Influence of silicon dioxide nanoparticles on dielectric relaxation of triglycine sulfate

B.D. Mai¹, H.Th. Nguyen²,3,* A.Yu. Milinskiy⁴, S.V. Baryshnikov⁴

¹Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
²Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
³Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
⁴nguyenhoaithuong@tdtu.edu.vn
⁴Faculty of Physics and Mathematics, Blagoveschensk State Pedagogical University, 675000, Blagoveschensk, Russia

This study is devoted to clarifying the nature of anomalous phase transition and dielectric relaxation properties of a classical ferroelectric triglycine sulfate (TGS) under the influence of silicon dioxide nanoparticles (SiO₂) at low frequencies of 10²-10⁷ Hz in a temperature range from 20 to 120 ºC. Although the composite from SiO₂ and TGS has been synthesized already as reported in [1,2], there are several aspects needed to mention: (i) the influence of SiO₂ at different composition weight ratios on properties of TGS was not studied; (ii) the features of dielectric relaxation that plays a leading role for TGS applications at low frequencies were not considered at all. To fill this gap, a composite from silicon dioxide nanoparticles (SiO₂) and triglycine sulfate (TGS) was synthesized at different SiO₂:TGS weight ratios. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) techniques were utilized to characterize the synthesized composite samples before utilizing them for dielectric measurements (Fig. 1).

Figure 1. XRD patterns (a) and FTIR spectra (b) for TGS, SiO₂ and for SiO₂+TGS composite at different composition weight ratios.
Figure 2. Frequency dependences of the real and imaginary parts of complex dielectric constant for SiO$_2$+TGS composite at SiO$_2$:TGS weight ratios of 0.2:1 (a, b), 1:1 (c, d) and 3:1 (e, f) at different temperatures in ferroelectric phase.

It was indicated that the relaxation frequencies decreased with increasing SiO$_2$ content (Fig. 2). In addition, in comparison with Curie point of single crystals TGS, the phase transition temperature in TGS component increased from 15 to 55 $^\circ$C. The obtained anomalies were thoroughly explained based on the assumption of interaction occurred between composite components through hydrogen bonds.