3Д-15

ВЫСВОБОЖДЕНИЕ ВИНПОЦЕТИНА ИЗ ТВЕРДЫХ ДИСПЕРСИЙ С ПОЛИВИНИЛПИРРОЛИДОНОМ

Ю. А. Полковникова¹, К. Н. Корянова²

¹ΦΓБОУ ВО «Воронежский государственный университет», 394018, г. Воронеж, ул. Студенческая, 3.
²Пятигорский медико-фармацевтический институт — филиал ФГБОУ ВО ВолгГМУ Минздрава России, 357532, Ставропольский край, г. Пятигорск, пр. Калинина, 11 E-mail: juli-polk@mail.ru

Разработка лекарственных препаратов с использованием поливинилпирролидона (ПВП) является перспективным направлением современной фармацевтической науке и практике, как в направлении оптимизации биофармацевтических характеристик лекарственных препаратов, создания новых лекарственных препаратов, так и совершенствования фармацевтической технологии.

Цель исследования: определить оптимальное соотношение винпоцетина и ПВП в лекарственной форме (1:2 или 1:5) по результатам моделирования молекулярной динамики высвобождения действующего вещества в водную среду.

Моделирование молекулярной динамики высвобождения винпоцетина из ПВП осуществлялось в течение 100 нс с использованием программы Gromacs 2019 в силовом поле Gromos 54а7. Параметризация фрагмента молекулы ПВП производилась с использованием интернет-сервиса Automatic Topology Builder, после чего производилась сборка молекулы полимера из 83 мономеров с использованием программы Assemble [1].

По результатам проведенных вычислительных экспериментов были рассчитаны средние значения ван-дер-ваальсовых энергий связывания винпоцетина с носителями и с растворителем, а также средняя доля молекул винпоцетина, не связанных с носителем (таблица 1).

Таблица 1. Средние значения параметров высвобождения винпоцетина из исследуемых комплексов с полимерами

Система	Средняя энергия ван-	Средняя энергия	Средняя доля
	дер-ваальсова	ван-дер-ваальсова	молекул
	взаимодействия	взаимодействия	винпоцетина не
	винпоцетина с	винпоцетина с	сязанных с
	полимером,	растворителем,	носителем, %
	кДж/моль	кДж/моль	
Винпоцетин-ПВП 1:2	-115,85±2,68	-29,88±1,32	$0,205\pm0,59$
Винпоцетин-ПВП 1:5	-160,11±2,85	-25,44±2,27	$0,000\pm0,00$
Винпоцетин-ПВП 1:2 рН 2,0	-82,71±2,53	-62,02±2,04	11,386±1,94
Винпоцетин-ПВП 1:5 рН 2,0	-105,57±5,10	-59,47±2,77	$0,047\pm0,47$

Полученные данные показывают, что высвобождение винпоцетина из ПВП в существенном количестве происходит только в кислой среде и при соотношении винпоцетина с полимером 1:2 по массе.

Библиографическийсписок

1. Definition and testing of the GROMOS force-field versions 54A7 and 54B7 / N. Schmid, A.P. Eichenberger, A. Choutko [et al.] / Eur. Biophys J. – V. 40. - 2011. - P. 843-56.