Integrated magnetolectric devices based on interfacial magnetolectric coupling effects


Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
zhongqianghu@xjtu.edu.cn, mingliu@xjtu.edu.cn

Magnetic properties such as magnetic anisotropy, ferromagnetic resonance, and exchange bias, have been electrically manipulated via magnetolectric coupling effects, which enable promising applications in electrically tunable magnetic devices. However, these electric field control processes are usually confined at large scale in bulk materials, and the integration of these magnetolectric materials with semiconductor process in practical devices is still challenging. The interfacial magnetolectric coupling effects have been reported in thin film heterostructures, which are compatible with the micro-electro-mechanical systems (MEMS) processes. In this work, we design several integrated magnetolectric devices including tunable magnetic sensors and microwave signal processors, based on the interfacial magnetolectric coupling effects. High sensitivity and large tunability can be realized with a circuit operation voltage. More importantly, these magnetolectric devices can be integrated onto flexible substrates for wearable electronics. Our work paves the way toward ultrafast, compact, and power efficient spintronic/electronic devices based on interfacial magnetolectric coupling.