3Д-51

СИНТЕЗ АНАЛОГА РОРОР С ИСПОЛЬЗОВАНИЕМ КЛИК-РЕАКЦИИ

Мохаммед С. Мохаммед¹, Н. В. Словеснова^{1,2}, Лейла К. Садиева¹, <u>И С. Ковалев</u>¹, Г. В. Зырянов^{1,3}, В. Л. Русинов^{1,3}, Д. С. Копчук^{1,3}

¹Химико-технологический институт, Уральский федеральный университет, г. Екатеринбург, РФ. ² Уральская государственная медицинская академия Министерства здравоохранения Российской Федерации, г. Екатеринбург, РФ. ³ Институт органического синтеза им И.Я. Постовского, УрО РАН, г. Екатеринбург, РФ

Флюорофор РОРОР (1,4-бис(5-фенилоксазол2-ил)бензол) 1 известен достаточно давно. Благодаря люминесценции в видимой области (фиолетовая эмиссия) и хорошему квантовому выходу (Φ_{a6c}) 0,93 в циклогексане, он находит применение в т. н. композитных сместителях спектра, позволяя визуализировать У Φ -излучение, а также траектории и соударения частиц высоких энергий с люминофорным экраном.

Нами был синтезирован аналог соединения **1** с использованием прогрессивной атом-экономной клик-реакции. При взаимодействии азидного производного 2,5-дифенил-1,3,4-оксадиазола **2** с этинилбензолом **3** в присутствии аскорбата натрия и сульфата меди нами был получено соединение 2-фенил-5-(4-(4-фенил-1H-1,2,3-триазол-1-ил)фенил)-1,3,4-оксадиазол **4** с количественным выходом.

Строение соединения **4** подтверждено спектроскопией 1Н ЯМР и масс-спектрометрией. Соединение **4** обладает улучшенными фотофизическими свойствами, по сравнению с **1**. Например, на рис. 1 представлен спектр поглощения (слева) и эмиссии соединения (справа). В сравнении с РОРОР соединение **4** обладает эмиссией с батохромным сдвигом. Исследование фотофизических свойств соединения **4** продолжается.

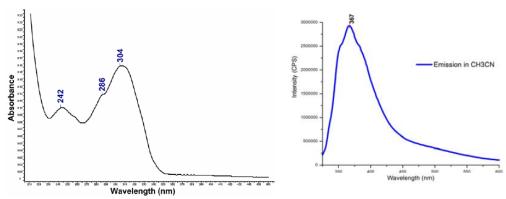


Рис. 1 Спектры поглощения и эмиссии соединения 4 в ацетонитриле.