Tailoring quasi-two-dimensional high conductivity and superconductivity areas at the interfaces of ferroelectric/dielectric heterostructures

R.F. Mamin

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 420029, Kazan, Russia
mamin@kfti.knc.ru

The creation of quasi-two-dimensional electron gas at the interface and the ability to control such states by magnetic and electric fields is impossible without the use of new materials and without the development of new design interfaces. Unique properties of functional materials are achieved due to the effects associated with the complex composition of the interface structure. Such new materials include oxide heterointerfaces between two nonconducting oxides in which, owing to strong electronic correlations, unique transport properties are observed. A high-mobility electron gas was first observed in 2004 [1] at the interface of heterostructure LaAlO$_3$ (LAO) and SrTiO$_3$ (STO). Such heterointerfaces involving two insulating nonmagnetic oxides were comprehensively studied. In particular, it was found that the metallic phase (quasi-two-dimensional electron gas, 2DEG) is formed in the STO layers at the LAO/STO interface when the number of LAO layers is larger than three [2]. Such a system undergoes a transition to a superconducting state at temperatures below 300 mK [3].

We investigate the properties of 2DEG at the interface between ferroelectric oxide and insulating oxide in heterostructures, isostructural to BaTiO$_3$/LaMnO$_3$. The numerical simulations of the structural and electronic characteristics of the BaTiO$_3$/LaMnO$_3$ ferroelectric-antiferromagnet heterostructure have been performed. The temperature dependence of the electrical resistance has been studied for heterostructures formed by antiferromagnetic LaMnO$_3$ single crystals of different orientations with epitaxial films of ferroelectric Ba$_{0.8}$Sr$_{0.2}$TiO$_3$ (BSTO) deposited onto them. The measured electrical resistance is compared to that exhibited by LaMnO$_3$ (LMO) single crystals without the films. It is found that, in the samples with the film, for which the axis of polarization in the ferroelectric is directed along the perpendicular to the surface of the single crystal, the electrical resistance decreases significantly with temperature, exhibiting metallic behavior below 160 K [4]. The transition to the state with 2DEG at the interface is demonstrated.

The effect of a magnetic field on heterostructure BSTO/LMO has been investigated. It is shown that magnetic field change the resistivity properties of the interface BSTO/LMO very strong. The new properties of the interfaces of some other heterostructure will have been presented.

The reported study was funded by Russian Scientific Foundation, research project No. 18-12-00260.