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Abstract
Nowadays, graph analytics are widely used in many research fields and applications. One
important analytic that measures the influence of each vertex on flows through the network,
is the betweenness centrality. It is used to analyze real-world networks like for example social
networks and networks in computational biology. Unfortunately this centrality metric is rather
expensive to compute and there is a number of studies devoted to approximate it. Here we
focus on approximating the computation of betweenness centrality for dynamically changing
graphs. We present a novel approach based on graph coarsening for approximating values of
betweenness centrality, when new edges are inserted. Unlike other approaches, we reduce the
cost (but not complexity) of the betweenness centrality computation step by working on a
coarser graph. Our approach demonstrates more than 60% speedup compared to the exact
recalculation of the betweenness centrality for dynamically changing graphs.
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1 Introduction

Graph algorithms appear in many fields of science, industry and business, such as bioin-
formatics, social networks analysis, knowledge discovery, and many more. Nowadays, graph
analytics are a typical “data intensive” task. Dealing with big real-world graphs poses many
difficulties, such as irregular memory access patterns and workload imbalance because of the
skewed degree distribution of vertices. Another important feature is that many useful graph
algorithms have a rather high computational complexity. Betweenness centrality allows us to
rank the vertices V in a graph by assigning some value to every each vertex. This metric
originates from works of Bavelas, Sabidussi and Freeman [2, 13, 8].
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Betweenness centrality based on shortest-paths enumeration for some individual vertex v
and defined as follows:

BC(v) =
∑

s�=v �=t∈V

σst(v)

σst
,

where σst denotes the number of shortest paths between vertices s and t, and σst(v) is number of
shortest paths which pass through v. From the definition we see that the betweenness centrality
value of a vertex is relative to the number of shortest paths passing through the vertex. A vertex
with high betweenness centrality is passed in many (shortest) paths and is therefore important
for the flow in the network.

Betweenness centrality has O(V 3) complexity (where V is number vertices) for unweighted
graphs. In [3], Brandes introduced an algorithm with O(V E) complexity. To the best of
our knowledge this is currently the fastest sequential algorithm for exact computation of this
centrality metric.

But how can we deal with big graphs consisting of millions of vertices and edges? Exact
computations of betweenness centrality can take a lot of time even for Brandes algorithm. The
obvious solution in this case is try to approximate all centrality computations. This trade off
between accuracy and performance is very useful for real-world tasks.

Another important challenge, that we address in this paper, are graphs that change dynam-
ically over time. Obliviously recomputing the centrality metric every time the graph is altered
(addition or deletion of new vertex or edge) can get too expensive. In most cases, the changes
in the values of the metric are relatively small. This property tempts to compute an approxi-
mation of the update reusing already computed values. In this study we present novel approach
to approximate the computation of the betweenness centrality metric using graph coarsening.
With the right coarsening strategy we can operate on a “similar” (in terms of centrality) but
smaller graphs. The main idea is to condense the initial graph and subsequently assess changes
in structure (adding or removing edges and vertices) on the “small” graph. Thanks to the
smallness of the graph recomputing the centrality metric will be considerably cheaper. Finally
the updates are extrapolate back to the initial graph.

This paper organized as follows. In Section 2 we briefly explore already existing studies, de-
voted to approximate computation of betweenness centrality metric for static and dynamically
changing graphs. In Section 3 we describe our approach in detail and present the algorithm.
Section 4 is devoted to describe the benchmarks and datasets which we used for testing the al-
gorithm. Discussion about the performance with respect to accuracy and speedup are presented
in Section 5. This paper ends with a conclusion in Section 6.

2 Related Works

There is a number of related works devoted to develop methods and approaches of approximate
computation of the betweenness centrality metric. The first attempts by Eppstein et al. [6]
traded time to solution for accuracy. They proposed sampling technique to approximate close-
ness centrality (which is also based on counting shortest paths). The high-level overview of this
technique is summarized below:

1. Pick some vertex vi in the graph and solve the single-source shortest path (SSSP) problem
with vi as the source;

2. Estimate the value of the centrality based on the previous computations of the SSSP
problem;
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3. Repeat procedure k times (until it converges).

In [4] Brandes et al. augmented the sampling technique of Eppstein et al. to approximate the
betweenness centrality.

Bader et al. in [1] present adaptive sampling technique. It is termed adaptive, because the
number of vertices used to solve the SSSP problem varies with the information obtained from
each iteration of the algorithm. Extensive experimental study on real-world graph instances
are presented in this study and showed good quality of approximation.

Two important improvements are proposed in [9] to speed up the computation of between-
ness centrality in dynamically changing networks. First, authors empirically observed that the
vertex with the highest centrality value stays invariant over time. Therefore, there is no need
to recompute values for it every time the graph changes. Second, instead of computing the
“usual” betweenness centrality, they used the k-betweenness centrality. This metric considers
only the shortest paths with lengths at most equal to k. The authors conclude that the pro-
posed approximation technique works quite efficient and accurate for scale-free graphs, while
for random graphs it is poor due to their structural properties.

In [10] an improvement of Brandes [4] sampling technique is presented. Compared to the
uniformed sampling in Brandes algorithm, the authors developed a distance-based sampling
approach, where samples to estimate the betweenness centrality are chosen based on the length
of shortest paths from a randomly chosen vertex. One important advantage of this approach is
that proposed framework can be adopted to various sampling techniques.

In [12] probabilistic sampling techniques are used to further improve Brandes sampling
technique. To that end an efficient random-sampling-based algorithm is used to estimate the
betweenness centrality of the top-K vertices in the graph with high probability.

All presented approaches concentrates on processing the entire graph. Most of them are
able to reduce the number of SSSP problems to estimate the betweenness centrality. Even so,
these particular SSSP computations are performed on the full graph. In contrast, we present
a novel approach based on reduction the size of initial graph. In this particular case, we can
speedup the computation of the betweenness centrality by reducing the cost of computing the
SSSP problems.

3 Approximation Betweenness Centrality

Our approach of approximating betweenness centrality consist of two main steps:

1. Condense the initial graph to a “smaller” graph using a coarsening procedure;

2. Extrapolate and apply changes to the initial graph.

Below we describe both steps in details.

3.1 Graph Coarsening

The goal of this step is to compute a “small” but still representative view of the initial graph
G0. In order to compute a condensed graph G1 we use the betweenness centrality values of G0

to select the top-k central vertices (hubs). The actual coarsening step collapses neighbors of
top-k vertices to the central vertex. This process is visualized in Figure 1.

The high-level pseudocode for the graph coarsening is given in Algorithm 1. In line 2 we
fill the hubs list identifying vertices in initial graph with highest centrality values (hubs). The
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Figure 1: Initial graph before(left) and after (right) graph coarsening. Vertex 5 has highest
betweenness centrality value, so it serve like a hub to adsorb its neighbors on it. Size of vertices
corresponds to their centrality values

Input: G0 – initial graph, num hubs – number of vertices, which are considered as hubs
Output: G1 – coarsened graph

1 G1 ← G0;
2 hubs list← get highest centrality values(G0, num hubs);
3 foreach hub in hubs list do
4 vertices del← get neighbors(G0, hub);
5 foreach vertex in vertices del do
6 vertices connect← vertices connect ∪ get neighbors(G0, vertex);
7 end
8 foreach vertex in vertices del do
9 remove vertex(G1, vertex);

10 end
11 foreach vertex in vertices connect do
12 add edge(G1, hub, vertex);
13 end

14 end
15 return G1;

Algorithm 1: Graph coarsening

main loop starts by filling a list vertices del with identifiers of vertices, which are adjacent to
hubs (line 4). These vertices will be deleted in the coarsened representation of initial graph.
In lines 5-7 we fill the list vertices connect with identifiers of vertices, which will be connected
to hubs (actually, these vertices are neighbors of neighbors of the hubs). Finally, we delete
neighbors of hubs in lines 8-10 and make new edges in lines 11-13.

3.2 Applying Changes to the Initial Graph

One interesting feature of graph coarsening based on its betweenness centrality values is that
it approximately preserves the order of shortest paths. In other words, if the shortest path
between vertices u and v passed through some hub (or its neighbors), then after applying
coarsening procedure it will still be on the path through the newly created super-vertex. An
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Input: G0 – initial graph, bc exact – previously computed exact values of betweenness
centrality metric of the initial graph, num hubs – number of vertices, which are
considered to be hubs, newedge – edge to add to G0

Output: bc approximate – approximate values of betweenness centrality metric of the
resulting graph

1 subgraph before← graph coarsening(G0, num hubs);
2 subgraph after ← subgraph before.E ∪ {new edge};
3 bc subgraph before← exact bc(subgraph before);
4 bc subgraph after ← exact bc(subgraph after);
5 foreach vertex in subgraph after do
6 α[vertex]← bc subgraph after[vertex] / bc subgraph before[vertex];
7 end
8 foreach vertex in subgraph after do
9 bc approximate[vertex]← α[vertex]× bc exact[vertex];

10 end
11 return bc approximate;

Algorithm 2: Approximate betweenness centrality computation for dynamically changing
graph (adding a new random edge)

example of such a situation is visualized in Figure 2. Due to the preservation of shortest paths

Figure 2: Representation of the shortest path (red dashed line) between vertices 1 and 7 before
(left) and after (right) graph coarsening

in the condense graphs, we can use them as a replacement for the initial graph when computing
the betweenness centrality. Therefore, in the case of dynamic graphs, we can compute an
update for the relative change of betweenness centrality values on the coarsened graph after
add some perturbation in graph and extrapolate it to the initial graph. Algorithm 2 shows the
pseudocode for the algorithm approximating betweenness centrality (when adding random edge
in graph). We start by creating two “small” representations of the initial graph (without and
with new edge) in lines 1 and 2. Next, we compute the exact values of betweenness centrality
metric for these two “small” graphs in lines 3 and 4. In the loop (lines 5-7) we compute
correction coefficients α representing the relative change of the centrality metric in coarsened
graphs. Finally, in lines 8-10, we update the betweenness centrality metric using the correction
coefficients.
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4 Benchmarks

For the purpose of testing our approach we use uniformly random Erdős-Rényi graphs [7] and
RMAT graphs [5] (power law degree distribution). The benchmark uses three generated (fully
connected) graphs of each type containing 1000, 1500 and 2000 vertices.

We implemented a prototype of our approach to approximating betweenness centrality (for
dynamic graphs) with NetworkX citenetwork in Python. The experiments were carried out on
workstation with Intel Core i7-2630QM and 4 GB RAM.

We observed that the betweenness centrality values before and after the addition of a single
edge is very similar for both exact and approximate computations (using our approach). To
compare we use the mean square error

MSE =
1

n

n∑

i=1

( ˆBCi −BCi)
2,

where n is number of vertices in the graph, ˆBCi is the exact value, and BCi is our approximate
centrality value.

In the following we consider two mean square errors. First, we denote MSEEE as the
mean square “difference” between the exact values of betweenness centrality before and after
the addition of a new edge. Second we denote MSEEA as the error between the exact and
approximate values after the addition of a new edge. We carried out experiments by adding a
new edge to Erdős-Rényi and RMAT graphs for different graph sizes and numbers of hubs in
the coarsening phase.

Initial graph
Hubs

Coarsened graph
MSEEE MSEEAVertices Edges Vertices Edges

1000 4911

10 831 4545 1.06× 10−10 3.22× 10−11

20 708 4246 4.06× 10−10 9.45× 10−11

30 613 3972 2.64× 10−10 8.72× 10−11

40 543 3811 4.31× 10−10 2.17× 10−11

50 472 3636 4.09× 10−10 3.19× 10−11

1500 8287

15 1229 7669 6.90× 10−10 1.07× 10−11

30 1026 7128 1.10× 10−10 1.28× 10−11

45 870 6712 1.90× 10−10 2.70× 10−11

60 733 6334 1.86× 10−10 1.77× 10−11

75 647 6156 1.01× 10−10 4.69× 10−11

2000 9981

20 1653 9337 1.70× 10−10 8.43× 10−11

40 1408 8835 4.78× 10−11 7.31× 10−12

60 1225 8452 6.73× 10−11 7.01× 10−12

80 1063 8097 5.71× 10−11 1.41× 10−11

100 940 7894 5.10× 10−11 1.37× 10−11

Table 1: Approximation quality for different sizes and number hubs (Erdős-Rényi graphs)

The results in Table 1 show that for Erdős-Rényi graphs MSEEE is strictly larger than
MSEEA, which indicates an acceptable accuracy of the approximation (approximate values are
close to the exact ones). We choose the number of hubs such that the coarsest graph contains
approximately half of the vertices of initial graph.
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Initial graph
Hubs

Coarsened graph
MSEEE MSEEAVertices Edges Vertices Edges

1000 2098

10 283 524 1.02× 10−10 9.00× 10−11

20 212 555 1.20× 10−9 1.11× 10−8

30 190 632 4.88× 10−11 4.08× 10−11

40 180 675 5.80× 10−11 1.07× 10−10

50 170 714 4.59× 10−11 6.29× 10−11

1500 3238

15 413 858 1.52× 10−9 1.15× 10−9

30 350 935 1.60× 10−10 8.45× 10−10

45 312 965 1.38× 10−9 2.78× 10−9

60 294 1071 3.84× 10−11 2.34× 10−9

75 275 1080 1.70× 10−9 8.88× 10−6

2000 4341

20 578 1223 1.74× 10−9 8.40× 10−9

40 467 1356 2.99× 10−11 4.53× 10−10

60 408 1483 9.38× 10−11 8.49× 10−10

80 366 1536 1.67× 10−9 1.88× 10−8

100 339 1573 3.61× 10−9 1.60× 10−8

Table 2: Approximation quality for different sizes and number hubs (RMAT graphs)

In contrast to the results for Erdős-Rényi, Table 2 shows that our approximation performs
worse for RMAT graphs. MSEEE is comparable with MSEEA for some particular cases of
small number of hubs (for instance, case of 10 hubs in graph with 1000 vertices and case of
15 hubs for graph with 1500 vertices). But most of experiments showed that MSEEE smaller
than MSEEA. One of the reasons why this happens is that our method is sensitive to the
degree distribution of the graph. Erdős-Rényi graphs have almost no imbalance in degree
distribution, but RMAT graphs have few vertices with highest degrees and many vertices with
small degrees. In terms of betweenness centrality it means that there are few vertices with high
values of centrality metric and many vertices with zero values of centrality metric (with only one
incident edge). Difference between values of centrality metric for both types of graphs showed
in Figure 3. Probably, after coarsening step, degree distribution becomes more heavy-tailed
because hubs adsorb its neighbors and make connections with many periphery vertices (with
zero values of betweenness centrality). In current implementation of Algorithm 2 vertices with
zero values of centrality not take into account. Therefore, because of such untracked nodes our
approach demonstrates bad quality of approximation for RMAT graphs.

Additionally, we calculated the speedup of using our approximation approach in comparison
to the exact computation for the case of Erdős-Rényi graphs. Results are presented in Figure 4.
In the favorable case (large number of hubs) our approach attains a speedup of more than 60%.
In the case of minimum and average number of hubs (3% and less of the total number of nodes)
we obtained less (or even no) speedup. For example, whit 10 hubs in a graph of 1000 vertices
the cost of computing the centrality for the two involved coarsened graphs (subgraph before
and subgraph after in Algorithm 2) are higher than cost of computing the centrality for initial
graph.
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Figure 3: Exact values of betweenness centrality metric for Erdős-Rényi graph (left) and RMAT
graph (right)

Figure 4: Speedup with respect to exact computation of betweenness centrality (for Erdős-Rényi
graphs) with different number of hubs
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5 Discussion

Despite the fact, that our approach demonstrates rather good approximation quality and
speedup, it has some further work that we need to address:

1. α coefficients in Algorithm 2 are not computed for the neighbors of hubs. Therefore,
during the approximation procedure, betweenness centrality values of these vertices does
not change, which degrades quality of approximation;

2. According to Algorithm 2, α coefficients became indefinite for vertices, whose betweenness
centrality values are zero on the “small” graph (see line 6 in Algorithm). In our approach
betweenness centrality values of these vertices also stay unchanged to avoid division by
zero;

3. Despite the fact that we achieve an acceptable speedup only in the case of many hubs
(around 5% of the total number of nodes), the cases with smaller number of hubs can
potentially be utilized when we continuously add a few edges in the same graph region,
to improve coarsening performance;

4. Currently, our approach works well for uniformly random graph like Erdős-Rényi. It is
crucial to adopt our approach for different types of graphs (i.e. RMAT) to apply it to a
variety of real-world tasks;

5. Since the computation of betweenness centrality is well suited for parallelization, steps
related to computing exact values of centrality metric in Algorithm 2 can be parallelized
quite effectively (see in [11]);

6. Our approach can be fused with approaches exploiting sampling techniques. In this case,
the exact computation of betweenness centrality values on the “small” graph can be
potentially replaced with inexact sampling-based computations.

6 Conclusion

In this paper we present a novel approach to approximate the computation of betweenness cen-
trality in the case of dynamically changing graphs. It consist of two steps: first we condense the
initial graph to attain a “smaller” representation. Second we assess the changes on the “small”
graph (adding a new edge) and extrapolate it to get the betweenness centrality estimation for
the initial large graph.

Our approach demonstrates good approximation quality and good speedup (more than 60%)
for uniformly random graphs with respect to the exact computation when coarsening tens of
hubs.

Our further plans are split on two main directions – improving accuracy of approximation
and parallelization of our approach as well. Also we interesting in tuning our approach for
graphs with irregular inner structure and testing it on big real-world graph instances.
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