики полученных продуктов. Поэтому шеелитоподобные соединения привлекательны с точки зрения поиска новых материалов для оптики (лазерные материалы, люминофоры), энергетики (ионные проводники и фотокатализаторы), радиотехники (диэлектрики разнообразных диапазонов [Guo et al., 2015]).

Настоящее исследование посвящено получению и изучениюпроводящих и диэлектрических свойств шеелитоподобных соединений на основе SrMoO₄. Допирование висмутом молибдата стронция возможно при образовании кислородно-избыточных фаз типа $A_{1-x}Me^{+3}_{x}BO_{4+x/2}$ или путем формирования катион-дефицитных фаз $A^{+2}_{1-3x}Me^{+3}_{2x}\Phi_{x}MoO_{4}$, где Φ =вакансия. Ранее было показано, что первый способ замещения возможен только при очень малых концентрациях висмута (x<0.05) [Wang et al., 2017], что незначительно скажется на транспортных и диэлектрических свойствах керамики, поэтому в настоящей работерассматривается катион-дефицитныймеханизм, позволяющий вводить значительные количества допанта. При этом катионные вакансии, характер их упорядочения и влияние на искаженность структуры становятся важным фактором в регулировании физико-химических свойств веществ. Единственный представитель серии $\mathrm{Sr}_{1-3x}\mathrm{Bi}_{2x}\mathrm{MoO}_4$ (x=0.04) был впервые исследован в работе [Sleight, Aykan,1975], где была отмечена его высокая каталитическая активность, но, несмотря на это, далее его подробного изучения не проводилось. Сходные же по составу и структуре соединения проявляют фотокаталитические и дилектрические свойства. В данной работе проведен синтез указанных твердых растворов и их аттестация, исследована структура, проводящие и диэлектрические характеристики.

Синтез сложных оксидов Sr_{1-3x}Bi_{2x}MoO₄ проведен по стандартной керамической технологии из гомогенных стехиометрических смесей Bi₂O₂ (ос.ч.), MoO₂ (ч.д.а.), CaCO₃ (ос.ч.), SrCO₃ (ос.ч.), последовательно отожженных в интервале температур 773-973 К. Аттестация образцов осуществлялась методом РФА с использованием дифрактометра BrukerAdvanceD8 с детектором VÅNTEC, CuK_a-излучение, Ni-фильтр, q/q геометрия. Определены области гомогенности, параметры элементарной ячейки, для состава x=0.2 уточнена кристаллическая структура методом Ритвельда. Рамановские спектры получены на спектрометре HoribaLabRam HR800. Диэлектрические и проводящие свойства исследованы методом импедансной спектроскопии в диапазоне частот ЗМГц-10Гц, Т=300 - 650°С.

Обнаружено, что при синтезе сложных оксидов серии $Sr_{1-3x}Bi_{2x}MoO_4$ формирование тетрагональной фазы, изоструктурной $SrMoO_4$ (пр. гр. $I4_1/a$), наблюдается в пределах $0.025 \le x < 0.15$. При увеличении концентрации висмута (x > 0.15) в области малых углов на дифрактограмме появляются дополнительные рефлексы, которые могут быть описаны в рамках сверхструктурного упорядочения, используя элементарную ячейку большего размера ($a'=\sqrt{5a}$, $b'=\sqrt{5b}$, V'=5V) (пр. гр. I41/a). На примере $Sr_{0.4}Bi_{0.4}MoO_4$ показано (табл. 1), что сверхструктурное упорядоченики А занимает исключительно висмут, в то время как

Параметры	a = 11.936(2) Å; $b = 11.936(2)$ Å; $c = 11.935(4)$ Å; V =1700.474 Å ³ ; Z=4				
Позиция	x	У	Z	Beq.	Occ.
Bil	0.3978	-0.0553	0.3792	1.291	0.24
Sr1	0.3978	-0.0553	0.3792	1.291	0.49
Mol	0.5	0.25	0.375	0.5156	1
Bi2	0.0	0.25	0.625	1.291	1
Mo2	0.2876	0.1614	0.6132	1.291	0.99
01	0.1758	0.1408	0.6506	1.2	1
02	0.3126	0.0455	0.5568	1.2	1
O3	0.0989	0.1744	0.4571	1.2	1
04	0.3124	0.2597	0.4752	1.2	1
05	0.4495	0.1409	0.4663	1.2	1

Таблица 1. Координаты атомов и кристаллографическая информация для Sr_{0.4}Bi_{0.4}MoO₄ со сверхструктурным упорядочением, полученные на основе рентгеноструктурного анализа

Рис. 1. Рамановские спектры серии Sr_{1-3x}Bi_{2x}MoO₄ для x=0, 0.025, 0.05, 0.1, 0.175, 0.2(а) и зависимость ширины на половине высоты рамановских линий (б)

при малых концентрациях допанта распределение по катионным позициям строго статистическое. При дальнейшем росте концентрации висмута ($x \ge 0.225$) происходит выделение второй фазы со структурой Bi₂Mo₃O₁₂. При 0.025 $\le x \le 0.225$ наблюдается линейное уменьшение объема элементарной ячейки, связанное с замещением ионом меньшего размера и введением катионных вакансий ($r_{sr2+}=1.26$ Å, $r_{Bi3+}=1.17$ Å).

Несмотря на сверхструктурное упорядочение, изменения группы симметрии в ряду $Sr_{1-3x}Bi_{2x}MoO_4$ не происходит (для всех *x* пр. гр. $I4_1/a$), которая соответствует точечной группе C_{4h} . Расчет по теории групп даёт 26 колебаний Г=3Ag+5Au+5Bg+3Bu+5Eg+5Eu, из которых тринадцать (3Ag, 5Bg и 5Eg) проявляются в рамановском спектре. Рамановские спектры SrMoO₄ и Sr_{0.4}Bi_{0.4}MoO₄ схожи по строению (рис. 1a), однако в случае Sr_{1-3x}Bi_{2x}MoO₄ линии явно более широкие. Низкочастотные моды (с 1 по 6 на рис. 1) относятся к внешним колебаниям металл-кислородных полиэдров по связям O-Mo-O и O-Sr-O [Hardcastle, Wachs, 1991; Porto, Scott, 1967], а средне- и высокочастотные – к внутренним Mo-O связям (с 7 по 13 моды на рис. 1). При этом v_2 и v_4 – частоты симметричных и асимметричных деформационных колебаний, av_1 и v_3 -частоты симметричных и асимметричных валентных колебаний связи Mo-O. При замещении стронция на висмут в спектре проявляется большее число линий, при этом моды 16 и 17 также относятся к v_1 и v_3 в искаженных MoO₄ тетраэдрах аналогично [Guo et al., 2015]. Моды 14 и 15 относятся к валент-

Рис. 2. Температурные (а) и концентрационные при 550 °C (б) зависимости электропроводности серии $Sr_{1-3x}Bi_{2x}MoO_4$

ным колебаниям связи по длинной и короткой связи Bi-O соответственно [Hardcastle, Wachs, 1991; Guo et al., 2015]. Показано, что в фазе со сверхструктурным напряжением происходит сужение некоторых линий (рис. 1б), т.е. снимается часть искажений как в молибден-кислородных, так и в висмут-кислородных полиэдрах. Указанные изменения в структуре коррелируют с изменениями электропроводящих характеристик веществ (см. рис. 2). Так, при росте концентрации висмута наблюдается тренд к увеличению электропроводности, при этом до x=0.3 энергия активации проводимости меньше, чем у матричного соединения, что обеспечивается более легким ионным транспортом за счет искажений молибден-кислородных полиэдров. При дальнейшем росте концентрации висмута симметрия части металл-кислородных полиэдров возрастает, и энергия активации вновь увеличивается. Однако при x>0.3 наблюдается даже больший рост электропроводности, связанный, по-видимому, с упорядочением поляризационных центров в кристалле, в качестве которых выступают ионы висмута, и, как следствие, значительным увеличением подвижности ионов кислорода. С точки зрения данных материалов как СВЧ-диэлектриков, повышение проводимости в мегагерцовых диапазонах благоприятно с точки зрения более быстрых потерь наведенных зарядов, которые могут скапливаться на антенных элементах средств беспроводной связи.

Работа выполнена в ЦКП «Геоаналитик» при финансовой поддержке темы № АААА-А19-119071090011-6 государственного задания ИГГ УрО РАН.

ЛИТЕРАТУРА

- Уэллс А. Структурная неорганическая химия: В 3-х т. Т. 2: Пер с англ. М: Мир, 1987. 696 с.
- Guo J., Randall C.A., Zhang G. et al. Correlation between vibrational modes and dielectric properties in (Ca_{1-3x}Bi_{2x}Φ_x)MoO₄ Ceramics // J. Europ. Ceram. Soc. 2015. V. 35. P. 4459–4464.
- Hardcastle F.D., Wachs I.E. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy // J. Phys. Chem. 1991. V. 95. P. 10763–10772.
- Porto S.P.S., Scott J.F. Raman spectra of CaWO₄, SrWO₄, CaMoO₄, and SrMoO₄ // Phys.Review. 1967. V. 157. P. 716–719.
- Sleight J.A.W., Aykan K. New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure // Solid State Chem. 1975. V. 13. P. 231–236.
- Wang Y., Xu H., Shao C., Cao J. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO₄:Bi³⁺ // Appl. Surf. Sci. 2017. V. 392. P. 649–657.