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Abstract 

The diffusion coefficient is calculated for a concentrated magnetic fluid in the absence of a magnetic field, taking into account 

the many-body correlations. The ferroparticle density distribution in a gravitational field is determined using both Monte Carlo 

simulations and theoretical modeling. Numerical and theoretical results are in good agreement. 
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1. Introduction  

 

Gravitational sedimentation and magnetophoresis in an initially homogeneous magnetic fluid in a cavity result in 

spatial heterogeneity over time. In the absence of convection, gradient diffusion leads to a variation in the 

concentration profile. The concentration profile in a cavity can be found from the boundary problem consisting of 

sedimentation and magnetophoresis. This problem has only been solved for dilute magnetic fluids [1,2]. In this case 

the magnetic and diffusion parts of the boundary problem are separable, can be considered independently. 

Unfortunately this method cannot be used for concentrated magnetic fluids. If the ferroparticle concentration is high, 

then the magnetic-field problem is connected with the diffusion problem, and hence the concentration profile will 

depend on steric, magnetic dipolar, and hydrodynamic interactions between the particles. The taking into account all 

of these interactions is a very complicated problem.  

The coefficient of gradient diffusion D was calculated in [3] using the Carnahan-Starling formula for the free 

energy of hard spheres, plus a modification that accounts for the effective dipole-dipole attraction. The latter term 

was treated to leading order in the volume ferroparticle concentration  : 
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where K  is the ferroparticle mobility, 
0

D  is the diffusion coefficient for solutions at infinite dilution, and  is 

the dipolar coupling constant relating the strength of the interaction energy between two particles at contact to the 

thermal energy. Equation (1) can be used only for magnetic fluids with low values of the volume concentration . 

For concentrated magnetic fluids, the diffusion coefficient should take into account many-particle correlations and 

as a result additional nonlinear terms will appear in (1). This paper considers the influence of interparticle 

correlations on the gradient diffusion of ferroparticles in concentrated magnetic fluids. The theoretical results are 

tested on data from Monte Carlo computer simulations. 

 

2. Diffusion coefficient 

 

The theoretical model of the magnetic fluid consists of a monodisperse system of N dipolar hard spheres with 

diameter d and constant magnetic moment m. The Gibbs free energy of the ferroparticle system may be represented 

as:  
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where kT is the thermal energy, N0 is the number of molecules in the carrier fluid, 0
0,  are the chemical potentials 

of the carrier fluid and a single ferroparticle, respectively, Qs is the configuration integral of the hard-sphere fluid, 

kTdm 32 /  is the dipolar coupling constant; and ),(G  is the contribution of the dipole-dipole interactions to 

total free energy. To obtain ),(G  we use a virial expansion in terms of the ferroparticle volume concentration . 

Each virial coefficient is calculated using the diagram method [4]. The coefficient of 
2i

 describe the mutual 

interactions of i particles. In this paper, ),(G  was calculated up to 
2
: 
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Computer simulation data [5] allow a determination of the range of validity of (3): this yields an upper limit of 

5.1~ , and a range of 3.0 . In order to extend this region we have developed a modified expression for the 

dipolar contribution to the free energy:
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where a20=0.04, a01=1.28972, a02=0.93795, a11=0.83333, a21=0.30804, and a12=1.01149535. The leading-order 

terms of the Taylor series of ,
~G  in  are identical to those of ,G . The modified expression ,

~G  is in 

good agreement with data from computer simulations [5] up to 3~  and 35.0 . Using the Batchelor formula 

and standard thermodynamic equations for the calculation of the chemical potential : 
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the diffusion coefficient for concentrated magnetic fluid takes the form:  
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Figure 1 shows the dimensionless coefficient of gradient diffusion as a function of volume concentration, for 

different values of the dipolar coupling constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Ferroparticle distribution over gravitational field 

 

Dipole-dipole interaction is a reason of effective attraction between ferroparticles, which leads to additional drift 

of ferroparticle in heterogeneous over concentration magnetic fluids. The corresponding additional term to total 

ferroparticle flux is proportional to a gradient of the number concentration n. Thus the flux density of the 

ferroparticle can be written as: 

 

Fig.1. Dimensionless coefficient of gradient diffusion as a function of volume ferroparticle concentration  for different values of the 

dipolar coupling constant : curve 1 is 0 ; curve 2 - 1; curve 3 - 2 ; curve 4 - 3 . 

Fig. 2. The ferroparticle distribution in a gravitational field for a round vertical cylinder along height z. The lines are theoretical predictions 

and the points are from Monte Carlo simulations: 2 (dashed line and open circles) 3 (solid line and filled circles). 
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where g is a gravitational parameter, being the inverse of the barometric height, L  is the Langevin function, 

kTMHm L /3/4
 
is the Langevin parameter found with the help of mean-field theory, and mnLML  is 

the Langevin magnetization. The validity of the effective-field approach was has proved in [6]. The derivation of (6) 

takes into consideration the quasiequilibrium character of the magnetisation within a modified mean-field theory [7]. 

The right-hand side of (6) equals zero in static conditions; the stationary solution yields the spatial distribution of 

ferroparticles in a cavity. Under a magnetic field the solution of the problem should be solved together with 

constitutive relation. Figure 2 shows a  comparison of (6) with data from Monte Carlo 

simulations for the distribution of ferroparticles in a circular vertical cylinder at height z. 

The method of computer simulation is similar to that described in [8]. A colloidal particle is modeled as a sphere 

with a constant value of the magnetic moment. The system contains 10
3
 particles. The energy of the ith

 particle is a 

sum of the dipolar interactions and the gravitational potential: 
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Here 0 is the Langevin parameter, Rij is the distance between the centers of the ith
 and jth

 particles, and i is the 

angle between the external magnetic field and the magnetic moment of a particle. Steric interactions were taken into 

account by forbidding the hard spheres to overlap with each other or with the cylinder wall. To obtain the stationary 

particle distribution profile, the cylinder is divided in to 20 horizontal layers. The average concentration of the 

magnetic particles in each layer is determined at each MC step. After the establishment of thermodynamic 

equilibrium, the local concentration profile is averaged over 10
5
 MC steps. Data from the top and bottom layers are 

not take into consideration because of well-known boundary effects. Figure 2 shows reasonable agreement between 

theory and simulation. 

 

4. Conclusions 

 

Analytical expressions of free energy and gradient diffusion coefficient were calculated taking into account many 

body correlations. Theoretical predictions demonstrate a good agreement with data of computer simulations (MC) 

for concentrated magnetic fluids with moderate and strong intensity of dipole-dipole interactions.  
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