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Electron beam poling of [001]c-poled PMN-39PT single crystal 
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The relaxor-based Pb(Mn1/3Nb2/3)O3-PbTiO3 (PMN-PT) ferroelectric single crystal is very 

attractive material as a potential candidate for optical application due to its high values of 

electrooptic coefficients (r33 is 70 pm/V) [1]. The nonlinear-optical applications require methods 

of precise control of domain walls positions for precise periodical domain structures [2]. The 

electron beam (e-beam) poling was elaborated for domain patterning in uniaxial crystals such as 

lithium niobate (LN) and lithium tantalate with simple 180º-domain structure [3] and applied for 

multiaxial crystals BT [4], BaMgF4 [5], and ceramics [6]. Recently, the modification of the method 

using surface covering by buffer artificial dielectric layer allow creation of fine periodically poled 

structure in bulk MgO-doped LN [7] and LN-based waveguides [8]. The second harmonic 

generation efficiency comparable with commercial elements was demonstrated. 

In this work we have used e-beam patterning for creation of the domain structure in  

PMN-PT crystal covered by surface dielectric layer. The results explained in terms of kinetic 

approach [9].  

The studied tetragonal PMN-PT single crystals were grown by modified Bridgman 

technique. The studied samples (5×8×1 mm3) were cut normal to [001] direction with sides cuts 

parallel to (010) and (100) planes. The surface was covered by beam resist AZ nLof 2020 

(MicroChemicals GmbH, Germany) deposited by Sawatec SM 180 spin coater. The opposite 

surface was sputtered by100-nm-thick Cu electrode and grounded during irradiation.  

The scanning electron microscope (Auriga CrossBeam workstation, Carl Zeiss NTS) with 

Schottky field emission gun equipped with the e-beam lithography (EBL) system (Elphy 

Multibeam, Raith GmbH) was used for e-beam domain patterning. The exposure parameters and 

e-beam positioning were controlled by EBL system. The irradiated patterns were specified by 

Raith Nanosuite software. The three exposure modes were used: (1) dot exposure, (2) line exposure 

by single path line-scan and (3) stripe exposure by meander-scan covering of the rectangular area. 

The domain patterns after chemical removal of resist layer and electrode were visualized by: 

optical microscopy, piezoresponse force microscopy (PFM), confocal Raman microscopy (CRM) 

and scanning electron microscopy (SEM). 

We revealed that e-beam irradiation led to switching of c-domains. The design of created 

domain structures corresponded to irradiated ones. The dose dependence of switched domain area 

for dot irradiation demonstrates the linear behavior up to 50 pC and saturation with large dispersion 

of domain sizes at higher doses (Fig. 1a). The saturation has been explained by electrostatic 

interaction of domain walls and by interaction with a-domains. The domain shape changed from 

circular at low dose to irregular at high doses (Fig. 1b,c). 

The line and stripe exposure mode have been used for creating of 1D pattern (Fig. 1d). The 

appearance of domain fingers at the walls oriented mainly at the angle close to 45º relative to [100] 

direction was revealed.  

We have demonstrated the possibility to write stripe domains along any direction as well as 

ring shaped domains (Fig. 1e). Since any area element consist of discrete points the circle domain 

shape upon dot irradiation at low doses is the key point which allows us to produce domain patterns 

with arbitrary geometry. The width of stripe domains was independent on direction. 

The domain visualization in the crystal bulk using CRM modified for PMN-PT crystals 

allowed to measure the domain depth down to 200 µm. 
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(a)  (b)  (c)  

(d) (e)  

Figure 1. (a) The dose dependence of switched domain area in MgOLN and PMN-PT crystals, 

(b) – (e) PFM images of c-domains created by e-beam. (b), (c) Dot irradiation with 

dose: (b) 10 pC, (c) 50 pC. (d), (e) Stripe irradiation along (d) [100] direction,  

(e) arbitrary direction. 

The obtained knowledge can be used for periodical poling in PMN-PT to produce the crystals 

for light frequency conversion. 
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